Sample Exam 1 (Math462 Spring 2009)

Problem 1 (Division Algorithm)

For $f(x), g(x)$, and $\mathbb{Z}_{p}[x]$, given in (i) and (ii), find the quotient $q(x)$ and remainder $r(x)$ when dividing $f(x)$ by $g(x)$.
(i) $f(x)=2 x^{5}+2 x^{4}+x^{2}+2, g(x)=x^{3}+2 x^{2}+2 \in \mathbb{Z}_{3}[x]$.
(ii) $f(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5, g(x)=3 x^{2}+2 \in \mathbb{Z}_{7}[x]$.

Problem 2 (Division Algorithm)

Let $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z}_{p} with p prime. Prove that if $f(x)$ and $g(x)$ are non-zero polynomials of $F[x]$ such that $f(x) \mid g(x)$ and $g(x) \mid f(x)$, then there exits a non-zero $c \in F$ such that $f(x)=c g(x)$.

Problem 3 (Euclidean Algorithm)

For $f(x), g(x)$, and $\mathbb{Z}_{p}[x]$, given in (i) and (ii), find $s(x), t(x) \in \mathbb{Z}_{p}[x]$ such that $\operatorname{gcd}(f(x), g(x))=s(x) f(x)+t(x) g(x)$.
(i) $f(x)=x^{4}+2 x^{2}+x+1, g(x)=2 x^{3}+2 x^{2}+x+1 \in \mathbb{Z}_{3}[x]$.
(ii) $f(x)=x^{4}+5 x^{2}+2 x+2, g(x)=3 x^{2}+2 \in \mathbb{Z}_{7}[x]$.

Problem 4 (Factor Rings)

Let $f(x)=3 x^{5}-4 x^{2} \in \mathbb{Z}_{5}[x]$ and let $I=\left\{s(x) f(x) \mid s(x) \in \mathbb{Z}_{5}[x]\right\}$.
(i) Prove or disprove that every non-zero element of $\mathbb{Z}_{5}[x] / I$ has an inverse.
(ii) Find the dimension of $\mathbb{Z}_{5}[x] / I$.

Problem 5 (Rings)

Define a new binary operation of addition on \mathbb{Z} by $x \oplus y=x+y-1$ and a new binary operation of multiplication on \mathbb{Z} by $x \otimes y=x+y-x y$. Do you think \mathbb{Z} forms a ring with respect to these binary operations?

Problem 6 (Rings)
Let U be a non-empty set and let $\mathcal{P}(U)$ be the power set of U (i.e., the set of all subsets of U. For arbitrary $A, B \in \mathcal{P}(U)$, we define $A+B$ and $A B$ by

$$
\begin{aligned}
A+B= & (A \cup B) \backslash(A \cap B) \\
& \{x \in U \mid x \in A \text { or } B \text { and } x \text { is not in both } A \text { and } B\}
\end{aligned}
$$

and $A B=A \cap B$ respectively. Prove that $\mathcal{P}(U)$ is a ring with respect to these binary operations.
Note. You may assume that addition is associative.

Problem 7 (Rings)

Let R and S be rings. In the Cartesian product $R \times S=\{(r, s) \mid r \in R$ and $s \in S\}$, define

$$
\begin{aligned}
\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right) & =\left(r_{1}+r_{2}, s_{1}+s_{2}\right) \\
\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right) & =\left(r_{1} r_{2}, s_{1} s_{2}\right)
\end{aligned}
$$

Prove that $R \times S$ is a ring with respect to these binary operations.
Note. This group is called the direct sum of R and S and denoted by $R \oplus S$.

Problem 8 (Rings)

Suppose that R is a ring in which all elements x satisfy $x^{2}=x$.
(i) Prove that $x=-x$ for each $x \in R$.
(ii) Prove that R is commutative.

Problem 9 (Subrings)

Let R_{1} and R_{2} be subrings of a ring R. Prove that $R_{1} \cap R_{2}$ is again a subring of R. Do you think $R_{1} \cup R_{2}$ is always a subring of R ?

Problem 10 (Subrings)

For a fixed element a of a ring R, prove that the set $\{x \in R \mid a x=0\}$ is a subring of R.

