Sample Exam 1 (Math461 Fall 2009)

Problem 1 (Sets and Maps)

(i) Let A and B be sets. Prove that $A \cup B=(A \backslash B) \cup B$.
(ii) Let A and B be sets and let $f: A \rightarrow B$ be a map. Prove that if A_{1} is a subset of A, then $A_{1} \subseteq f^{-1}\left(f\left(A_{1}\right)\right)$.

Remark.

- $A \backslash B=\{x \in A \mid x \notin B\}$.
- Let $f: A \rightarrow B$ be a map and let B_{1} be a subset of B. Then $f^{-1}\left(B_{1}\right)=$ $\left\{x \in A \mid f(x) \in B_{1}\right\}$.

Problem 2 (Maps)
Let $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ be the set of non-zero elements in \mathbb{R} and let $f: \mathbb{R}^{\times} \rightarrow \mathbb{R}$ be the map defined by

$$
f(x)=\frac{x-1}{x} .
$$

Determine whether f is one-to-one and whether it is onto. Justify your answer.

Problem 3 (Binary Relation)

Let $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$. Consider the following relations on $\mathbb{R}^{\times} \times \mathbb{R}^{\times}$. Determine in each case whether R is an equivalence relation, and justify your answer.
(i) $(a, b) R(c, d)$ if and only if $a d=b c$.
(ii) $(a, b) R(c, d)$ if and only if $a-b=c-d$.

Problem 4 (Equivalence Classes)

Let R be the relation on \mathbb{Z} defined by $x R y$ if and only if $x+3 y$ is a multiple of 4 . Prove that R is an equivalence relation. Find the distinct equivalence classes of R and list at least four members of each.

Problem 5 (Mathematical Induction)
Use mathematical induction to prove that the following statement is true for every positive integer n

$$
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)} .
$$

Problem 6 (Mathematical Induction)

Use mathematical induction to prove that 8 divides $9^{n}-1$ for all positive integer n.
Problem 7 (Euclidean Algorithm)
Let $a=5088$ and let $b=156$. Use the Euclidean Algorithm to find $d=$ $\operatorname{gcd}(a, b)$ and integers s and t such that $d=a s+b t$.

Problem 8 (Binary Operation)

Find the multiplicative inverse of $[33] \in \mathbb{Z}_{58}$.
Problem 9 (Divisors)
Prove that if n is a positive integer greater than 1 such that n is not a prime, then n has a divisor d such that $1<d \leq \sqrt{n}$.

Problem 10 (Prime Numbers)

Let n and r be integers with $1 \leq r \leq n-1$. The binomial coefficient $\binom{n}{r}$ is defined by

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!} .
$$

Prove that if p is a prime, then $\binom{p}{r}$ is divisible by p.
Hint. You may assume that $\binom{n}{r}$ is an integer.

