Homework 5 (Math461 EO)

Problem 1 (2.5 points)

Let S_{3} be the symmetric group of degree 3, i.e, the group of permutations on $\{1,2,3\}$.
(i) Find the order of each element of S_{3}.
(ii) List all cyclic subgroups of S_{3}.

Problem 2 (2.5 points)

Use trigonometric identities and induction to prove that

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{n}=\left(\begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right)
$$

for all $n \in \mathbb{N}$. Show that for a constant θ

$$
H=\left\{\left.\left(\begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}
$$

is a cyclic subgroup of $G L(n, \mathbb{R})$. Do you think H is finite?
Problem 3 (2.5 points)
Let a be an element of a group G and let $|a|=15$. Compute the orders of the following elements of G :
(i) a^{3}, a^{6}, a^{9} and a^{12}.
(ii) a^{5} and a^{10}.
(iii) a^{2}, a^{4}, a^{8} and a^{14}.

Problem 4 (2.5 points)
Let G be a group with respect to addition and let $a \in G$. Prove that $|a|=|-a|$.

