Homework 2 (Math462)

Problem 1 (4 points)

Let $f(x)=x^{2}+1 \in \mathbb{R}[x]$ and let $I=\{s(x) f(x) \mid s(x) \in \mathbb{R}[x]\}$.
(i) Prove that $\mathbb{R}[x] / I$ is a field, i.e., every non-zero element of $\mathbb{R}[x] / I$ has an inverse.
(ii) Recall that $\mathbb{R}[x] / I$ is a vector space over \mathbb{R}. Find the dimension of $\mathbb{R}[x] / I$.

Problem 2 (4 points)

Let $f(x)=x^{2}-2 \in \mathbb{Q}[x]$ and let $I=\{s(x) f(x) \mid s(x) \in \mathbb{Q}[x]\}$. Then

$$
\mathbb{Q}[x] / I=\{(a x+b)+I \mid a, b \in \mathbb{Q}\} .
$$

Let $\mathbb{Q}[\sqrt{2}]=\{a \sqrt{2}+b \mid a, b \in \mathbb{Q}\}$ and let $\varphi: \mathbb{Q}[x] / I \rightarrow \mathbb{Q}[\sqrt{2}]$ be the map defined by $\varphi((a x+b)+I)=\sqrt{2} a+b$.
(i) Prove that φ is well-defined.
(ii) Prove that φ is a group homomorphism, i.e., $\varphi([g(x)+I]+[h(x)+I])=$ $\varphi(g(x)+I)+\varphi(h(x)+I)$.
(iii) Prove that $\varphi([g(x)+I][h(x)+I])=\varphi(g(x)+I) \varphi(h(x)+I)$.
(iv) Prove that φ is an isomorphism.

Problem 3 (2 points)
Let $f(x)=x^{3}+2 x, g(x)=x^{2}+x+1, h(x)=2 x^{3}+x^{2}+2 x+1 \in \mathbb{Z}_{3}[x]$.
(i) Prove that $f(x), g(x)$ and $h(x)$ are linearly dependent.
(ii) Let $I=\left\{s_{1}(x) f(x)+s_{2}(x) g(x)+s_{3}(x) h(x) \mid s_{1}(x), s_{2}(x), s_{3}(x) \in \mathbb{Z}_{3}[x]\right\}$. Find the dimension of $\mathbb{Z}_{3}[x] / I$.

