Note. This script is also available at:

http://www.math.colostate.edu/~abo/Research/smi/smi-algebraic-geometry.html

1. Chow form of a line in \mathbb{P}^3

Let k be an algebraically closed field, let \mathbb{P}^3 be the three-dimensional projective space over k. We denote by S the homogeneous coordinate ring $k[x_0, x_1, x_2, x_3]$ of \mathbb{P}^3. Fix a line L in \mathbb{P}^3. The general line in \mathbb{P}^3 does not intersect L. So the lines in \mathbb{P}^3 hitting L form a proper subset $C(L)$ (actually a subvariety) of the grassmaniann of lines in \mathbb{P}^3. A question is: “How can we describe this subset?” Assume that the ideal $I(L)$ of L is generated by the following two linear forms: $\sum_{i=0}^3 a_{i}x_i$ and $\sum_{i=0}^3 a_{i+1}x_i$. Let L' be a line in \mathbb{P}^3 defined by linear forms $\sum_{i=0}^3 b_{i}x_i$ and $\sum_{i=0}^3 b_{i+1}x_i$. Then L and L' intersect if and only if the determinant of the matrix

$$\Lambda = \begin{pmatrix}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
b_{00} & b_{01} & b_{02} & b_{03} \\
b_{10} & b_{11} & b_{12} & b_{13}
\end{pmatrix}$$

is zero. For $0 \leq i < j \leq 3$, let

$$\lambda_{ij} = a_{ij}a_{i+1,j+1} - a_{i+1,j}a_{ij+1}$$

and $\Lambda_{ij} = b_{ij}b_{i+1,j+1} - b_{i+1,j}b_{ij+1}$.

From Problem 3 in Problem Set 20, it follows that $\det(\Lambda) = 0$ if and only if

$$F = \lambda_{01}\Lambda_{23} - \lambda_{02}\Lambda_{13} + \lambda_{03}\Lambda_{12} + \lambda_{12}\Lambda_{03} - \lambda_{13}\Lambda_{02} + \lambda_{23}\Lambda_{01} = 0.$$

Recall that the Plücker embedding from $\mathbb{G}(1, 3)$ to \mathbb{P}^5 is defined by

$$L' \mapsto [\Lambda_{01} : \Lambda_{02} : \Lambda_{12} : \Lambda_{03} : \Lambda_{13} : \Lambda_{23}] = [X_0 : \cdots : X_5].$$

Consider the ring $k[b_{00}, \ldots, b_{13}, X_0, \ldots, X_5]$ and the ideal

$$I = (X_0 - \Lambda_{01}, X_1 - \Lambda_{02}, X_2 - \Lambda_{12}, X_3 - \Lambda_{03}, X_4 - \Lambda_{13}, X_5 - \Lambda_{23}, F).$$

Let $J = I \cap k[X_0, \ldots, X_5]$. Then $J = (Q, F')$, where

$$Q = X_0X_5 - X_1X_4 + X_2X_3$$

(1)
and
\[F' = \lambda_{01}X_5 - \lambda_{02}X_4 + \lambda_{12}X_3 + \lambda_{03}X_2 - \lambda_{13}X_1 + \lambda_{23}X_0. \] (2)

Recall that \(Q \) is the defining equation of \(G(1,3) \). So \(C(L) \) can be regarded as a hypersurface in \(G(1,3) \). This hypersurface is called the **Chow variety** of \(L \), and the linear form \(F' \) is called the **Chow form** of \(L \). For a line \(L \) in \(\mathbb{P}^3 \) chosen at random, we compute the Chow form with Macaulay2:

```plaintext
i1 : KK=QQ;
i2 : ringP3=KK[x_0..x_3];
i3 : L=ideal random(ringP3^{0},ringP3^{2:-1})
      5 8 2 2
o3 = ideal (-*x + x , - -*x - -*x - -*x )
      2 1 2 9 0 5 1 3 2
o3 : Ideal of ringP3
i4 : coeff=transpose diff(transpose (vars ringP3),gens L)
      o4 = {-1} | 0 5/2 1 0 |
          | {-1} | -8/9 -2/5 -2/3 0 |
      2 4
o4 : Matrix ringP3 <--- ringP3
```

Using (2), we can compute the chow form of \(L \):
\[F' = -\frac{19}{15}x_3 - \frac{8}{9}x_4 + \frac{20}{9}x_5. \]

Let’s check this!

```plaintext
i5 : ringP7=KK[b_(0,0)..b_(1,3)];
i6 : mat=matrix{{b_(0,0)..b_(0,3)},{b_(1,0)..b_(1,3)}}
o6 = | b_(0,0) b_(0,1) b_(0,2) b_(0,3) |
     | b_(1,0) b_(1,1) b_(1,2) b_(1,3) |
```

