Sample Exam 3 (Math461 Fall 2009)

Problem 1 (Permutation groups)

Make each of the following true or false.
(i) Every groups G is a subgroup of S_{G}.
(ii) The symmetric group S_{3} is cyclic.
(iii) S_{n} is not cyclic for any positive integer n.

Problem 2 (Permutation groups)

Find the order of $(1128104)(213)(5117)(69)$.

Problem 3 (Permutation groups)

Let A be a set, let B be a non-empty subset of A and let b be one particular element of B. Determine whether $\left\{\sigma \in S_{A} \mid \sigma(b) \in B\right\}$ is a subgroup of S_{A}.

Problem 4 (Homomorphisms)

Let $\phi: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$be the map defined by $\phi(z)=|z|=\sqrt{z \bar{z}}$ for all $z \in \mathbb{C}^{\times}$. Prove that ϕ is a homomorphism, and determine the kernel of ϕ.

Problem 5 (Homomorphisms)

Let G and G^{\prime} be groups. Assume that $\phi: G \rightarrow G^{\prime}$ is a homomorphism. Let K be a subgroup of G^{\prime}. Prove that $\phi^{-1}(K)=\{x \in G \mid \phi(x) \in K\}$ is a subgroup of G.

Problem 6 (Isomorphisms)

Let G be a group. For each element a in G, define a map $k_{a}: G \rightarrow G$ by $k_{a}(x)=x a^{-1}$ for all x in G.
(i) Prove that each k_{a} is a permutation on the set of elements of G.
(ii) Prove that $K=\left\{k_{a} \mid a \in G\right\}$ is a group with respect to map composition.
(iii) Define $\phi: G \rightarrow K$ by $\phi(a)=k_{a}$ for each a in G. Determine wether ϕ is always an isomorphism.

Problem 7 (Automprohisms)

Let G be an arbitrary group. Prove or disprove that the map $\phi(a)=a^{-1}$ is an automorphism of G.

Problem 8 (Automorphisms)

Suppose that $\operatorname{gcd}(m, n)=1$ and let $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be defined by $\phi([a])=m[a]$. Prove or disprove that ϕ is an automorphism.

Problem 9 (Isomorphisms)

Let H be the subset of $\operatorname{GL}(2, \mathbb{R})$ defined by

$$
H=\left\{\left.\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\} .
$$

Prove that the additive group \mathbb{Z} is isomorphic to H.

Problem 10 (Cosets)

Consider the set of matrices $G=\left\{I_{2}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$, where

$$
\begin{aligned}
& I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \\
& A_{3}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right), A_{5}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

These matrices form a group whose multiplication table is the following:

\cdot	I_{2}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
I_{2}	I_{2}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{1}	A_{1}	I_{2}	A_{4}	A_{5}	A_{2}	A_{3}
A_{2}	A_{2}	A_{5}	A_{3}	I_{2}	A_{1}	A_{4}
A_{3}	A_{3}	A_{4}	I_{2}	A_{2}	A_{5}	A_{1}
A_{4}	A_{4}	A_{3}	A_{5}	A_{1}	I_{2}	A_{2}
A_{5}	A_{5}	A_{2}	A_{1}	A_{4}	A_{3}	I_{2}

Let $H=\left\{I_{2}, A_{2}, A_{3}\right\}$. Then it follows from the above multiplication table that H is a subgroup of G.
(a) Prove that H is a normal subgroup of G.
(b) Find the index $[G: H]$.

