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ABSTRACT. This paper develops mathematical models to
describe the growth, critical density, and extinction probabil-
ity in sparse populations experiencing Allee effects. An Allee
effect (or depensation) is a situation at low population den-
sities where the per-individual growth rate is an increasing
function of population density.

A potentially important mechanism causing Allee effectsis a
shortage of mating encounters in sparse populations. Stochas-
tic models are proposed for predicting the probability of en-
counter or the frequency of encounter as a function of popu-
lation density. A negative exponential function is derived as
such an encounter function under very general biological as-
sumptions, including random, regular, or aggregated spatial
patterns. A rectangular hyperbola function, heretofore used
in ecology as the functional response of predator feeding rate
to prey density, arises from the negative exponential func-
tion when encounter probabilities are assumed heterogeneous
among individuals. These encounter functions produce Allee
effects when incorporated into population growth models as
birth rates.

Three types of population models with encounter-limited
birth rates are compared: (1) deterministic differential equa-
tions, (2) stochastic discrete birth-death processes, and (3)
stochastic continuous diffusion processes. The phenomenon of
a critical density, a major consequence of Allee effects, man-
ifests itself differently in the different types of models. The
critical density is a lower unstable equilibrium in the determin-
istic differential equation models. For the stochastic discrete
birth-death processes considered here, the critical density is
an inflection point in the probability of extinction plotted as a
function of initial population density. In the continuous diffu-
sion processes, the critical density becomes a local minimum
(antimode) in the stationary probability distribution for pop-
ulation density. For both types of stochastic models, a critical
density appears as an inflection point in the probability of at-
taining a small population density (extinction) before attain-
ing a large one. Multiplicative (“environmental™) stochastic
noise amplifies Allee effects. Harvesting also amplifies those
effects.
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Though Allee effects are difficult to detect or measure in
natural populations, their presence would seriously impact
exploitation, management, and preservation of biological re-
SOUTCES.
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1. Introduction. In the study of the growth, preservation, and
exploitation of biological populations, it seems natural to consider the
following question posed by Allee [1938, p. 107]: “... what minimal
numbers are necessary if a species is to maintain itself in nature?”
The question arises when the per-individual growth rate of a species
1s initially an increasing function of population size, commencing at
negative values for very low densities (Odum and Allee [1954]). The
phenomenon, commonly termed the “Allee effect,” may have a variety
of causes, one being the uncertainty of mates finding each other in
sparse populations (Allee [1931, 1938], Haldane [1953|, Andrewartha
and Birch [1954], Watt [1968|). That the union of gametes might
be difficult to achieve when population members are scarce has been
hypothesized for sea urchins {Allee [1931]), flour beetles (MacLagen
[1932], Park [1933]), muskrats (Errington [1940]), tsetse flies (Glover et
al. [1955], Glasgow [1963]), sheep ticks (Milne [1949, 1950]), whales
(Hamilton [1948]), box turtles (Mosimann [1958]), condors (Mertz
[1971]), acridids (Rowell [1978]), snails (Thomas and Benjamin [1974]),
spruce budworms (Parker et al. [1977]), and zooplankton (Gerritsen
[1980}).

Few data are available on mating rates and population growth of
rare species. Laboratory population experiments occasionally have
detected Allee effects due possibly to mating frequency (MacLagen
[1932], Park [1933], Ullyett [1945], Snyman [1949], Watt [1960], Thomas
and Benjamin [1974]). Laboratory experiments with assorted insects in
mating chambers have displayed positive dependence of mating rates
on population density (Nishigaki [1963], Speiss [1968], Gilliland and
Davich [1968]|, Speiss and Speiss [1969], Otake and Oyama [1973],
Eckstrand and Seiger [1975]). Positive relationships between mating
rate and density have been observed for a few species in the field
(Hamilton [1948], Ouye et al. [1964], Graham et al. [1965], Glover
et al. [1955]). Occasionally, rare organisms proved so adept at finding
each other that no effects on mating rates were detected (Teesdale
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[1940], Surtees and Wright [1960], Burns [1968]).

