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Abstract. Let Gr(k, n) be the Plücker embedding of the Grassmann variety

of projective k-planes in Pn. For a projective variety X, let σs(X) denote the
variety of its s − 1 secant planes. More precisely, σs(X) denotes the Zariski

closure of the union of linear spans of s-tuples of points lying on X. We

exhibit two functions s0(n) ≤ s1(n) such that σs(Gr(2, n)) has the expected
dimension whenever n ≥ 9 and either s ≤ s0(n) or s1(n) ≤ s. Both s0(n) and

s1(n) are asymptotic to n2

18
. This yields, asymptotically, the typical rank of

an element of ∧3 Cn+1. Finally, we classify all defective σs(Gr(k, n)) for s ≤ 6

and provide geometric arguments underlying each defective case.

1. Introduction

Let X ⊂ PN be a non-degenerate projective variety. The s-secant variety σs(X)
is defined to be the Zariski closure of the union of linear spans of s-tuples of points
lying on X (see [Z]). Note that with this notation, σ2(X) is the usual variety of
secant lines of X. There is a smallest s such that σs(X) = PN leading to a natural
filtration:

X = σ1(X) ⊂ σ2(X) ⊂ σ3(X) ⊂ · · · ⊂ σs(X) = PN .

Let Gr(k, n) denote the Grassmannian of projective k-planes in Pn. For the
purposes of this paper, we will assume that Gr(k, n) is embedded through the
Plücker map in PN with N =

(
n+1
k+1

)
− 1. We can identify points in PN with general

skew-symmetric tensors and points on Gr(k, n) as decomposable skew-symmetric
tensors. An element ω ∈ ∧k+1Cn+1 has rank r if it can be written as a linear
combination of r decomposable skew-symmetric tensors (but not fewer). In other
words, ω =

∑r
t=1 v1,t ∧ . . . ∧ vk+1,t with vi,j ∈ Cn+1. The higher secant variety

σs(Gr(k, n)) can be viewed as a compactification of the “parameter space” for skew-
symmetric tensors of rank less than or equal to s. An interesting problem related
to the rank of skew-symmetric tensors is to find the least integer R(k, n) such that
a generic skew-symmetric tensor has rank less than or equal to R(k, n). The integer
R(k, n) is called the typical rank of ∧k+1Cn+1 (also called the essential rank in [E]).
Note that the filtration of skew-symmetric tensors by their ranks leads naturally to
an identification of R(k, n) as the least integer s such that σs(Gr(k, n)) = PN . See
[LM] for a recent survey on the subject and its applications.

If k = 1 then X is a Grassmannian of lines and σs(X) corresponds to the locus
of skew-symmetric morphisms of rank less than or equal to s. It is well known that
a skew-symmetric morphism, corresponding to a skew-symmetric matrix of rank
2s, can be written as the sum of s decomposable skew-symmetric tensors (but not
fewer). In particular, we have R(1, n) = dn+1

2 e. Thus we may assume that k ≥ 2.
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It is straightforward to show that(
n+1
k+1

)
(k + 1)(n− k) + 1

≤ R(k, n)

(see the next section). In particular, we have

n2

18
+O(n) ≤ R(2, n).

On the other hand, Ehrenborg found in [E], Corollary 7.9, the upper bound

R(2, n) ≤ (n2 + 3)
12

+ 1

by using results on Steiner triple systems. One of the main goals of this paper is to
give a sharp asymptotic bound for R(2, n). To be more precise, we will prove the
following theorem:

Theorem 1.1. If R(2, n) denotes the rank of a generic skew symmetric tensor
ω ∈ ∧3Cn+1 then R(2, n) ∼ n2

18 .

Theorem 1.1 is obtained as a consequence of a more precise (but more technical)
theorem on the dimension of σs(Gr(k, n)). To state this theorem, we will need to
review several known facts from the literature.

First of all, the following inequality is easy to establish (see the next section for
a geometric interpretation):

dimσs(Gr(k, n)) ≤ min

{
s[(k + 1)(n− k) + 1]− 1,

(
n+1
k+1

)
(k + 1)(n− k) + 1

}
.

We say that σs(Gr(k, n)) has the expected dimension if equality holds. If there exists
a s for which σs(Gr(k, n)) does not have the expected dimension then Gr(k, n) is
said to be defective. As we have seen, Grassmannians of lines are nearly always
defective. In contrast, there are very few cases where Gr(k, n) is known to be
defective when k ≥ 2.

In 1916, C. Segre [Se] proved that σ2(Gr(2, 5)) has the expected dimension which
established that R(2, 5) = 2. On the other hand, in 1931, Schouten [Sch] showed
that Gr(2, 6) is defective. Indeed he proved that σ3(Gr(2, 6)) is a hypersurface as
opposed to filling the ambient space. This result established that R(2, 6) = 4. It is
well known that the degree of Schouten’s hypersurface is seven ([La]). In Section
5 we analyze this case in more detail. In particular, we find an explicit description
of this degree seven invariant by relating its cube to the determinant of a 21 × 21
symmetric matrix.

Theorem 1.2. Let ω ∈ ∧3C7. Consider the contraction operator φω : ∧2 C7 →
∧5C7. The equation of σ3(Gr(2, 6)) is given by an SL(7)-invariant polynomial P7

of degree seven such that
det(φω) = 2 [P7(ω)]3 .

