Homework 1 (Math461 EO)

Notation:

- $\mathbb{N}=$ the set of positive integers.
- $\mathbb{R}=$ the set of real numbers.
- $|x|=$ the absolute value of $x \in \mathbb{R}$.

Problem 1 (2 points)

Let $A=\{4 n \mid n \in \mathbb{N}\}$ and let $B=\{6 m \mid m \in \mathbb{N}\}$. Find $A \cap B$.

Problem 2 (2 points)

Let f be the map from \mathbb{R} to $(-1,1)=\{x \in \mathbb{R} \mid-1<x<1\}$ defined by

$$
f(x)=\frac{x}{1+|x|} \text { for evey } x \in \mathbb{R}
$$

(a) Prove that f is one-to-one.
(b) Determine whether or not f is onto. Justify your answer.

Problem 3 (2 points)
For any set A, the power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A (i.e., $\mathcal{P}(A)=\{X \mid X \subseteq A\}$). Let $A=\{1,2,3\}$. Find $\mathcal{P}(A)$.
Note. The empty set \emptyset can be thought of as a subset of any set.
Problem 4 (2 points)
Let A, B and C be non-empty sets and let $f: A \rightarrow B, g: B \rightarrow C$ be maps. Prove that if the composite $g \circ f$ is one-to-one, then f is one-to-one.

Problem 5 (2 points)
Let $A=\{1,2,3,4\}$ and let $\mathcal{P}(A)$ be its power set. Define a relation R on $\mathcal{P}(A) \backslash\{\emptyset\}$ by $x R y$ if and only if $x \cap y \neq \emptyset$. Determine whether R is reflexive, symmetric, or transitive.

