Sample Final Exam (Math462 Sring 2009)

Problem 1 (Mixed)
Make each of the following true or false.
(i) Every field is a UFD.
(ii) Every UFD is a PID.
(iii) If D is a UFD, then $D[x]$ is a UFD.
(iv) \mathbb{C} is a simple extension of \mathbb{R}.
(v) \mathbb{Q} is an extension of \mathbb{Z}_{2}.
(vi) Every non-constant polynomial in $F[x]$ has a zero in some extension field of F.
(vii) Every finite extension of a field is an algebraic extension.
(viii) Every algebraic extension of a field is a finite extension.

Problem 2 (UFD)

Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.
Problem 3 (Prime elements and irreducible elements)
Prove that if p is irreducible in a UFD, then p is a prime.

Problem 4 (Fields)

Let F and F^{\prime} be fields and let $\varphi: F \rightarrow F^{\prime}$ be a ring homomorphism. Prove that either φ is the zero map or φ is one-to-one.

Problem 5 (Field extensions)
Let $f(x)=x^{3}+x+1 \in \mathbb{Q}[x]$.
(i) Prove that $f(x)$ is irreducible over \mathbb{Q}.
(ii) Let α be a zero of $f(x)$ in \mathbb{C}. Find α^{-1} and $\left(\alpha^{2}+\alpha+1\right)^{-1}$ in $\mathbb{Q}(\alpha)$.

Problem 6 (Field extensions)
Let E be an extension of a field F. Suppose that E_{1} and E_{2} are subfields of E containing F. Prove that if $\left[E_{1}: F\right]$ and $\left[E_{2}: F\right]$ are primes and if $E_{1} \neq E_{2}$, then $E_{1} \cap E_{2}=F$.

Problem 7 (Algebraic elements)
In (i) and (ii), show that the given number α is algebraic over \mathbb{Q} by finding $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha)=0$.
(i) $\alpha=1+i$.
(ii) $\alpha=\sqrt{1+\sqrt[3]{2}}$.

Problem 8 (Minimal polynomials)
Find $[\mathbb{Q}(\sqrt{2}+i): \mathbb{Q}]$.

Problem 9 (Algebraic extensions)

Let F be an extension of a field with q elements and let E be an extension of F. Suppose that $\alpha \in E$ is algebraic over F. Prove that $|F(\alpha)|=q^{n}$ for some positive integer n.

Problem 10 (Simple extensions)
Prove that $\mathbb{Q}(\sqrt{3}+\sqrt{7})=\mathbb{Q}(\sqrt{3}, \sqrt{7})$.

Problem 11 (Splitting fields)

Find the splitting field for $x^{4}-5 x^{2}+6 \in \mathbb{Q}[x]$.
Problem 12 (Splitting fields)
Find the splitting field for $x^{4}-x^{2}-2 \in \mathbb{Z}_{3}[x]$.