2
\(\begin{align*}
&\text{o6 : Matrix ringP7} \quad \Leftarrow \quad \text{ringP7} \\
&\text{i7 : pluecker=\text{minors}(2,\text{mat})} \\
&\quad \text{o7 = ideal } (-b_{\ 0\ 1} b_{\ 1\ 0} - b_{\ 0\ 0} b_{\ 1\ 2}, -b_{\ 0\ 2} b_{\ 1\ 1} - b_{\ 0\ 1} b_{\ 1\ 2}, -b_{\ 0\ 3} b_{\ 1\ 1} - b_{\ 0\ 1} b_{\ 1\ 3}). \\
&\quad \text{o7 : Ideal of ringP7} \\
&\text{i8 : gamma=\text{substitute}(\text{coeff},\text{ringP7})||\text{mat}} \\
&\quad \text{o8 = \{\{-1\} | 0 \quad 5/2 \quad 1 \quad 0 \mid \\
&\quad \quad \{-1\} | -8/9 \quad -2/5 \quad -2/3 \quad 0 \mid \\
&\quad \quad \{0\} | b_{\(0,0\)} b_{\(0,1\)} b_{\(0,2\)} b_{\(0,3\)} \mid \\
&\quad \quad \{0\} | b_{\(1,0\)} b_{\(1,1\)} b_{\(1,2\)} b_{\(1,3\)} \mid} \\
&\quad \text{o8 : Matrix ringP7} \quad \Leftarrow \quad \text{ringP7} \\
&\text{i9 : F=\text{det gamma}} \\
&\quad \text{o9 = \frac{19}{15} b_{\ 0\ 3} b_{\ 1\ 0} + \frac{19}{9} b_{\ 0\ 3} b_{\ 1\ 1} - \frac{20}{9} b_{\ 0\ 3} b_{\ 1\ 2} - \frac{20}{9} b_{\ 0\ 3} b_{\ 1\ 3} - \frac{19}{15} b_{\ 0\ 3} b_{\ 1\ 0} + \frac{19}{9} b_{\ 0\ 3} b_{\ 1\ 1}} \\
&\quad \text{o9 : ringP7} \\
&\text{i10 : ringP5=KK[X_0..X_5];} \\
&\text{i11 : ringP7xP5=KK[b_{\(0,0\)}..b_{\(1,3\)},X_0..X_5,Degrees=>\{8:1,6:2\}, \\
&\quad \text{MonomialOrder=>Eliminate 8];} \\
&\text{i12 : grass=\text{substitute}(\text{vars ringP5},\text{ringP7xP5})- \\
&\quad \text{substitute}(\text{gens pluecker},\text{ringP7xP5});} \\
&\quad \text{o12 : Matrix ringP7xP5} \quad \Leftarrow \quad \text{ringP7xP5} \\
&\text{i13 : hyper=\text{substitute}(F,\text{ringP7xP5})} \\
\end{align*} \)
The quadratic polynomial \(Q\) in \(\text{chowVariety}\) looks a little different from (1). But this polynomial was just reduced. Indeed,

\[
Q = X_1X_4 + \frac{40}{57}X_2X_4 - X_0X_5 - \frac{100}{57}X_2X_5 \\
= X_1X_4 - X_0X_5 - X_2 \left(-\frac{40}{57}X_4 + \frac{100}{57}X_5 \right) \\
= X_1X_4 - X_0X_5 - X_2X_3.
\]

So \(Q\) differs from (1) by the sign.

The linear form we have obtained is equal to \(-\frac{15}{19}\).

2. Number of 4-secant lines to four skew lines in \(\mathbb{P}^3\)

We start with the following question:
Question 1. Let L_1, L_2, L_3 and L_4 be four skew lines in \mathbb{P}^3. Is there a line which intersects all of them? If such a line exists, are there finitely many such lines or infinite many?

Suppose that there exists such a line L. Then L can be regarded as a point in $\mathbb{G}(1,3)$. Since L hits L_1, L_2, L_3 and L_4, the corresponding point in $\mathbb{G}(1,3)$ is contained in $C(L_1) \cap C(L_2) \cap C(L_3) \cap C(L_4)$. Let F_i denote the Chow form of L_i, $i = 1, 2, 3, 4$. Then the intersection of the Chow varieties is defined by the ideal $I = (Q, F_1, F_2, F_3, F_4)$, where Q is the defining equation of $\mathbb{G}(1,3)$ in \mathbb{P}^5. Since the ideal is generated by five polynomials, the corresponding variety $V(I)$ cannot be empty. From the generality of the choice of the four skew lines, we can expect that $\{Q, F_1, F_2, F_3, F_4\}$ is a minimal generating set for I. In this case, $\dim(V(I)) = 0$, that is, $V(I)$ is a finite set of points. The next question is therefore:

Question 2. How many points are there in $V(I)$?

Recall that the “degree” of a given hypersurface in \mathbb{P}^n is defined to be the intersection number of the hypersurface itself and the general line in \mathbb{P}^n. On the other hand, the degree of an r-dimensional projective variety in \mathbb{P}^n is defined to be $r!$ times the leading coefficient of its Hilbert polynomial (see Chapter I-7 in *Algebraic Geometry* by R. Hartshorne). The Hilbert polynomial P_V of a hypersurface V in \mathbb{P}^n can be easily computed. Let R be the homogeneous coordinate ring of \mathbb{P}^n. If the polynomial defining V has degree d, then P_V is obtained from the exact sequence:

$$0 \to R(-d) \to R \to \Gamma(V) \to 0.$$

Indeed, we obtain

$$P_V(t) = \binom{n+t}{n} - \binom{n+t-d}{n} = \frac{d}{(n-1)!}t^{n-1} + \cdots.$$

So $\deg(V) = d$. This implies that $\deg(\mathbb{G}(1,3)) = 2$, because $\deg(Q) = 2$. The Chow forms F_1, F_2, F_3 and F_4 define a line in \mathbb{P}^5, and this line meets $V(Q)$ exactly in two points, because otherwise the line would lie on $V(Q)$ and there are infinitely many lines which intersect all four lines. But this contradicts our assumption. Therefore the number of points in $V(I)$ is expected to be 2.

Exercise (Problem 1 in Problem Set 21). Given four skew lines in \mathbb{P}^3, show that the number of lines which intersect all of them is equal to 2.

Hint. Use either Formula (2) or the Macaulay2 script to get the Chow forms of the four lines.