Life Tables:

Like projection matrices, another way to account for age/stage specific survivorship patterns in a population. When paired with fecundity data estimation of growth rates, stable stage distribution, and lifetime reproduction possible.

These values assume a population declining at 3\% per year
Source: Data from Crouse et al. (1987).

TABLE 11.3	Stage-class population matrix for the loggerhead sea turtles. ${ }^{2}$					
0	0	0	0	127	4	80
0.6747	0.7370	0	0	0	0	0
0	0.0486	0.6610	0	0	0	0
0	0	0.0147	0.6907	0	0	0
0	0	0	0.0518	0	0	0
0	0	0	0	0.8091	0	
0	0	0	0	0	0.8091	0.8089

Fstimates based on the life table presented in Table 11.2, with the survival estimates broken down into survival within the same stage and survival and movement into the next stage.
Sourre: Data from Crouse et al. (1987).

Table 16. Life table based on age distribution of female white-tailed deer found dead (data from Eberhardt 1969:488).

Table 14. Stable age distribution calculated from survival and reproduction data for white-tailed deer in central Michigan, USA (from Eberhardt 1969).

Age (x)	Survival to age $\left(l_{x}\right)$	Fraction in age $\left(C_{x}\right)$
0	1.0000	0.3214
1	0.5800	0.1913
2	0.4060	0.1375
3	0.2842	0.0988
4	0.1989	0.0709
5	0.1392	0.0510
6	0.0974	0.0366
7	0.0682	0.0263
8	0.0478	0.0189
9	0.0334	0.0136
>9	$0.58(0.70)^{x-1}$	0.0337
	Proportion of individuals surviving at start of interval	Proportion of individuals in each stage/age at ssd/ssa
		distribution (must have
		fecundity data to estimate lambda)

Types of Life Tables

Cohort or age-specific or dynamic life tables: data are collected by following a cohort throughout its life. This is rarely possible with natural populations of animals. Note: a cohort is a group of individuals all born during the same time interval.

Static or time-specific life tables: age-distribution data are collected from a cross-section of the population at one particular time or during a short segment of time, such as through mortality data. Resulting age-specific data are treated as if a cohort was followed through time (i.e., the number of animals alive in age class x must be less than alive in age class $x-1$). Because of variation caused by small samples, data-smoothing techniques may be required (see Caughley 1977).

Composite - data are gathered over a number of years and generations using cohort or time-specific techniques. This method allows the natural variability in rates of survival to be monitored and assessed (Begon and Mortimer 1986).

Life Tables:

Survivorship curves are often created from life table data, plotting the proportion of a cohorts individuals alive $\left(I_{x}\right)$ over time.

Three common patterns of survivorship are seen in populations (but others exist).

Age (birth to max. lifespan)
Begon and Mortimer (1996)

Description/example of each?

Measuring/Estimating Demographic Parameters:

Reproduction, births, natality (B)

Births / Fecundity

Natality: Average number of live offspring born to individuals that reproduce

Fecundity: Average number of offspring (usually female) born per individual (usually female)

Fecundity $=$ Natality \times proportion of
 population that gives birth

How do we measure this for different taxa?

Estimating fecundity

Field methods:

Direct counts of young observed
in utero: ultra sound, placental scars
after birth: in dens, nests, schools, etc

Indirect
Number of young inferred from some component(s) of reproduction (clutch size, nest/hatching success, etc)

Landscape specific fecundity estimates:

From spot-mapping data and nest monitoring
Territory success rates
Number of fledglings/ successful nest These numbers used to estimate fecundity

	Reserves	Changing	Developed
\% Successful	61.2		
\% 2 ${ }^{\text {nd }}$ Brood	7.5	16.4	64.4
Fledglings/nest attempt	1.56	2.00	16
Fledgling/female	0.54	.87	2.14

(Oleyar \& Marzluff unpub data)
Fecundity $=(\%$ successful * mn fledglings $)+\left(\% 2^{\text {nd }}\right.$ brood * mn fledglings)/2

