Partial differentiations.

Let k be an algebraically closed field, and let R denote the polynomial ring $k[x, y, z]$. Assume that I is an ideal with $V(I) = \emptyset$. Then the quotient ring Q of R modulo I is a finite-dimensional vector space over k. In other words, Q is artinian. In this case, Q has a free resolution of the following type (this is not trivial):

$$0 \rightarrow F_3 \rightarrow F_2 \rightarrow F_1 \rightarrow R \rightarrow Q \rightarrow 0,$$

where F_i are free modules for each $i = 1, 2$ and 3. This ring is called \textit{arithmetically Gorenstein} if F_3 can be written as $R(-l)$ for some positive integer l (i.e. F_3 has rank 1).

Remark 1. Let Q be an artinian arithmetically Gorenstein ring over R. Then there is a positive integer d such that $\dim_k(Q_d) = 1$ and $\dim_k(Q_i) = 0$ for all $i > d$.

Let S be the polynomial ring $k[X, Y, Z]$, and let S act on R by partial differentiation:

$$X(x) := \partial_x(x), Y(y) := \partial_y(y) \text{ and } Z(z) := \partial_z(z).$$

Let F be a single homogeneous polynomial of degree d in R. For this F, denote by $I_S(F)$ the set of polynomials G in S satisfying $G(F) = 0$. Then $I_S(F)$ is an ideal of S (why?). Consider the quotient ring $Q(F)$ of S modulo $I_S(F)$. It is known that this ring is artinian and arithmetically Gorenstein.

Remark 2. By definition, $\dim_k(Q(F))_i = 0$ for all $i > d$. It immediately follows that $Q(F)$ is artinian. Let G be a degree d homogeneous polynomial in $I_S(F)$:

$$G = \sum_{i+j+k=d} a_{ijk}x^iy^jz^k.$$

Then $G(F)$ can be written as a k-linear combination of a_{ijk}’s. So the elements G satisfying $G(F) = 0$ form a one-codimensional subspace in S_d, and hence $\dim_k(Q(F)_d) = 1$. In general, we have the following equations:

$$\dim_k(Q(F)_r) = \dim_k(Q(F)_{d-r}) \text{ for all } 0 \leq r < d/2.$$
Proposition. If \(Q \) is an artinian arithmetically Gorenstein ring of \(S \), then there is a polynomial \(F \) in \(R \) such that \(Q = S/I_S(F) \). Furthermore, such a polynomial is uniquely determined up to constants.

Let us discuss how to compute the corresponding polynomial \(F \) in \(R \) from a given artinian arithmetically Gorenstein ring \(Q \) of \(S \). From Remark 1, it follows that there is a positive integer \(d \) such that \(\dim_k(Q_d) = 1 \) and \(\dim_k(Q_i) = 0 \) for \(i > d \). Let \(I \) be the ideal in \(S \), that is obtained as the kernel of the ring homomorphism from \(S \) to \(Q \), and let \(\{f_1, \ldots, f_t\} \) be a set of generators of \(I_d \), where

\[
t = \dim_k(S_d) - \dim_k(Q_d) = \left(\frac{d + 2}{2} \right) - 1.
\]

Consider the bilinear map \(\tilde{T} \) from \(I_d \otimes_k R_d \) to \(k \) defined by \(\tilde{T}(G \otimes F) = G(F) \). Recall that this bilinear map corresponds to a linear transformation \(T \) from \(R_d \) to \((I_d)^*\). The nullspace of this linear transformation, that is equal to the set

\[
\mathfrak{F} = \{ F \in R_d \mid G(F) = 0 \text{ for all } G \in I_d \},
\]

has dimension 1. Let \(F \) be a nonzero polynomial in \(\mathfrak{F} \). Such a polynomial can be computed explicitly by using the matrix representation of \(T \) with respect to the basis \(\{f_1^*, \ldots, f_t^*\} \) for \((I_d)^*\) and the standard basis for \(R_d \). Indeed, this matrix is given by \((f_1^* \cdots f_t^*)^T \cdot (x_d^0 \cdots x_d^2)\). Here is an algorithm for finding \(F \):

\begin{verbatim}
Input: ideal I with Q=S/I artinian, arithmetically Gorenstein
Output: a nonzero polynomial F with I_S(F)=I
i:=0
r:=dim(Q_0)
d:=0
Repeat
 r=dim(Q_i)
 d=i-1
Until r=0
B:=a basis of I_d
B':=the standard basis for R_d
A:=B^T*B'
syz:=a syzygy matrix of A
F:=B'*syz
\end{verbatim}
In Macaulay2, we use the function \texttt{diff} to compute \(A \) in pseudocode. This function is used to differentiate polynomials. Basically, the first argument is the variable to differentiate with respect to, and the second one is the polynomial to be differentiated:

```macaulay2
i1 : R=QQ[x,y]
o1 = R
o1 : PolynomialRing

i2 : F=x^2*y+y^7
    o2 = y + x y
    o2 : R

i3 : diff(x,F)
    o3 = 2x*y
    o3 : R
```

The first argument can be also sum:

```macaulay2
i4 : diff(x+y,F)
    o4 = 7y + x + 2x*y
    o4 : R
```

The first and second arguments can be matrices:

```macaulay2
i5 : diff(transpose matrix{{x,y}},matrix{{x^3+y,x*y+y^2}})
    o5 = {1} | 3x2 y |
       {1} | 1 x+2y |
   2 2
    o5 : Matrix R <--- R
```

This corresponds to the jacobian matrix of the ideal generated by the matrix in the second argument.
Here is the function for finding F:

```plaintext
i6 : idealOfCurveCorrToGorenstein=(idl)->(
    i:=0;
    isMaximum:=false;
    r:=ring idl;
    numbasis:=numgens source basis(0,r/idl);
    maxi:=0;
    while not isMaximum do (
        numbasis=numgens source basis(i+1,r/idl);
        maxi=i;
        if numbasis===0 then ( 
            isMaximum=true;
            g:=(gens idl)* map(source gens idl,basis(maxi,idl));
            m:=basis(maxi,r);
            mat:=diff(transpose g,m);
            sy:=syz mat;
            f:=basis(maxi,r)*sy;
        );
        i=i+1;
    );
ideal f)
```

06 = idealOfCurveCorrToGorenstein

Problem 2 (Set 19). Let $J = (6xz - 5z^2, 6y^2 - 4z^2, 6xz - 3z^2, 6xy - 2z^2, 6x^2 - z^2)$. Then the quotient ring Q of S modulo J is artinian and arithmetically Gorenstein. To check this, compute the free resolution of Q:

```plaintext
i7 : KK=QQ;
i8 : ringP2=KK[x,y,z];
i9 : J=ideal(6*y*z-5*z^2,6*y^2-4*z^2,6*x*z-3*z^2,6*x*y-2*z^2,6*x^2-z^2);
o9 : Ideal of ringP2
i10 : fJ=res J;
i11 : betti fJ
```

4
The free resolution of Q is of length 4, and its last spot has rank 1. So Q is an artinian and arithmetically Gorenstein ring. By using the function `idealOfCurveCorrToGorenstein`, we can compute the degree 2 polynomial F in R such that $J = I_S(F)$:

```plaintext
i12 : F = idealOfCurveCorrToGorenstein(J)

1 2 2 2 2 5 2
o12 = ideal(-x + -x*y + -y + x*z + -y*z + z)
6 3 3 3
```

```

o12 : Ideal of ringP2
```