Sample Final Exam (Math462 Sring 2009)

Problem 1 (Mixed)

Make each of the following true or false.

- (i) Every field is a UFD.
- (ii) Every UFD is a PID.
- (iii) If D is a UFD, then D[x] is a UFD.
- (iv) \mathbb{C} is a simple extension of \mathbb{R} .
- (v) \mathbb{Q} is an extension of \mathbb{Z}_2 .
- (vi) Every non-constant polynomial in F[x] has a zero in some extension field of F.
- (vii) Every finite extension of a field is an algebraic extension.
- (viii) Every algebraic extension of a field is a finite extension.

Problem 2 (UFD)

Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.

Problem 3 (Prime elements and irreducible elements)

Prove that if p is irreducible in a UFD, then p is a prime.

Problem 4 (Fields)

Let F and F' be fields and let $\varphi: F \to F'$ be a ring homomorphism. Prove that either φ is the zero map or φ is one-to-one.

Problem 5 (Field extensions)

Let $f(x) = x^3 + x + 1 \in \mathbb{Q}[x]$.

- (i) Prove that f(x) is irreducible over \mathbb{Q} .
- (ii) Let α be a zero of f(x) in \mathbb{C} . Find α^{-1} and $(\alpha^2 + \alpha + 1)^{-1}$ in $\mathbb{Q}(\alpha)$.

Problem 6 (Field extensions)

Let *E* be an extension of a field *F*. Suppose that E_1 and E_2 are subfields of *E* containing *F*. Prove that if $[E_1 : F]$ and $[E_2 : F]$ are primes and if $E_1 \neq E_2$, then $E_1 \cap E_2 = F$.

Problem 7 (Algebraic elements)

In (i) and (ii), show that the given number α is algebraic over \mathbb{Q} by finding $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$.

(i) $\alpha = 1 + i$.

(ii)
$$\alpha = \sqrt{1 + \sqrt[3]{2}}.$$

Problem 8 (Minimal polynomials)

Find $[\mathbb{Q}(\sqrt{2}+i):\mathbb{Q}].$

Problem 9 (Algebraic extensions)

Let F be an extension of a field with q elements and let E be an extension of F. Suppose that $\alpha \in E$ is algebraic over F. Prove that $|F(\alpha)| = q^n$ for some positive integer n.

Problem 10 (Simple extensions)

Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7}).$

Problem 11 (Splitting fields)

Find the splitting field for $x^4 - 5x^2 + 6 \in \mathbb{Q}[x]$.

Problem 12 (Splitting fields)

Find the splitting field for $x^4 - x^2 - 2 \in \mathbb{Z}_3[x]$.