Sample Exam 3 (Math462 Sring 2010)

Problem 1 (Mixed)

Make each of the following true or false.

- (i) A polynomial f(x) of degree n with coefficients in a field F can have at most n zeros in F.
- (ii) Every polynomial of degree 1 in F[x] has at least one zero in the field F.
- (iii) Every field is a UFD.
- (iv) Every UFD is a PID.
- (v) If D is a UFD, then D[x] is a UFD.
- (vi) \mathbb{C} is a simple extension of \mathbb{R} .
- (vii) \mathbb{Q} is an extension of \mathbb{Z}_2 .
- (viii) Every non-constant polynomial in F[x] has a zero in some extension field of F.

Problem 2 (Irreducibility)

Demonstrate that $f(x) = x^4 + 2x^2 + 8x + 1 \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q} .

Problem 3 (Irreducibility)

Let $f(x) = x^3 + 6 \in \mathbb{Z}_7[x]$. Write f(x) as a product of irreducible polynomials over \mathbb{Z}_7 .

Problem 4 (Irreducibility)

Let p be a prime integer and consider the polynomials $f(x) = x^p$ and g(x) = x over \mathbb{Z}_p . Prove that f(c) = g(c) for all c in \mathbb{Z}_p .

Problem 5 (Irreducibility)

Find the number of irreducible monic quadratic polynomials in $\mathbb{Z}_p[x]$, where p is a prime.

Problem 6 (UFD) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.

Problem 7 (Prime elements and irreducible elements)

Prove that if p is irreducible in a UFD, then p is a prime.

Problem 8 (Fields)

Let F and F' be fields and let $\varphi: F \to F'$ be a ring homomorphism. Prove that either φ is the zero map or φ is one-to-one.