Department of Mathematics Colloquium

University of Idaho

Fall 2011
Thursday,  November 17, 3:30-4:20pm, room TLC 030

Refreshments in Brink 305 at 3:00 p.m.

Counting the number of complete graphs in the Paley graph


Hirotachi Abo 

Department of Mathematics

University of Idaho


Let p be a prime number congruent to 1 modulo 4 and let Fp be a finite field with p elements. The Paley graph with p vertices is defined as the graph having the vertex set Fp,  where two vertices are adjacent if and only if their difference is a square of in Fp.

 In this talk, I will discuss the problem of counting the number of complete subgraphs in the Paley graph. The goal of this talk is to show that determining the number of such subgraphs can be reduced to counting the number of points on a certain variety (i.e., a geometric object defined by a system of polynomial equations) over Fp.