Homework 3 (Math461 EO)

Problem 1 (2 points)

Assume that $|x+y| \leq|x|+|y|$ for all $x, y \in \mathbb{Z}$. Use this assumption and induction to prove that

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

for all integers $n \geq 2$ and arbitrary intergers $a_{1}, a_{2}, \ldots, a_{n}$.
Problem 2 (2 points)
Show that if the statement

$$
1+2+2^{2}+\cdots+2^{n-1}=2^{n}
$$

is assumed to be true for some n, then it can be proved to be true for $n+1$. Is the statement true for all $n \in \mathbb{N}$?

Problem 3 (2 points)
Let $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$. Define a binary operation on \mathbb{Z}_{n} by

$$
[a][b]=[a b]
$$

for all $[a],[b] \in \mathbb{Z}_{n}$. Prove that it is well-defined, i.e., prove that if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$, then $[a][b]=\left[a^{\prime}\right]\left[b^{\prime}\right]$.

Problem 4 (2 points)
In each of the following, a rule is given that determines a binary operation $*$ on \mathbb{Z}. Determine in each case whether $*$ is commutative or associative and whether there is an identity element.
(i) $x * y=x+y+3$.
(ii) $x * y=x+x y$.

Problem 5 (2 points)
Let S be a set of three elements given by $S=\{A, B, C\}$. In the following table, all the elements of S are listed in a row at the top and in a column at the left. The result of $x * y$ is found in the row that starts with x at the left and in the column that has y at the top. For example, $B * C=C$ and $C * B=A$.

$*$	A	B	C
A	C	A	B
B	A	B	C
C	B	A	C

(i) Is the binary operation $*$ commutative? Why?
(ii) Determine whether there is an identity element in S with respect to *.
(iii) If there is an identity element, which elements have inverses?

