An error occurred in the proof that finite subsets are subgroups if they are non-empty and closed. We chose \(H \) as the name of the finite subset of the group \(G \).

In the proof we had selected a proto-type element \(a \in H \) (whose inverse we hoped to show is in \(H \)) and then defined the mapping \(\varphi_a \) from \(H \) to \(H \) by \(\varphi_a(x) = ax \). Once we demonstrated that \(\varphi_a \) was 1-1, the Pigeon Hole principle implied that it was onto. Therefore, since \(a \in H \), \(a \) must be an image for some element \(x \) in \(H \). Consequently, we have

\[\exists x \in H \text{ such that } \varphi_a(x) = a. \text{ Hence,} \]

\[ax = a \]
\[x = a^{-1}a \]
\[x = e_G \]

(For some amazing reason I put \(ax = x \) concluding that \(a = e_G \), which is preposterous)

Please make this change in your notes. The proof goes on correctly from there to find the inverse of \(a \).