Homework 10 (Math462)

Problem 1 (3 points)

Let F be a field and let $p(x) \in F[x]$ be irreducible over F. Suppose that E is an extension of F that contains a zero α of $p(x)$. Consider the ring homomorphism $\varphi: F[x] \rightarrow E$ defined by $\varphi(f(x))=f(\alpha)$ for every $f(x) \in$ $F[x]$. Prove that $\operatorname{ker}(\varphi)=(p(x))$.

Problem 2 (4 points)
Find the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. What is $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]$? Hint. $(\sqrt{2}+\sqrt{3})^{2}=\sqrt{5+2 \sqrt{6}},(5+2 \sqrt{6})(5-2 \sqrt{6})=1$ and $5+2 \sqrt{6}+(5-$ $2 \sqrt{6})=10$.

Problem 3 (3 points)
Let F be a field, let E be an extension of F and let α, β be elements of E. Prove that $F(\alpha, \beta)=(F(\alpha))(\beta)$.

