## Homework 8 (Math461 EO)

Problem 1 (2 points)
Show that

$$
H=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

is a normal subgroup of $G L(2, \mathbb{R})$.
Problem 2 (2 points)
Let $G$ be an arbitrary group. Prove that if $H$ and $K$ are normal subgroups of $G$, then $H \cap K$ is also a normal subgroup.

Problem 3 (3 points)
Let $G$ be a group. For an arbitrary subgroup $H$ of $G$, the normalizer of $H$ in $G$ is the set $N(H)=\left\{x \in G \mid x H x^{-1}=H\right\}$.
(i) Prove that $N(H)$ is a subgroup of $G$.
(ii) Prove that $H$ is a normal subgroup of $N(H)$.
(iii) Prove that if $K$ is a subgroup of $G$ that contains $H$ as a normal subgroup, then $K \subseteq N(H)$.

## Problem 4 (3 points)

Let $A_{4}$ be the alternating group of degree 4. Assume that

$$
H=\{e,(12)(34),(13)(24),(14)(23)\}
$$

is a normal subgroup of $A_{4}$. Write out the distinct elements of $A_{4} / H$ and make a multiplication table for $A_{4} / H$.

