Sample Exam 2 (Math461 Fall 2009)

Problem 1 (Binary operations)

Determine whether the given set is closed under the binary operation $*$ defined on \mathbb{Z}. If B is not closed, echibit elements $x \in B$ and $y \in B$ such that $x * y \notin B$.
(i) $x * y=|x|-|y|, B=\mathbb{N}$.
(ii) $x * y=\operatorname{sgn}(x)+\operatorname{sgn}(y), B=\{-2,-1,0,1,2\}$, where

$$
\operatorname{sgn}(x)=\left\{\begin{aligned}
1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{aligned}\right.
$$

Problem 2 (Binary operations)

In each part following, a rule is given that determines a binary operation * on \mathbb{Z}. Determine in each case whether the operation is commutative or associative and whether there is an identity element. Also find the inverse of each invertible element.
(i) $x * y=3(x+y)$.
(ii) $x * y=x+2 y$.
(iii) $x * y=x+x y+y-2$.
(iv) $x * y=|x|-|y|$.

Problem 3 (Subgroups)

Let $H=\left\{a+b i \mid a, b \in \mathbb{R}, a^{2}+b^{2}=1\right\} \subset \mathbb{C}^{\times}$, where i is a root of $x^{2}+1$. Prove or disprove that H is a subgroup of \mathbb{C}^{\times}.

Problem 4 (Subgroups)
Let $H=\{A \in G L(2, \mathbb{R}) \mid \operatorname{det}(A)$ is a power of 2$\}$. Show that H is a subgroup of $G L(2, \mathbb{R})$.

Problem 5 (Subgroups)

Let G be an abelian group with the binary operation written as multiplication. For a fixed positive integer n, let

$$
G_{n}=\left\{a \in G \mid a=x^{n} \text { for some } x \in G\right\} .
$$

Prove that G_{n} is a subgroup of G.
Problem 6 (Center)
Let G be a group and let $Z(G)=\{a \in G \mid a x=x a$ for all $x \in G\}$. Show that

$$
Z(G)=\bigcap_{a \in G} C_{a}(G)
$$

where $C_{a}(G)=\{x \in G \mid a x=x a\}$ is the centralizer of a in G.
Note. The subset $Z(G)$ of G is a subgroup. The proof can be found in the textbook, pg 65.

Problem 7 (Cyclic groups)

Let $U\left(\mathbb{Z}_{11}\right)$ be the set of nonzero elements of \mathbb{Z}_{11}.
(i) Verify that $U\left(\mathbb{Z}_{11}\right)$ is generated by [2].
(ii) Find the other generators of $U\left(\mathbb{Z}_{11}\right)$.
(iii) Determine the number of distinct subgroups of $U\left(\mathbb{Z}_{11}\right)$.

Problem 8 (Order)

Let G be a group with the binary operation written as multiplication. Let a and b be elements of G of order m and n respectively. Suppose that $a b=b a$. Prove that if $\langle a\rangle \cap\langle b\rangle=\{e\}$, then G contains an element whose order is the least common multiple of m and n.
Note. The least common multiple of two non-zero integers a and b, denoted $\operatorname{lcm}(a, b)$, is the smallest positive integer that is a multiple of both a and b.

Problem 9 (Order)

Let G be a cyclic group of order 24. Let $a \in G$. Prove that if $a^{8} \neq e$ and $a^{12} \neq e$, then $G=\langle a\rangle$.