Additionally, mathematical models relating mating rates to popula-
tion growth, like rare species members, are scarce. Pioneering theo-
retical efforts of Volterra [1938] and Philip [1957] have been followed
up only rarely (Mosimann [1958], Bradford and Philip [1970a, b], Hsu
and Frederickson [1975], Pielou [1977, p. 35|, Gerritsen [1980], Ja-
cobs [1984], Lande [1987], Cushing [1988]). Parasites obligated to find
mates on (or in) their hosts are the subject of some stochastic models
(Andrewartha and Birch (1954, p. 338], Rohlf [1969], Plowright and
Paloheimo [1977], May [1977a), Nasell [1979]).

Despite this surprising lack of empirical or mathematical attention,
the possible presence of Allee effects pervades virtually all areas of
population biology.

Allee effects may have inordinate influence in shaping ecological com-
munities. Observed patterns of species packing on resource gradients
contradict predictions of traditional (i.e. without Allee effects) compe-
tition theories; instead, the observed species separation could be caused
by the costs of being rare (Hopf and Hopf [1985]).

In population genetics, altering theories of density-dependent natural
selection to include Allee effects produces notably different predictions
for gene frequency and population size changes (Asmussen [1979]).

Allee effects have likely been important selective forces in evolution.
Mating shortage is a hypothesized evolutionary cause of the existence
of distinct species (Bernstein et al. [1985]), sociality (Philip [1957]),
sensory adaptations and habitat selection (Mosimann [1958]), “hill-
topping” behavior (Shapiro [1970], Brussard and Ehrlich [1970]}, and
hermaphroditism and parthenogensis (Tomlinson [1966], Scudo [1969),
Gerritsen [1980]).

Allee effects form crucial aspects of biological control. A common
method of insect pest control is to disrupt fertilization by inundating
an area with sterilized males or pheromone, thereby inducing an Allee
effect in the pest population (Knipling [1955), Sower and Whitmer
1977], Beroza and Knipling [1972], Braumhover et al. [1955], Steiner
et al. [1970]). Mathematical models of the sterile male technique have
received attention (Costello and Taylor [1975], Prout [1978]).

The theory and practice of species preservation could be drastically
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impacted by Allee effects in endangered species (Lande [1988]). Though
the importance of stochastic modeling in conservation biology has been
widely recognized (Shaffer [1981], Shaffer and Samson [1985], Samson et
al. [1985], Wright and Hubbell [1983], Soule [1987], Goodman [1987]),
the possibility that Allee effects might diminish the chance of a species’
survival is seldom considered (see Lande [1987] for a rare example).

Finally, policies for harvesting living resources must be revised when
faced with the prospect of Allee effects in the populations. Clark
[1976, p. 16] began the book that launched “bioeconomics” with a
graphical model depicting the dramatic consequences of harvesting in
the presence of “depensation.” Since then, theoretical policy studies of
exploitation have mostly bypassed this warning and proceeded on the
assumption that depensation is not an important factor (a noteworthy
exception is by Reed [1978]).

In this paper I present models for addressing Allee’s question on the
minimal numbers necessary for a species’ survival. The paper develops
the concept of a species’ critical density for three types of population
growth models: deterministic differential equations, stochastic discrete
birth-death processes, and stochastic continuous diffusion processes.
The approach is to compare the dynamic behavior of deterministic and
corresponding stochastic models. My emphases are on simplicity and
elucidation. The numbers of parameters are kept to a minimum. I
have attempted to make assumptions explicit and to provide intuitive,
comparative exposition on the dynamic properties of the models. I hope
this approach will facilitate field and lab investigations, enhancing the
vulnerability of the models to empirical testing (Williams [1971]).

The models developed here tacitly refer to animal populations,
though botanists might find portions useful in studying pollination
systems. This work furthermore emphasizes dynamic models of re-
production limitation through shortage of mating encounters. Other
mechanisms, though, such as physiological facilitation of reproduction
in bird colonies (Schorger [1955], Chabrzyk and Coulson [1976]), pro-
tection from predation by schooling in fish (Larkin et al. [1964], Clark
[1974]), enhancement of predation by attacking in groups (Berryman et
al. [1985]), resistance to competition or invasion through density (such
as in grasses and other plants), or loss of genetic diversity in small pop-
ulations, produce similar Allee effects and are covered by these models
in a phenomenological way.