Estimating fecundity

Analytical methods (mark-recapture):
Jolly-Seber open population (Program MARK) :
estimates number of individuals added to population (if assume no immigration then that number is births)

Ratios of juveniles to adults:
gives an index of yearly reproduction and if stable age/stage distribution is assumed/known, then can be used to calculate numbers in each class and estimate fecundity

Mortality / Survival

Survival rate = (1 - Mortality rate)
**Survival estimators generally arise from 3 types of data:

1) All animals can be relocated (known fate) and determined to have survived or died
2) Only survivors are encountered (e.g., capture-mark-recapture)
3) Only deaths are recorded (e.g., band recovery)

$$
5 \cdot\left(e_{0}\right.
$$

Mortality / Survival

Known-fate Model

Kaplan-Meier method:
Individuals in the population are monitored (e.g.,
 via telemetry) over time

Accommodates 'staggered' entry into the known population

Animals may be 'censored' (i.e., leave the known population)

Survival can change over time (due to harvest, seasons, etc.)

Kaplan-Meier Survival:						Kaplan-Meier Survival Probability Estimate
			Became			
	Time		Unavailable			
	Period	At Risk	(Censored)	Died	Survived	
	Year 1	100	3	5	95	
$S\left(t_{i}\right)=\prod_{t_{i} \leq t}\left(1-\frac{d_{i}}{n_{i}}\right)$	Year 2	92	3	10	82	
	Year 3	79	3	15	64	
	Year 4	61	3	20	41	
	Year 5	38	3	25	13	
		\pm	=		- $=$	
			S			

Kaplan-Meier Survival:						Kaplan-Meier
			Became			Survival
	Time		Unavailable			Probability
	Period	At Risk	(Censored)	Died	Survived	Estimate
	Year 1	100	3	5	95	$(95 / 100)=0.95$
$S\left(t_{i}\right)=\prod_{t_{i} \leq t}\left(1-\frac{d_{i}}{n_{i}}\right)$	Year 2	92	3	10	82	
	Year 3	79	3	15	64	
	Year 4	61	3	20	41	
	Year 5	38	3	25	13	

Mark-recapture

Cormack-Jolly-Seber method:

-Open population model

- Use Program MARK to run analyses

-Accommodates 'staggered' entry into the known population
-Animals may be 'censored' (i.e., leave the known population)
- Survival can change over time (due to harvest, seasons, etc.)
-Assume NO emigration...

Underlying concept:
Recapturing/resighting a marked animal is a product of 2 probabilities:

1) The probability that the animal is alive and still in the study area
apparent survival vs true survival
2) The probability of capturing/encountering the animal during a sample period

Mark-recapture

Cormack-Jolly-Seber method:

-Open population model

- Use Program MARK to run analyses
-Accommodates 'staggered' entry into the known population
-Animals may be 'censored' (i.e., leave the known population)
- Survival can change over time (due to harvest, seasons, etc.)
-Assume NO emigration...

Where:

$$
\hat{S}_{1}=\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}}
$$

M-hat ${ }_{i}=$ size of marked population at time i
$\mathrm{m}_{\mathrm{i}}=$ number marked at time i (recaps)
Where:

$$
\hat{M}_{1}=m_{1}+\frac{R_{1} z_{1}}{r_{1}}
$$

$\mathrm{R}_{\mathrm{i}}=$ number of marked individuals released at i
$r_{i}=$ number released at i that are captured again
$z_{i}=$ number captured prior to i and caught again later, but not caught during i

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

$$
\hat{M}_{1}=m_{1}+\frac{R_{1} z_{1}}{r_{1}}
$$

a For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and S_{i} is the estimated survival rate.

