Sample Exam 3 (Math462 Sring 2010)

Problem 1 (Mixed)

Make each of the following true or false.
(i) A polynomial $f(x)$ of degree n with coefficients in a field F can have at most n zeros in F.
(ii) Every polynomial of degree 1 in $F[x]$ has at least one zero in the field F.
(iii) Every field is a UFD.
(iv) Every UFD is a PID.
(v) If D is a UFD, then $D[x]$ is a UFD.
(vi) \mathbb{C} is a simple extension of \mathbb{R}.
(vii) \mathbb{Q} is an extension of \mathbb{Z}_{2}.
(viii) Every non-constant polynomial in $F[x]$ has a zero in some extension field of F.

Problem 2 (Irreducibility)

Demonstrate that $f(x)=x^{4}+2 x^{2}+8 x+1 \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q}.

Problem 3 (Irreducibility)
Let $f(x)=x^{3}+6 \in \mathbb{Z}_{7}[x]$. Write $f(x)$ as a product of irreducible polynomials over \mathbb{Z}_{7}.

Problem 4 (Irreducibility)
Let p be a prime integer and consider the polynomials $f(x)=x^{p}$ and $g(x)=$ x over \mathbb{Z}_{p}. Prove that $f(c)=g(c)$ for all c in \mathbb{Z}_{p}.

Problem 5 (Irreducibility)

Find the number of irreducible monic quadratic polynomials in $\mathbb{Z}_{p}[x]$, where p is a prime.

Problem 6 (UFD)
Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.
Problem 7 (Prime elements and irreducible elements)
Prove that if p is irreducible in a UFD, then p is a prime.
Problem 8 (Fields)
Let F and F^{\prime} be fields and let $\varphi: F \rightarrow F^{\prime}$ be a ring homomorphism. Prove that either φ is the zero map or φ is one-to-one.

