Homework 7 (Math462)

Problem 1 (3 points)

Let $f(x)=x^{3}+2 x^{2}-3 x+4 \in \mathbb{Z}_{5}[x]$. Determine whether or not $f(x)$ is irreducible over \mathbb{Z}_{5}. Justify your answer.

Problem 2 (4 points)
Find all monic irreducible polynomials of degree 2 over \mathbb{Z}_{3}.
Hint. A polynomial $f(x)$ is said to be monic if its leading coefficient is 1 .
Problem 3 (3 points)
Let $f(x)$ and $g(x)$ be two polynomials over a field F, both of degree n or less. Prove that if $m>n$ and if there exist m distinct elements c_{1}, \ldots, c_{m} of F such that $f\left(c_{i}\right)=g\left(c_{i}\right)$ for every $i \in\{1, \ldots, m\}$, then $f(x)=g(x)$.
Hint. Use Corollary 1.9 (or Corollary 3 in the textbook page 297).