In 2002, Catalisano, Geramita and Gimigliano (with the help of Catalano-
Johnson who had some unpublished results on this subject) [CGG1] showed
that Gr(3, 7) and Gr(2, 8) are defective. Due to the isomorphism Gr(k, n) ∼=
Gr(n− k − 1, n) (for instance, Gr(2, 8) ∼= Gr(5, 8)), we only consider Grassmanni-
ans, Gr(k, n), for which k ≤ n−1

2 . Based on a mixture of theory and computational
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experiments there is a body of evidence suggesting that all defective Grassmannians
have been found. As a result, we believe in the following conjecture proposed in
[BDG] (conj. 4.1):

Conjecture 1.3 (Baur-Draisma-de Graaf). Let k ≥ 2. Then σs(Gr(k, n)) has the
expected dimension except for the following cases:

actual codimension expected codimension
(1) σ3(Gr(2, 6)) 1 0
(2) σ3(Gr(3, 7)) 20 19
(2′) σ4(Gr(3, 7)) 6 2
(3) σ4(Gr(2, 8)) 10 8

If the conjecture is true, then σ3(Gr(2, 6)) is the only secant variety which both
does not have the expected dimension and is a hypersurface (with k ≥ 2). The
invariant computed in Theorem 1.2 defines this hypersurface as its zero-locus.
Computational evidence was given by McGillivray who performed a Montecarlo
technique to check that the conjecture is true for n ≤ 14 in [McG]. This result was
extended to n = 15 in [BDG]. One of the goals of this paper is to provide further
evidence in support of this conjecture. As a step in this direction, in Section 3
we classify Grassmann varieties with defective s-secant varieties for small s. More
precisely, we prove the following theorem:

Theorem 1.4. Except for the cases listed in Conjecture 1.3, σs(Gr(k, n)) has the
expected dimension whenever k ≥ 2 and s ≤ 6.

Let A(n, 6, w) be the cardinality of the largest binary code of length n, constant
weight w, and distance 6 (see Section 3 for more details). It is not hard to show
that if s ≤ A(n + 1, 6, k + 1) then σs(Gr(k, n)) has the expected dimension. For
small values of n and k this is a useful result via the monomial approach, like in [E]
(indeed we use it in Section 3). However, for n� 0 the value of A(n+ 1, 6, k + 1)
is typically smaller than

max
{
s
∣∣ σs(Gr(k, n)) has the expected dimension and does not fill PN

}
.

For example A(10, 6, 4) = 5 by [S], while by Theorem 1.4 we see that σ6(Gr(3, 9))
has the expected dimension and does not fill the ambient space.

We can now state a slightly technical theorem which implies Theorem 1.1. We
show that there are two functions s1(n) ≤ s2(n) such that σs(Gr(2, n)) has the
expected dimension whenever either s ≤ s1(n) or s ≥ s2(n). The precise statement
is the following:

Theorem 1.5. Let n ≥ 9. Let

s1(n) =
⌊
n2

18
− 20n

27
+

287
81

⌋
+
⌊

6n− 13
9

⌋
and let

s2(n) =
⌈
n2

18
− 11n

27
+

44
81

⌉
+
⌈

6n− 13
9

⌉
.

Then σs(Gr(2, n)) has the expected dimension whenever s ≤ s1(n) and whenever
s ≥ s2(n) (in this second case it fills the ambient space).



4 HIROTACHI ABO, GIORGIO OTTAVIANI, AND CHRIS PETERSON

Ideally, we would like the functions to satisfy s1 + 1 ≥ s2 modulo a finite list of
exceptions. While the theorem does not reach this result, it does have a relatively
small value for s2 − s1. Such a result is reminiscent of one obtained in [CGG2] for
X = P1 × . . .× P1 where they produced functions s1(t), s2(t) (with t denoting the
number of factors of P1) such that s2 − s1 ≤ 1. This was extended in [AOP1] to
X = Pn × . . .× Pn, where the functions satisfy s2 − s1 ≤ n. In the recent [CGG3]
the final result for X = P1 × . . . × P1 has been found. Note that in Theorem 1.5,
s1(n) ∼ s2(n) ∼ n2

18 (the sharp asymptotical value) and that Theorem 1.1 follows.
The proof of Theorem 1.5 is in Section 4. Our approach relies on a specialization

technique to place a certain number of points on subgrassmannians determined
by codimension six linear subspaces (see the remark after Proposition 4.1). This
technique was inspired by [BO], where the case X = (Pn,O(3)) was treated with a
similar specialization determined by codimension three linear subspaces.

The present technique can be extended to higher values of k (see [AOP2]), but
at the price of a much more complicated inductive procedure involving joins, and
with a massive use of the computer to check initial cases. As a consequence, we
decided to treat this case in a separate paper.

In Section 5 we close the paper with a geometric explanation for each of the
known defective cases appearing in the list of Conjecture 1.3.

2. Notation and definitions

We begin this section by recalling the precise definition of a higher secant variety.
If Q1, . . . , Qs are points in Pm then we let 〈Q1, . . . , Qs〉 denote their linear span.
If X ⊆ Pm is a projective variety then the s-secant variety σs(X) is defined to be
the Zariski closure of the union of the linear span of s-tuples of points (Q1, . . . , Qs)
where Q1, . . . Qs ∈ X. In other words

σs(X) =
⋃

Q1,...,Qs∈X

〈Q1, . . . , Qs〉.

