Homework 9 (Math462)

Problem 1 (3 points)

Prove that $2 \pm \sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$.
Problem 2 (4 points)
Let R be a ring with unity 1_{R}.
(i) Prove that $\operatorname{char}(R)=0$ if and only $\exists n \in \mathbb{N}$ such that $n \cdot 1_{R}=$ $\underbrace{1_{R}+\cdots+1_{R}}_{n \text { times }}=0$.
(ii) Prove that $\operatorname{char}(R)=n>0$ if and only n is the least positive integer such that $n \cdot 1_{R}=0$.

Problem 3 (3 points)

Let E be a field and let p be a prime number. Prove that if $\operatorname{char}(E)=p$, then E is an extension field of \mathbb{Z}_{p}.
Hint. Define $\varphi: \mathbb{Z} \rightarrow E$ by $\varphi=n \cdot 1_{E}$ for $\forall n \in \mathbb{Z}$, describe $\operatorname{ker}(\varphi)$ and then use the first isomorphism theorem to prove that E contains the subring that is isomorphic to \mathbb{Z}_{p}.