ALLEE EFFECTS 485

The discussion is arranged as follows. §2 presents stochastic mech-
anisms for: (a) the probability that an organism encounters at least
one other of its species, or (b) its expected frequency of encounter. Us-
ing assumptions leading to simple birth processes, functions relating
the probability of encounter or frequency of encounter to population
density are derived. Two particular functions are singled out for de-
tailed analysis: the negative exponential function and the rectangular
hyperbola function. §3 then incorporates the mating functions into
traditional differential equation models of population growth and ex-
amines the resulting dynamic behavior. Allee’s postulated lower critical
density is an unstable equilibrium in such deterministic models. Har-
vesting of a population experiencing an Allee effect is shown to increase
the critical density. §4 develops some discrete and continuous stochas-
tic versions of the population growth models, employing the methods
of birth-death processes and diffusion processes (stochastic differential
equations). A critical density manifests itself in different ways when
stochastic forces are incorporated in population models. In discrete
birth-death processes, a critical density becomes an inflection point in
the probability of extinction plotted as a function of initial population
density. In continuous diffusion processes, a critical density appears as
a local minimum (antimode) in the stationary probability distribution
for population density.

2. Matings and population density. This section examines sev-
eral mathematical expressions for the frequency of mating encounters
in a population and for the probability that an organism mates one or
more times. Mating frequency is modeled as a stochastic pure birth
process, which allows treatment of random, aggregated, or regular spa-
tial patterns of the population members. A negative exponential (NE)
function, 1—e~5" is shown to describe quite generally the dependence
of mating frequency (or mating probability) on population density, n.
Random variation in the parameter 3 across individuals is subsequently
introduced in this section. A rectangular hyperbola (RH) function,
n/(8+ n), results when the random variation in 4 follows an exponen-
tial distribution. Both the NE and the RH encounter functions fit a
published data set on copulation frequencies of azuki bean weevils. A
shortage of mating encounters affects the reproductive rate of a popu-
lation, so the encounter functions derived in this section are important
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to the form of the birth rate term in the population growth models
appearing in §3 and §4.

The BC function. Volterra ([1938], the paper is reprinted in Scudo
and Ziegler [1978]) was one of the earliest to include explicit mating
conditions in a population growth model. Volterra suggested that the
number of meetings between the two sexes during any unit of time
would be proportional to n?, where n is the combined density of males
and females. A constant sex ratio is assumed; the process is somewhat
analogous to the collisions of gas molecules. The number of encounters
for a given individual would be proportional to n under this scheme.
This bimolecular collisions model (hereafter BC model) is included in
subsequent discussions for purposes of comparison with the models
proposed in this paper.

Birth process models. Stochastic fluctuations in mating encounters
would affect reproduction in sparse populations. The frequency of mat-
ings for a given individual would then be best described by a discrete
probability distribution rather than a deterministic function of n. Cer-
tain statistical distributions arise in this context from straightforward
assumptions about the mate searching behavior of organisms.

Let a be the effective area searched by an individual female during
breeding season (the area searched x proportion of males in popula-
tion), and X (a) the number of mating encounters a female has had (a
random variable whose distribution depends on the value of a). One
set of simple assumptions about the mating process is as follows: (1)
the sex ratio remains constant; (2) mating is promiscuous and females
mate with any males encountered; (3) the probability that a female
encounters a male after searching a small area Aa is proportional to
population density, n, and depends also on her previous number of
encounters (in other words,

(2.1) Pr(X(a+ Aa) =z + 1| X (a) = z] = §(z)nla,

where §(-) is a non-negative function such that 6(0) = b, a constant.
Specific forms for § are considered later); (4) The probability of en-
countering two or more males in Aa is negligible.

