Homework 4 (Math462)

Problem 1 (2.5 points)

Let $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(1,1),(0,1),(1,0)\}$. Addition and multiplication are defined on $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$:

- $(a, b)+(c, d)=(a+c, b+d)$.
- $(a, b)(c, d)=(a d+b c+b d, a d+b c+a c)$.
(i) Prove that multiplication is associative.

Assume that S is a ring with respective the binary operations as defined above.
(ii) Is S a commutative ring?
(iii) Does S have a unity?
(iv) Is S an integral domain?
(v) Is S a field?

Problem 2 (2.5 points)

Prove that if a subring R of an integral domain D contains the unity of D, then R is an integral domain.

Problem 3 (2.5 points)
The subset $S=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}$ of $M_{2 \times 2}(\mathbb{Z})$ is a subring. Show that

$$
I=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

is an ideal of S.

Problem 4 (2.5 points)
Let I_{1} and I_{2} be ideals of a ring R. Prove that $I_{1}+I_{2}=\left\{x+y \mid x \in I_{1}, y \in I_{2}\right\}$ is an ideal of R that contains both I_{1} and I_{2}.

