Homework 9 (Math462)

Problem 1 (3 points)

Prove that $2 \pm \sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$.

Problem 2 (4 points)

Let R be a ring with unity 1_R .

- (i) Prove that $\operatorname{char}(R) = 0$ if and only $\exists n \in \mathbb{N}$ such that $n \cdot 1_R = \underbrace{1_R + \dots + 1_R}_{n \text{ times}} = 0.$
- (ii) Prove that char(R) = n > 0 if and only n is the least positive integer such that $n \cdot 1_R = 0$.

Problem 3 (3 points)

Let *E* be a field and let *p* be a prime number. Prove that if char(E) = p, then *E* is an extension field of \mathbb{Z}_p .

Hint. Define $\varphi : \mathbb{Z} \to E$ by $\varphi = n \cdot 1_E$ for $\forall n \in \mathbb{Z}$, describe ker(φ) and then use the first isomorphism theorem to prove that E contains the subring that is isomorphic to \mathbb{Z}_p .