Homework 8 (Math462)

Problem 1 (3 points)

Determine which of the polynomials below is (or are) irreducible over \mathbb{Q} .

- (i) $x^4 + x + 1$
- (ii) $x^5 + 5x^2 + 1$
- (iii) $x^3 + 6x^2 + 3x + 3$

Problem 2 (4 points)

Let p(x) be an irreducible polynomial over a field F. Suppose that p(x) divides $f_1(x) \cdots f_n(x)$ in F[x]. Prove that p(x) divides $f_i(x)$ for some $i \in \{1, \ldots, n\}$.

Problem 3 (3 points)

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ with $a_0 \neq 0$ be a monic polynomial. Suppose that f(x) has a zero in \mathbb{Q} . Prove that f(x) has a zero m in \mathbb{Z} and that m must divide a_0 .

Hint. Use Gauss's lemma whose proof says that if there are polynomials g(x) and h(x) in $\mathbb{Q}[x]$ with $\deg g(x), \deg h(x) < \deg f(x)$ such that f(x) = g(x)h(x), then there are polynomials G(x) and H(x) in $\mathbb{Z}[x]$ such that $\deg G(x) = \deg g(x), \deg H(x) = \deg h(x)$ and f(x) = G(x)H(x).