If X ⊂ Pm is a non-degenerate variety of dimension d then a standard dimension
count leads to an upper bound on the dimension of σs(X). In particular, the
dimension of σs(X) can never exceed min{s(d+ 1)− 1,m}. Determining when the
secant variety of a Grassmann variety reaches this upper bound is one of the main
goals of this paper. We summarize some of the terminology that will be used to
develop the main theorems in the following:

Definition 2.1. Let X be a non-degenerate d-dimensional variety in Pm.

(1) If dimσs(X) = min{s(d+1)−1,m} then σs(X) is said to have the expected
dimension.

(2) If dimσs(X) < min{s(d + 1) − 1,m} then X is said to have a defective
s-secant variety.

(3) If there exists an s such that dimσs(X) < min{s(d+ 1)− 1,m} then X is
said to be defective.

(4) The smallest integer s such that σs(X) fills the ambient space is called the
typical rank and is denoted by R(X).

The main tool that will be used to compute the dimension of σs(X) is the
following celebrated theorem of Terracini:



NON-DEFECTIVITY OF GRASMANNIANS OF PLANES 5

Theorem 2.2 (Terracini’s Lemma [Z]). Let P1, . . . , Pk be points in X and let z be
a general point in 〈P1, . . . , Pk〉. Then the tangent space to σs(X) at z is given by

Tzσs(X) = 〈TP1X, . . . , TPk
X〉

where TPiX denotes the tangent space to X at Pi.

Let K be a field with char(K) = 0 and let V be an (n + 1)-dimensional vector
space over K. We denote by Gr(k, n) the Grassmannian of (k + 1)-dimensional
subspaces of V and by C(Gr(k, n)) the affine cone over Gr(k, n).

We denote by bxc the greatest integer less than or equal to x and by dxe the
smallest integer greater than or equal to x.

3. Classification of Grassmannians with defective s-secant varieties,
s ≤ 6

In this section we classify Grassmannians with defective s-secant varieties when
s ≤ 6. The main tools are a combination of computations on the computer and the
monomial technique. We use ideas from coding theory to strengthen the monomial
approach. Throughout this section, K is an infinite field with char (K) 6= 2.

We begin with two well known lemmas.

Lemma 3.1 (Tangent space at a point of a Grassmannian). Let p = v0 ∧ . . . ∧ vk

be a point of C(Gr(k, n)) where vi ∈ V = Kn+1. The tangent space to C(Gr(k, n))
at p is

Tp(k, n) =
k∑

i=1

v1 ∧ · · · ∧ vi−1 ∧ V ∧ vi+1 ∧ · · · ∧ vk.

Let B = {v0, . . . , vn} be a basis of V = Kn+1. The ambient space of C(Gr(k, n))
in its Plücker embedding is ∧k+1V . A basis of the ambient space is determined
by the (k + 1)-element subsets of B. From Lemma 3.1 we see that a basis of the
tangent space to C(Gr(k, n)) at v0 ∧ . . . ∧ vk is determined by the (k + 1)-element
subsets of B which intersect {v0, . . . , vk} in a set of at least k elements. Thus, we
have the following Lemma:

Lemma 3.2 (Monomial Lemma). Let {v0, . . . , vn} be a basis for V and let k ≥ 2.
(1) Let A = {a0, . . . , ak} be a subset of {v0, . . . , vn} and let TA(k, n) denote the

tangent space to C(Gr(k, n)) at a0 ∧ . . . ∧ ak. A basis of TA(k, n) is given
by vectors corresponding to (k + 1)-element subsets of {v0, . . . , vn} which
intersect A in at least k elements.

(2) Let A1, . . . ,At be (k+1)-element subsets of v0, . . . , vn. If |Ai∩Aj | ≤ k−2
whenever i 6= j then TA1(k, n), . . . , TAt

(k, n) are linearly independent.

By upper semicontinuity, if there exist smooth points Q1, . . . , Qs ∈ Gr(k, n)
such that the tangent spaces TQ1(k, n), . . . , TQs(k, n) are linearly independent (or
else span the ambient space) then σs(Gr(k, n)) has the expected dimension by
Terracini’s Lemma. Thus, to show that X does not have a defective s-secant
variety, it is enough to find s smooth points on X such that the tangent spaces
at these points are either linearly independent or else span the ambient space.

The following theorem extends Theorem 2.1 of [CGG1].

Theorem 3.3. If 3(s− 1) ≤ n− k and if k ≥ 2 then

dimσs(Gr(k, n)) = s(k + 1)(n− k) + (p− 1).
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Proof. Let Pn = P(V ). Fix a basis {v0, . . . , vn} for V . Let A1, . . . ,As be points in
Gr(k, n) defined by Ai = 〈v3(i−1), . . . , v3(i−1)+k〉. By Lemma 3.2, it follows that the
tangent spaces at A1, . . . ,As are linearly independent, hence by Terracini’s lemma
we are done. �

Remark 3.4. By Lemma 3.2 and Terracini’s lemma, we can show that σs(Gr(k, n))
has the expected dimension if we can show that there exist s distinct (k+1)-element
subsets, A1, . . . ,As, of an (n + 1)-element set such that whenever i 6= j we have
|Ai ∩ Aj | ≤ k − 2. To each (k + 1)-element subset, we can associate a weight
k + 1 binary vector of length n+ 1 via the characteristic function. Our conditions
require that the Hamming distance between any pair of distinct vectors is at least
6 (this was observed also in [BDG]). Let A(n, 6, w) denote the cardinality of the
largest set of length n, weight w vectors that satisfy this condition on the Hamming
distance. Lower bounds on A(n, 6, w) have been computed as part of a search for
good constant weight binary codes. Tables of such bounds can be used to prove that
certain Grassmann varieties are not s-defective via monomial methods. We found
the table [S] and the paper [GSl] particularly useful.

