Homework 5 (Math462)

Problem 1 (4 points)

- (i) Let R be a ring with unity $1 \neq 0$. Show that if an ideal I of R contains a unit, then I = R.
- (ii) Let F be a field. Then the only ideals of F are $\{0\}$ and F itself.

Problem 2 (3 points)

Let $I = \{0, 3\} \subset \mathbb{Z}_6$. Determine whether or not I is a prime ideal. Justify your answer.

Problem 3 (3 points)

Let $I = \{(3x, y) \mid x, y \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$. Prove that I is a maximal ideal. Note. Recall that addition and multiplication are defined on $\mathbb{Z} \times \mathbb{Z}$:

- (a,b) + (c,d) = (a+c,b+d).
- (a,b)(c,d) = (ac,bd).

Bonus Problem (2 points)

Let R be a commutative ring with unity that has the property that $a^2 = a$ for all $a \in R$ and let I be a prime ideal of R. Show that |R/I| = 2.