Homework 8 (Math462)

Problem 1 (3 points)

Determine which of the polynomials below is (or are) irreducible over \mathbb{Q}.
(i) $x^{4}+x+1$
(ii) $x^{5}+5 x^{2}+1$
(iii) $x^{3}+6 x^{2}+3 x+3$

Problem 2 (4 points)

Let $p(x)$ be an irreducible polynomial over a field F. Suppose that $p(x)$ divides $f_{1}(x) \cdots f_{n}(x)$ in $F[x]$. Prove that $p(x)$ divides $f_{i}(x)$ for some $i \in$ $\{1, \ldots, n\}$.

Problem 3 (3 points)
Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Z}[x]$ with $a_{0} \neq 0$ be a monic polynomial. Suppose that $f(x)$ has a zero in \mathbb{Q}. Prove that $f(x)$ has a zero m in \mathbb{Z} and that m must divide a_{0}.
Hint. Use Gauss's lemma whose proof says that if there are polynomials $g(x)$ and $h(x)$ in $\mathbb{Q}[x]$ with $\operatorname{deg} g(x), \operatorname{deg} h(x)<\operatorname{deg} f(x)$ such that $f(x)=g(x) h(x)$, then there are polynomials $G(x)$ and $H(x)$ in $\mathbb{Z}[x]$ such that $\operatorname{deg} G(x)=\operatorname{deg} g(x), \operatorname{deg} H(x)=\operatorname{deg} h(x)$ and $f(x)=G(x) H(x)$.