Theorem 3.5 (Graham and Sloane [GSl]). Let A(n, 6, w) denote the maximum
number of codewords in any binary code of length n, constant weight w and Ham-
ming distance 6.

(a) Let q be the smallest prime power such that q ≥ n, then A(n, 6, w) ≥ 1
q2(

n
w

)
.

(b) Let q be the smallest prime power such that q+1 ≥ n, then A(n, 6, w) ≥ q−1
q3−1(

n
w

)
.

(c) A(n, 6, w) ≥
(

n
w

)
/ (1 + w(n− w) +

(
w
2

)(
n−w

2

)
).

Using results of [McG], [S] and applying Theorem 3.3 and Theorem 3.5, we
obtain the following corollary (which proves Theorem 1.4):

Corollary 3.6. If k ≥ 2 then σs(Gr(k, n)) satisfies the following:
(i) σ3(Gr(k, n)) has the expected dimension except for (k, n) = (2, 6), (3, 7)
(ii) σ4(Gr(k, n)) has the expected dimension except for (k, n) = (2, 8), (3, 7)

(iii) σs(Gr(k, n)) always has the expected dimension for s = 2, 5, 6.

Proof. The case s = 2 was established in Corollary 2.2 of [CGG1].
For the case s = 3, we apply Theorem 3.3 when the inequality n − k ≥ 6 is

satisfied. The remaining cases have n− k ≤ 5 with n ≤ 9 (due to k ≤ n−1
2 ). These

have been checked in [McG].
For the case s = 4, we apply Theorem 3.3 when the inequality n − k ≥ 9 is

satisfied. The remaining cases have n − k ≤ 8 and n ≤ 15. For n ≤ 14, they have
been checked in [McG]. The only remaining case is (k, n) = (7, 15) which follows
from [S].

For the case s = 5, we apply Theorem 3.3 when the inequality n − k ≥ 12 is
satisfied. The remaining cases have n− k ≤ 11 and n ≤ 21. For n ≤ 14 they have
been checked in [McG]. The only remaining cases have k ≥ 4 and 21 ≥ n ≥ 15.
These all follow from [S].

For the case s = 6, we apply Theorem 3.3 when the inequality n − k ≥ 15 is
satisfied. The remaining cases have n−k ≤ 14 and n ≤ 27. The case (k, n) = (2, 16)
can be checked by the computer exactly as in [McG]. The remaining cases have
k ≥ 3 and 15 ≤ n ≤ 27. These all follow from [S]. �
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Remark 3.7. By using Theorem 3.3, Theorem 3.5, the table [S], and the algorithm
in [McG], it is expected that one can extend Corollary 3.6 to larger values of s.

4. The inductive step, from n− 6 to n

In this section we develop a collection of tools that lead to an inductive proof
of Theorem 1.5. Throughout the section, we denote by V an (n + 1)-dimensional
vector space over an infinite field K and we denote by V ∗ its dual space.

Proposition 4.1. Let X = Gr(2, n) with n ≥ 17. Let V = Kn+1, and let L, M and
N be general codimension six subspaces of V . Let L, M and N be the Grassmann
varieties of 3-planes in L, M and N respectively. Let p1, . . . , p4 be 4 general points
on L, q1, . . . , q4 be 4 general points on M, and r1, . . . , r4 be 4 general points on N .
Then there are no hyperplanes in P(∧3V ) which contain both L ∪M∪N and the
tangent spaces to X at the 12 points {pi, qi, ri}1≤i≤4.

Proof. Let {e0, . . . , en} be a basis for V and let {x0, . . . , xn} be its dual basis.
Without loss of generality, we may assume that L = {xi = 0, i = 0, . . . , 5}, M =
{xi = 0, i = 6, . . . , 11} and N = {xi = 0, i = 12, . . . , 17}. The hyperplanes in
P(∧3V ) which contain L ∪M∪N span a space of dimension 63 = 216 with basis
{x0 ∧ x6 ∧ x12, . . . , x5 ∧ x11 ∧ x17}.

We remark that the codimension of L (resp. M, N ) in X is 18. Furthermore,
12 · [3(n + 1 − 3) − 3(n − 5 − 3)] = 12 · 18 = 216. Thus it is enough to prove
that the tangent spaces to X at the points p1, p2, p3, p4, q1, q2, q3, q4, r1, r2, r3, r4
modulo 〈P(L),P(M),P(N)〉 form a 216-dimensional vector space. To prove this, it
is enough to do the computation in P17 which we achieve through the Macaulay2
script given below:

i1 : randomIdeal = method();

i2 : randomIdeal(Ideal) := Ideal => I -> (

R := ring I;

ideal(gens I*random(source gens I,R^{3:-1}))

);

i3 : randomIdeal’ = method();

i4 : randomIdeal’(Ideal) := Ideal => I -> (

R := ring I;

J := I^2;

m := gens J;

ideal(m*map(source m,,basis(3,J)))

);

i5 : E = ZZ/32003[e_0..e_17, SkewCommutative=>true];

i6 : L = ideal(e_6..e_17);

o6 : Ideal of E

i7 : M = ideal(e_0..e_5,e_12..e_17);

o7 : Ideal of E

i8 : N = ideal(e_0..e_11);

o8 : Ideal of E

i9 : lt = {L,M,N};

i10 : h = new MutableList;

i11 : scan((#lt),i->h#i=(lt#i)^3);

i12 : J = trim(sum(toList h));

o12 : Ideal of E

i13 : I = ideal(0_E);

o13 : Ideal of E

i14 : for i from 1 to 4 do (

h’ = new MutableList;
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scan((#lt),i->h’#i=randomIdeal’(randomIdeal(lt#i)));

