Homework 3 (Math462)

Problem 1 (2 points)

Let R be an arbitrary ring and let

$$
S=\{x \in R \mid a x=x a \text { for all } a \in R\} .
$$

Prove that S is a subring of R.
Problem 2 (8 points)
Let $\left\{\left.\left(\begin{array}{ll}x & 0 \\ x & 0\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\} \subset M_{2 \times 2}(\mathbb{R})$.
(i) Prove that S is a subring of $M_{2 \times 2}(\mathbb{R})$.
(ii) Is S a commutative ring?
(iii) Does S have a unity?
(iv) Does every non-zero element of S have an inverse?