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

$$
\begin{aligned}
\hat{M}_{1} & =m_{1}+\frac{R_{1} z_{1}}{r_{1}} \\
& =0+105\left(\frac{0}{87}\right) \\
\hat{M}_{2} & =m_{2}+\frac{R_{2} z_{2}}{r_{2}}
\end{aligned}
$$

${ }^{\text {a }}$ For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and \hat{S}_{i} is the estimated survival rate.

$$
\hat{S}_{1}=\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}}
$$

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

${ }^{\text {a }}$ For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and \hat{S}_{i} is the estimated survival rate.

$$
\begin{aligned}
\hat{M}_{1} & =m_{1}+\frac{R_{1} z_{1}}{r_{1}} \\
& =0+105\left(\frac{0}{87}\right) \\
& =0 \\
\hat{M}_{2} & =m_{2}+\frac{R_{2} z_{2}}{r_{2}} \\
& =84+121\left(\frac{5}{76}\right)
\end{aligned}
$$

$$
\hat{S}_{1}=\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}}
$$

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

${ }^{\text {a }}$ For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and \hat{S}_{i} is the estimated survival rate.

$$
\begin{aligned}
\hat{M}_{1} & =m_{1}+\frac{R_{1} z_{1}}{r_{1}} \\
& =0+105\left(\frac{0}{87}\right) \\
& =0 \\
\hat{M}_{2} & =m_{2}+\frac{R_{2} z_{2}}{r_{2}} \\
& =84+121\left(\frac{5}{76}\right) \\
& =91.96 \\
\hat{S}_{1} & =\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}}
\end{aligned}
$$

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

a For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and \hat{S}_{i} is the estimated survival rate.

$$
\begin{aligned}
\hat{M}_{1} & =m_{1}+\frac{R_{1} z_{1}}{r_{1}} \\
& =0+105\left(\frac{0}{87}\right) \\
& =0 \\
\hat{M}_{2} & =m_{2}+\frac{R_{2} z_{2}}{r_{2}} \\
& =84+121\left(\frac{5}{76}\right) \\
& =91.96
\end{aligned}
$$

$$
\begin{aligned}
\hat{S}_{1} & =\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}} \\
& =\frac{91.96}{0-0+105}
\end{aligned}
$$

Table 6. Mark-recapture statistics for a population of meadow voles trapped in 1981, Maryland, USA (Pollock et al. 1990:29). ${ }^{\text {a }}$

Period	Dates	n_{i}	m_{i}	R_{i}	r_{i}	z_{i}	\hat{S}_{i}	SE
1	27 Jun-1 Jul	108	0	105	87	0	0.88	0.039
2	1 Aug-5 Aug	127	84	121	76	5	0.66	0.048
3	29 Aug-2 Sep	102	73	101	68	8	0.69	0.049
4	3 Oct-7 Oct	103	73	102	63	3	0.63	0.049
5	31 Oct-4 Nov	102	61	100	84	5		
6	4 Dec-8 Dec	149	89	148				

${ }^{\text {a }}$ For the i th occasion, n_{i} animals are captured, of which m_{i} were already marked; R_{i} is the number of n_{i} animals released after the i th sampling occasion; r_{i} is the number of R_{i} animals released at i that are captured again; z_{i} is the number of animals that were captured before i, not captured at i, but captured again later; and \hat{S}_{i} is the estimated survival rate.

$$
\begin{aligned}
\hat{M}_{1} & =m_{1}+\frac{R_{1} z_{1}}{r_{1}} \\
& =0+105\left(\frac{0}{87}\right) \\
& =0 \\
\hat{M}_{2} & =m_{2}+\frac{R_{2} z_{2}}{r_{2}} \\
& =84+121\left(\frac{5}{76}\right) \\
& =91.96, \\
\hat{S}_{1} & =\frac{\hat{M}_{2}}{\hat{M}_{1}-m_{1}+R_{1}} \\
& =\frac{91.96}{0-0+105} \\
& =0.88,
\end{aligned}
$$

Band Recovery

Based on Mark-Recapture Methods

Recoveries are only dead individuals

