Homework 2 (Math461 EO)

Problem 1 (4 points)

Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and let r be the remainder in the division of a by b. Prove that gcd(a, b) = gcd(b, r).

Problem 2 (2 points)

Use the Euclidean Algorithm to find $d = \gcd(8767, 252)$ and integers s, t such that d = 8767s + 252t.

Problem 3 (4 points)

Find a solution $x \in \mathbb{Z}$, $0 \le x < n$, for each of the congruence $ax \equiv b \pmod{n}$ in (i) and (ii). Note that in each case, a and n are relatively prime.

- (i) $2x \equiv 3 \pmod{7}$.
- (ii) $55x \equiv 59 \pmod{42}$.

Bonus Problem (2 points)

If m is an integer, show that m^2 is congruent module 8 to one of the integers 0, 1, or 4.