I = I+sum(toList h’);

);

i15 : rank source gens trim (I+J) == rank source gens trim (ideal vars E)^3

o15 = true

Note that we work in characteristic p = 32003. Our goal is to check that a certain
integer matrix has maximal rank. The Macaulay2 script determines that the matrix
has maximal rank modulo p. The result in characteristic zero follows from the
openess of the maximal rank condition. �

Remark 4.2. It would be natural for the reader to ask why we choose subspaces of
codimension six. The linear system of hyperplanes in P(∧3V ) which contain the
union of three subspaces of codimension p has dimension p3 when n is sufficiently
large. Any tangent space supported on this union imposes 3p conditions. In order to
have a number of points which impose independent conditions on the linear system
and which make it empty, we need the condition that 3p divides p3. Therefore, a
necessary condition is that p is a multiple of 3. Unfortunately, the case p = 3 does
not work. Three general points supported on three codimension three subspaces do
not impose independent conditions, as can be checked by an analogous Macaulay2
script. Hence we turned to the next case, p = 6.

Let f(n) =
(
n+1

3

)
. We compute the finite difference f(n)−2f(n−6)+f(n−12) =

36(n− 6). In particular the system of hyperplanes in P(∧3V ) which contain L∪M
has dimension 36(n−6) (by the Grassmann formula) for n ≥ 11. In order to fit with
Proposition 4.1, we remark that f(n)− 3f(n− 6) + 3f(n− 12)− f(n− 18) = 216.

We want to keep four points outside L ∪M. Note that the tangent space, at
each of the four points, imposes 3n− 5 conditions and that

36(n− 6)− 4 · (3n− 5)
36

=
6n− 49

9
.

This leads to the following proposition:

Proposition 4.3. Let X = Gr(2, n) with n ≥ 11. Let V = Kn+1, and let L and
M be general codimension six subspaces of V . Let L (resp. M) be the Grassmann
variety of 3-planes in L (resp. M). Then

(i) The system of hyperplanes in P(∧3V ) which contain L∪M and which con-
tain the tangent spaces at b 6n−49

9 c general points on L, at b 6n−49
9 c general

points on M, and at 4 general points on X has the expected dimension
36(n− 6)− 36b 6n−49

9 c − 4(3n− 5), which is 20 if n = 0 (mod 3)
8 if n = 1 (mod 3)
32 if n = 2 (mod 3)

(ii) There are no hyperplanes in P(∧3V ) which contain L∪M and which contain
the tangent spaces at d 6n−49

9 e general points on L, at d 6n−49
9 e general points

on M and at 4 general points on X.

Proof. We will let {pi} denote the b 6n−49
9 c (resp. d 6n−49

9 e) general points on L,
{qi} denotes the b 6n−49

9 c (resp. d 6n−49
9 e) general points on M and {ri} denotes

the four general points on X. The proof is by a 6-step induction from n− 6 to n.
The initial six cases n = 11, 12, 13, 14, 15, 16 can be checked directly as follows:
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i16 : secondStep = method()

o16 = secondStep

o16 : MethodFunction

i17 : secondStep(ZZ) := n -> (

s := floor((6*n-49)/9);

t := binomial(n+1,3)-(36*(n-6)-36*s-4*(3*n-5));

E := ZZ/32003[e_0..e_n, SkewCommutative=>true];

lt := {ideal(e_6..e_n),ideal(e_0..e_(n-6))};

J := sum(apply(lt, i->i^3));

I := ideal(0_E);

for i from 1 to s do (

h := new MutableList;

scan((#lt),i->h#i=randomIdeal’(randomIdeal(lt#i)));

I = I+sum(toList h);

);

for i from 1 to 4 do (

r := randomIdeal’(ideal(random(E^{0},E^{3:-1})));

I = I+r;

);

rank source gens trim (I+J) == t

);

i18 : for i from 11 to 16 list secondStep(i)

o18 = {true, true, true, true, true, true}

o18 : List

Now assume n ≥ 17. Let N be a third general codimension six subspace of V
and let N be the Grassmann variety of 3-planes in N .

We have a short exact sequence of sheaves

0→ IL∪M∪N ,P(∧3V )(1)→ IL∪M,P(∧3V )(1)→ I(L∪M)∩N ,N (1)→ 0.

To prove case (i), we will specialize the 4 points in {ri} to lie on N , b 6n−85
9 c of the

points in {pi} to lie on L ∩ N and b 6n−85
9 c of the points in {qi} to lie on M∩N .

This leaves in place exactly four of the points in {pi} and four of the points in {qi}.
Let Y be the union of the tangent spaces at the points in {pi}, {qi} and {ri}.

Then we obtain the following exact sequence:

0→ H0(IK∪N ,P(∧3V )(1))→ H0(IK,P(∧3V )(1))→ H0(IK∩N ,N (1)).

where K = Y ∪ L ∪M. Note that we have the isomorphism:

H0 (IK∩N ,N (1)) ' H0
(
IK∩N ,P(∧3N)(1)

)
.

