Homework 5 (Math461 EO)

Problem 1 (2.5 points)

Let S_3 be the symmetric group of degree 3, i.e., the group of permutations on $\{1, 2, 3\}$.

- (i) Find the order of each element of S_3 .
- (ii) List all cyclic subgroups of S_3 .

Problem 2 (2.5 points)

Use trigonometric identities and induction to prove that

$$\left(\begin{array}{cc}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{array}\right)^n = \left(\begin{array}{cc}\cos n\theta & -\sin n\theta\\\sin n\theta & \cos n\theta\end{array}\right)$$

for all $n \in \mathbb{N}$. Show that for a constant θ

$$H = \left\{ \left(\begin{array}{cc} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{array} \right) \middle| n \in \mathbb{Z} \right\}$$

is a cyclic subgroup of $GL(n, \mathbb{R})$. Do you think H is finite?

Problem 3 (2.5 points)

Let a be an element of a group G and let |a| = 15. Compute the orders of the following elements of G:

- (i) a^3 , a^6 , a^9 and a^{12} .
- (ii) a^5 and a^{10} .
- (iii) a^2 , a^4 , a^8 and a^{14} .

Problem 4 (2.5 points)

Let G be a group with respect to addition and let $a \in G$. Prove that |a| = |-a|.