Problem Set 8

For this entire problem set, k is an algebraically closed field.

Problem 1. Let $n \geq r$. The projection map $\pi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{r}$ is given by $\pi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. Show that π is a polynomial map.

Problem 2. Let $V=V\left(x^{2}-y, x^{3}-z\right)$. Let $\phi: \mathbb{A}^{1} \rightarrow V$ be defined by $\phi(t)=$ $\left(t, t^{2}, t^{3}\right)$. Show that ϕ is an isomorphism by constructing a map $\psi: V \rightarrow \mathbb{A}^{1}$ such that $\phi \circ \psi$ and $\psi \circ \phi$ are each identity maps.

Problem 3. Let $V=V\left(y^{2}-x^{3}\right)$. Let $\phi: \mathbb{A}^{1} \rightarrow V$ be defined by $\phi(t)=\left(t^{2}, t^{3}\right)$.
a) Show that ϕ is a 1-1 and onto polynomial map.
b) Show that ϕ is NOT an isomorphism.

Problem 4. Let $V=V\left(y^{2}-x^{2}(x+1)\right)$. Let $\phi: \mathbb{A}^{1} \rightarrow V$ be defined by $\phi(t)=$ $\left(t^{2}-1, t\left(t^{2}-1\right)\right.$). Show that ϕ is onto and that ϕ is 1-1 (with the exception that $\phi(1)=\phi(-1)=(0,0))$.

Problem 5. Let $I=\left(x^{2}-y^{3}, y^{2}-z^{3}\right)$. Let $\alpha: k[x, y, z] \rightarrow k[t]$ be defined by $\alpha(x)=t^{9}, \alpha(y)=t^{6}, \alpha(z)=t^{4}$.
a) Show that every element of $k[x, y, z] / I$ has a representative of the form $A+B x+C y+D x y$ where $A, B, C, D \in k[z]$.
b) Let $F=A+B x+C y+D x y$ with $A, B, C, D \in k[z]$. Show that $\alpha(F)=0$ implies that $F=0$. (Hint: Compare powers of t).
c) Show that $\operatorname{ker}(\alpha)=I$.
d) Let $V=V\left(x^{2}-y^{3}, y^{2}-z^{3}\right)$. What is the polynomial map $\phi: \mathbb{A}^{1} \rightarrow V$ that induces α ?
e) Show that ϕ is $1-1$ and onto (so V is irreducible and $I(V)$ is prime).
f) Show that ϕ is not an isomorphism.

Let P_{1}, P_{2} be two points in \mathbb{A}^{2}. Let L_{1}, L_{2} be two distinct lines through P_{1}. Let K_{1}, K_{2} be two distinct lines through P_{2}.

Problem 6. Show that there is an affine change of coordinates T such that $T\left(P_{1}\right)=P_{2}, T\left(L_{1}\right)=K_{1}$ and $T\left(L_{2}\right)=K_{2}$. (Hint: Problem 9 from Set 6 might be helpful)

Problem 7. Let $V=V\left(y^{2}-x^{2}(x+1)\right)$. Let \bar{x}, \bar{y} be the equivalence class of x and y in $\Gamma(V)$. Let $f=\bar{y} / \bar{x} \in k(V)$.
a) Find the pole set of f.
b) Find the pole set of f^{2}.

Problem 8. Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{4}$ be defined by $t \rightarrow\left(t+1, t^{2}+2, t^{3}+3, t^{4}+4\right)$. This induces a homomorphism $\widetilde{\phi}: k[w, x, y, z] \rightarrow k[t]$.
a) Is ϕ an isomorphism? Why or why not?
b) Find the kernel of $\widetilde{\phi}$. (Macaulay 2 will be very helpful for this part).
c) Is $\operatorname{ker}(\widetilde{\phi})$ a prime ideal?

Problem 9. Let $\phi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{5}$ be defined by $(x, y) \rightarrow\left(x, y, x^{2}, x y, y^{2}\right)$. This induces a map $\widetilde{\phi}: k[A, B, C, D, E] \rightarrow k[x, y]$.
a) Find $\operatorname{ker}(\widetilde{\phi})$.
b) Is ϕ an isomorphism?

Problem 10. Let V be a variety in \mathbb{A}^{n}. Let $F \in \Gamma(V)$. Define $\operatorname{Gr}(F)=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}\right) \in \mathbb{A}^{n+1} \mid\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V\right.$ and $\left.a_{n+1}=F\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right\}$. $\operatorname{Gr}(F)$ is called the graph of F.
a) Show that $\operatorname{Gr}(F)$ is an affine variety.
b) Show that $\operatorname{Gr}(F)$ is isomorphic to V.