Thus the following inequality holds:

dimH0
(
IK,P(∧3V )(1)

)
≥ dimH0

(
IK∪N ,P(∧3V )(1)

)
+ dimH0

(
IK∩N ,P(∧3N)(1)

)
.

Since Y ∩ N satisfies the conditions of Proposition 4.1, H0
(
IK∪N ,P(∧3V )(1)

)
has

the expected dimension. By the induction hypothesis, dimH0
(
IK∩N ,P(∧3N)(1)

)
also has the expected value. Thus dimH0

(
IK,P(∧3V )(1)

)
has the expected value,

which proves (i).
To prove case (ii) we make a similar specialization but substituting b 6n−85

9 c with
d 6n−85

9 e. �

Note that f(n)−f(n−6) = 3n2−18n+35. In particular the system of hyperplanes
in P(∧3V ) which contain L has dimension 3n2 − 18n + 35 for n ≥ 8. We want to
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keep b 6n−13
9 c points outside L. Note that

3n2 − 18n+ 35− (3n− 5)(6n− 13)/9
18

=
n2

18
− 31n

54
+

125
81

.

This leads us to the next proposition:

Proposition 4.4. Let X = Gr(2, n) with n ≥ 9. Let V = Kn+1. Let L be a general
codimension six subspace of V and let L be the Grassmann variety of 3-planes in
L. If

f1(n) :=
⌊
n2

18
− 31n

54
+

125
81
− n

6
+ 2
⌋

and

f2(n) :=
⌈
n2

18
− 31n

54
+

125
81

+
n

6
− 1
⌉
,

then

(i) The system of hyperplanes in P(∧3V ) which contain L and which contain
the tangent spaces at f1(n) general points in L and at b 6n−13

9 c general points
in X has the expected dimension 3n2−18n+35−18f1(n)−(3n−5)b 6n−13

9 c =
O(n).

(ii) There are no hyperplanes in P(∧3V ) which contain L and which contain the
tangent spaces at f2(n) general points in L and at d 6n−13

9 e general points
in X .

Proof. We will let {pi} denote a set of f1(n) (resp. f2(n)) general points on L and
let {qi} denote a set of b 6n−13

9 c (resp. d 6n−13
9 e) general points on X. The proof is

by a 6-step induction from n− 6 to n. The initial cases n = 9, 10, 11, 12, 13, 14 can
be checked directly as follows:

i19 : thirdStep = method()

o19 = thirdStep

o19 : MethodFunction

i20 : thirdStep(ZZ) := n -> (

f := floor(n^2/18-31*n/54+125/81-n/6+2);

s := floor((6*n-13)/9);

t := binomial(n+1,3)-(3*n^2-18*n+35-18*f-(3*n-5)*s);

E := ZZ/32003[e_0..e_n,SkewCommutative=>true];

L := ideal(e_6..e_n);

Lk := L^3;

I := ideal(0_E);

for i from 1 to f do (

I = I+randomIdeal’(randomIdeal(L));

);

for i from 1 to s do (

I = I+randomIdeal’(ideal(random(E^{1:0},E^{3:-1})));

);

rank source gens trim (I+Lk) == t

);

i21 : for i from 9 to 14 list thirdStep(i)

o21 = {true, true, true, true, true, true}

o21 : List

Now assume that n ≥ 15. Let M be a second general codimension six subspace
of V and let M be the Grassmann variety of 3-planes in M .
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We have the short exact sequence of sheaves

0→ IL∪M,P(∧3V )(1)→ IL,P(∧3V )(1)→ IL∩M,M(1)→ 0.

To prove case (i) we will specialize f1(n)−b 6n−49
9 c of the points in {pi} to L∩M

and b 6n−49
9 c of the points in {qi} toM. This leaves in place exactly b 6n−49

9 c of the
points in {pi} and four of the points in {qi}.

Let Y be the union of the tangent spaces at the points in {pi} and {qi}. Then,
as in the proof of the previous proposition, we obtain the following exact sequence:

0→ H0(IY ∪L∪M,P(∧3V )(1))→ H0(IX∪L,P(∧3V )(1))→ H0(I(X∪L)∩M,P(∧3M)(1)).

By the induction hypothesis, the third element in the exact sequence has the
expected dimension. Note that

f1(n)−
⌊

6n− 49
9

⌋
≤ f1(n− 6)

(in fact, the summand −n
6 was inserted in the definition of f1 in order for this

inequality to hold). Now if we apply Proposition 4.3 to the first element in the
exact sequence, we can prove (i).

To prove case (ii) we will specialize f2(n)−d 6n−49
9 e of the points in {pi} to L∩M

and d 6n−49
9 e of the points in qi to M. Since

f2(n− 6) ≤ f2(n)−
⌈

6n− 49
9

⌉
,

we can apply Proposition 4.3 to the first element in the exact sequence and we are
done. �

We now have the tools in place to prove the main theorem of this section (The-
orem 1.5 of the Introduction).

Theorem 4.5. Let n ≥ 9. Let

s1(n) =
⌊
n2

18
− 2n

27
+

170
81

⌋
and s2(n) =

⌈
n2

18
+

7n
27
− 73

81

⌉
.

Then σs(Gr(2, n)) has the expected dimension whenever s ≤ s1(n) and whenever
s ≥ s2(n) (in this second case it fills the ambient space).

