Homework 6 (Math462)

Problem 1 (4 points)

Assume that

$$
R=\left\{\left.\left(\begin{array}{ll}
x & 0 \\
y & 0
\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}
$$

is a ring with respect to matrix addition and multiplication.
(i) Let $\varphi: R \rightarrow \mathbb{Z}$ be the map defined by

$$
\varphi\left(\begin{array}{ll}
x & 0 \\
y & 0
\end{array}\right)=x
$$

Prove that φ is an onto ring homomorphism.
(ii) Describe $\operatorname{ker}(\varphi)$ and exhibit an isomorphism from $R / \operatorname{ker}(\varphi)$ to \mathbb{Z}.

Problem 2 (2.5 points)

Let I and J be ideals of a ring R. Prove that $I /(I \cap J)$ is isomorphic to $(I+J) / J$.
Hint. Define a map $\varphi: I \rightarrow(I+J) / J$ by $\phi(x)=x+J$. Prove that φ is an onto ring homomorphism and that $\operatorname{ker}(\varphi)=I \cap J$. Then use the first isomorphism theorem to prove that $I /(I \cap J)$ is isomorphic to $(I+J) / J$,

Problem 3 (2.5 points)

Assume that

$$
R=\left\{\left.\left(\begin{array}{cc}
m & 2 n \\
n & m
\end{array}\right) \right\rvert\, m, n \in \mathbb{Z}\right\}
$$

and

$$
R^{\prime}=\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}\}
$$

are rings with respect to their usual operations. Prove that R and R^{\prime} are isomorphic.

Problem 4 (2.5 points)

Let R and R^{\prime} be rings with unities 1_{R} and $1_{R^{\prime}}$ respectively. Prove that if $\phi: R \rightarrow R^{\prime}$ is an onto ring homomorphism, then $\phi\left(1_{R}\right)=1_{R^{\prime}}$.

