Homework 2 (Math461 EO)

Problem 1 (4 points)

Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and let r be the remainder in the division of a by b. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Problem 2 (2 points)
Use the Euclidean Algorithm to find $d=\operatorname{gcd}(8767,252)$ and integers s, t such that $d=8767 s+252 t$.

Problem 3 (4 points)
Find a solution $x \in \mathbb{Z}, 0 \leq x<n$, for each of the congruence $a x \equiv b(\bmod n)$ in (i) and (ii). Note that in each case, a and n are relatively prime.
(i) $2 x \equiv 3(\bmod 7)$.
(ii) $55 x \equiv 59(\bmod 42)$.

Bonus Problem (2 points)
If m is an integer, show that m^{2} is congruent module 8 to one of the integers 0,1 , or 4 .