Proof. The proof is by a 6-step induction from n − 6 to n. The cases n =
9, 10, 11, 12, 13, 14 can be checked directly and are well known ([McG]). Let n ≥ 15.
Let V = Kn+1. Let L be a general codimension six subspace of V and let L be the
Grassmann variety of 3-planes in L. We will let {pi} denote a set of s1(n) (resp.
s2(n)) general points on Gr(2, n). Note that

s1(n) = f1(n) +
⌊

6n− 13
9

⌋
and s2(n) = f2(n) +

⌈
6n− 13

9

⌉
.

Consider the following short exact sequence of vector spaces:

0→ H0(IL,P(∧3V )(1))→ ∧3V → ∧3L→ 0.

To prove that σs(Gr(2, n)) has the expected dimension whenever s ≤ s1(n), we
specialize f1(n) of the points in {pi} to lie on L and we keep

⌊
6n−13

9

⌋
points in

their place. Let Y be the union of the tangent spaces to X at the points in {pi}.
Then we obtain the following exact sequence:

0→ H0(IY ∪L,P(∧3V )(1))→ H0(IY,P(∧3V )(1))→ H0(IY ∩L,P(∧3L)(1)).
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By the induction hypothesis, H0(IY ∩L,P(∧3L)(1)) has the expected dimension. Note
that the following inequality holds:

s1(n)− s1(n− 6) ≤
⌊

6n− 13
9

⌋
.

It follows from Proposition 4.4 that H0(IY ∪L,P(∧3V )(1)) also has the expected di-
mension. Thus we have proved that σs(Gr(2, n)) has the expected dimension when-
ever s ≤ s1(n).

Since the following inequality holds:⌈
6n− 13

9

⌉
≤ s2(n)− s2(n− 6),

the proof that σs(Gr(2, n)) has the expected dimension whenever s ≥ s2(n) can be
shown in the same way by specializing f2(n) of the points in {pi} to lie on L and
keeping

⌈
6n−13

9

⌉
points in their place. �

5. The defective cases

In Conjecture 1.3 there is a list of four defective secant varieties of Grassmanni-
ans. All four of the defective cases are described in [CGG1]. We make here some
further comments.

A geometric explanation of the defectivity of X = Gr(3, 7) is the following,
inspired by [CC2]. As in [CGG1], given three points P1, P2, P3 in X, there is a
basis e0, . . . , e7 such that the three points correspond to P1 = 〈e0, e1, e2, e3〉, P2 =
〈e4, e5, e6, e7〉, P3 = 〈e0 + e4, e1 + e5, e2 + e6, e3 + e7〉. Using the matrix

1 t
1 t

1 t
1 t

 ,
we see that there is a rational normal curve embedded with O(4) which passes
through the 3 points and is contained in X. The existence of this curve, C4, forces
each of the tangent spaces TPi

X to have the line TPi
C4 in common with the P4

spanned by C4. This leads to the following inequalities:

dim〈TP1G,TP2G,TP3G〉 ≤ 4 + 3(dimGr(3, 7)− 1) = 4 + 3 · 15 = 49 < 50.

By Terracini’s lemma, this proves the defectivity of Gr(3, 7). The defectivity of
σ4(Gr(3, 7)) follows as a direct consequence of the defectivity of σ3(Gr(3, 7)).

A geometric explanation of the defectivity of X = Gr(2, 8) is similar. For
any 4 general points in X we find a Veronese surface embedded with O(3) which
passes through the 4 points and is contained in X. Let P1, P2, P3, P4 be the four
points. We may assume that (see [CGG1]) P1 = 〈e0, e1, e2〉, P2 = 〈e3, e4, e5〉, P3 =
〈e6, e7, e8〉, P4 = 〈e0 + e3 + e6, e1 + e4 + e7, e2 + e5 + e8〉. If (s, t, u) are projective
coordinates of P2 we use the matrix s t u

s t u
s t u


to realize the Veronese surface passing through the 4 points. It follows that the
span of the tangent spaces has dimension at most

(
5
2

)
− 1 + 4 · (18− 2) = 73 while
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the expected dimension is 4 · 18 + 3 = 75. By Terracini’s lemma, this proves the
defectivity of σ4(Gr(2, 8)).

The geometric argument for the defectivity of X = Gr(2, 6) is more subtle. It can
be proved by the following argument which also helps to find the (set theoretical)
equations of the secant varieties of Gr(2, 6). Given ω ∈ ∧3C7, there is a well defined
contraction operator

φω : ∧2 C7 → ∧5C7.

Let e1, . . . , e7 be a basis of C7. If ω = e1 ∧ e2 ∧ e3 then φω(ei ∧ ej) is nonzero if and
only if i, j ≥ 4. It follows that rank(φω) =

(
4
2

)
= 6. Since rank(φω) = rank(φgω)

for every g ∈ SL(C7), we get that rank(φω) = 6 if ω ∈ Gr(2, 6).
If ω =

∑k
i=1 ωi with ωi decomposable (i.e. ωi ∈ Gr(2, 6)) then it follows that

rank(φω) = rank(
∑k

i=1 φωi
) ≤

∑k
i=1 rank(φωi

) ≤ 6k. Hence if ω ∈ σk(Gr(2, 6))
then by semicontinuity we have rank(φω) ≤ 6k.

Consider ω = e1 ∧ e3 ∧ e5 + e1 ∧ e4 ∧ e7 + e1 ∧ e2 ∧ e6 + e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7.
We can represent ω via the diagram

u
u

uu uuu ��
���

H
HH

HH

14 7

62

3 5

An explicit computation shows that rank(φω) = 21. It follows that σ3(Gr(2, 6))
cannot fill the ambient space, hence Gr(2, 6) is defective.

Theorem 5.1. Let ω ∈ ∧3C7. Consider the contraction operator φω : ∧2 C7 →
∧5C7. The equation of σ3(Gr(2, 6)) is given by an SL(7)-invariant polynomial P7

of degree seven such that
det(φω) = 2 [P7(ω)]3 .

Proof. The morphism φω drops rank by three when ω belongs to the hypersurface
σ3(Gr(2, 6)). Hence the linear embedding of ∧3C7 in Hom(∧2C7,∧5C7) (given by
ω 7→ φω) meets the determinantal hypersurface with multiplicity three. By direct
computation on ω = a135e1 ∧ e3 ∧ e5 + a147e1 ∧ e4 ∧ e7 + a126e1 ∧ e2 ∧ e6 + a234e2 ∧
e3 ∧ e4 + a567e5 ∧ e6 ∧ e7, we see that

detφω = −2(a2
234a

2
567a135a147a126)3.

Hence we can arrange the scalar multiples in order that P is defined over the rational
numbers and the equation det(φω) = 2 [P7(ω)]3 holds. �

Remark 5.2. The equation v ∧ v′ ∧ ω = v′ ∧ v ∧ ω for v, v′ ∈ ∧2C7 shows that φω

is symmetric. A natural symmetric operator such that its determinant is a cube
appears already in [Ot], where the coefficient 2 appears at the same place. The
coefficient 2 is needed if we want the invariant P7 to be defined over the rational
numbers.

The graphical notation found in the above diagram comes from the original paper
of Schouten [Sch]. Indeed, the case Gr(2, 6) is in principle well known because
SL(7) has only finitely many orbits on P(∧3C7). This classification was computed
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in 1931 by Schouten, [Sch], correcting previous work of Reichel, who missed the
orbit of dimension 20. He found all of the 9 orbits for this action together with
their dimensions.

G.B. Gurevich in his textbook [Gu] gave equations for these orbits but from his
description it is not easy to find the order among the orbits. In fact the obvious
order relation (Bruhat order) among the orbits, such that O1 ≤ O2 if the closure
of O2 contains O1, is not a total order, and indeed this is the first case among
Grassmannians where this phenomenon occurs. We take the opportunity to show
in the following table the order relation among the 9 orbits, computed by Elisabetta
Ardito in her laurea thesis, defended in L’Aquila in 1997 under the supervision of
the second author. It is a distributive lattice. We have added to each orbit the
value of rank(φω) together with some geometrical information. Each of the values
can be computed easily on a representative of each orbit. The dimensions can be
computed by considering the rank of the derivative of the action of SL(7) on ∧3C7.

It follows from this description the following theorem:

Theorem 5.3. For ω ∈ ∧3C7 the following holds:

(i) ω ∈ Gr(2, 6) if and only if rank(φω) ≤ 6.
(ii) ω ∈ σ2(Gr(2, 6)) if and only if rank(φω) ≤ 12. Hence the 13 × 13 minors

of φω give set theoretic equations of σ2(Gr(2, 6)).
(iii) ω ∈ σ3(Gr(2, 6)) if and only if rank(φω) ≤ 18.

In particular the table on the following page shows the possible degenerations of
elements in ∧3C7. There are two degenerations which are not obvious:

• The degeneration of P25 in P24 (the subscript means the dimension) result-
ing from

limt→0
1
t [e1 ∧ e2 ∧ e3 − (e1 + te4) ∧ (e2 + te5) ∧ (e3 + te6)]

= −(e1 ∧ e2 ∧ e6 + e1 ∧ e5 ∧ e3 + e4 ∧ e2 ∧ e3)

• The degeneration of P30 in P27 resulting from

limt→0
1
t [(e1 ∧ e2 ∧ e3 + (e3 ∧ e7 ∧ (e3 + te6))

−(e3 + te6) ∧ (e1 + te4) ∧ (e2 + te5)]
= e3 ∧ e7 ∧ e6 − e3 ∧ e1 ∧ e5 − e3 ∧ e4 ∧ e2 − e6 ∧ e1 ∧ e2

All the other degenerations are somewhat clear by considering the shape of the
diagrams. Vinberg’s school [VE] extended Schouten and Gurevich’s classification
to higher dimension, but the Bruhat order of the orbits has not yet been explicitly
written.

Notice that the hypersurface σ3(Gr(2, 6)) is isomorphic to the dual variety of
Gr(2, 6) (which has degree 7, see [La]). It is called C8 in the notation of [Gu], pg.
393.

It can be computed that P7 is a polynomial with 10,680 terms. The ideal of
the secant variety σ2(Gr(2, 6)) is generated by 28 cubics which correspond to the
ideal Γ3,16

V ⊂ S3(∧3C7), which is the covariant C4 according to [Gu], pg. 393. It
is interesting to check that Sing(σ3(Gr(2, 6))) is the orbit of dimension 30, while
Sing(σ2(Gr(2, 6))) = Gr(2, 6).
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dim 12, rank=6, G

degree=42

dim 19, rank=10
restricted chordal variety
see [FuHa] exerc. 15.44

dim 27, (Tan(G))∨

rank=15

dim 33, rank=18, G∨ ' σ3(G)

degree=7

dim 34, rank=21
ambient space

Tan(G), dim 24

rank=12

dim 20, (σ2(G))∨

rank=15

σ2(G), dim 25

rank=12

dim 30, rank=16, Sing(σ3(G))

Figure 1. Orbits for SL(7)-action on ∧3C7
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