These assumptions specify a stochastic, homogeneous, “birth” pro-
cess (see Bailey [1964, p. 84]), where the quantity being born (i.e., in-
creasing) is the number of matings, X (a). The probabilities for X(a),
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denoted Pr[X(a) = z| = p.(a), satisfy the well-known system of for-
ward equations:

dpz
22) 22D 5o 1ymp, (@) - S@npala), ©=0,1,2,...,
with the convention that §(z) = 0 if < 0. The boundary value
po(0) = 1 applies since there are no matings if a is zero. Under

these conditions the system (2.2) can be solved recursively for the p.(a)
values, starting with pp(a) (Feller [1968, p. 476]):

(2.3) po(a) = ™00 = gabn,

(2.4) pz(a) = e"*@mg(x — l)n.f efFiney 1 (s)ds.
0

Such birth processes can represent considerably more situations in
nature than would appear from the seeming restrictiveness of the
assumptions. For instance, if a female mates with only a certain fraction
of males encountered, then the effective search area, a, or population
density, n, could be modified with an appropriate scale factor. Or,
if females do not search per se but remain stationary, then a could
represent the diffusion area of a pheremone. In still other situations
with stationary females awaiting the arrival of searching males, a may
be redefined as a measure of time.

Specific forms for §(z) will now be considered. It is reasonable to
assume that &(x) is adequately approximated for low z values by a
linear function, that is, by the first terms of a Taylor series expansion
around zero:

(2.5) 6(x) = 6(0) + z6'(0) + - -+ = b + cx,

where ¢ = §'(0). Three possible signs for ¢ produce three cases.

Case 1. c = 0. Effectively, the earlier assumption 3 becomes: (3) The
probability that a female encounters a male after searching a small
area Aa is independent of her previous number of encounters, but
is proportional to population density. This revised assumption is a
quantitative definition of a random spatial dispersion pattern. The
assumptions characterize the Poisson process, that is, equations (2.3)
and (2.4) yield a Poisson distribution for X(a) with parameter abn :

(2.6) Pr{X(a) = z] = e~®"(abn)* /2!, z=0,1,2,....
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The expected number of mating encounters for a female under the
Poisson process is proportional to n :

(2.7) E[X(a)] = abn.

Thus, the deterministic BC model is retrieved as the mean of this
stochastic model. Clearly both models could apply only at lower
population densities. The mating ability of an organism would likely
reach an upper limit (and perhaps even decline from interference) as n
becomes larger.

Case 2. ¢ > 0. A positive value of ¢ represents a first-order aggrega-
tion model, with the assumption 3 revised to read: (3) The probability
that a female encounters a male after searching a small area Aa in-
creases linearly with her number of previous encounters in addition to
being proportional to n. A negative binomial distribution of matings is
the result:-

P,;[:a} - ((bflc) 5 gt T 1){E_acu)hfﬂ(l _ E—m:ﬂ}z1

o

(2.8)
£=0,1,2,---.

The expected frequency of encounters for the female increases expo-
nentially with population density under this distribution:

(2.9) E[X(a)] = (b/c)(e"™ —1).

Like Case 1, this model would also only be appropriate at low
population densities.

Case 3. ¢ < 0. A more uniform, or regular, spatial distribution
may be represented by revising assumption 3 such that the likelihood
of mating with another male in Aa declines linearly with each male
encountered. This case might also represent satiation of mating activity
in a female searching about a population of randomly dispersed males.
The corresponding probability distribution is binomial:

(2.10)

T (—h]ﬂ

. )(1 - Eunn]x[‘eemn]—{bﬁ:]—-r1 =01, —'b;‘(ﬂ'
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This formula is strictly correct only if b/c is an integer; otherwise
the probabilities take a type of generalized binomial form. Also, an
assumption is that 8(z) = 0 for values of = greater than —b/c.

The expected number of encounters under (2.10) reaches an upper
maximum, —b/¢, as the population density increases:

(2.11) E[X(a)] = (—b/c)(1 — ™).

This upper maximum is a realistic feature if the model is to characterize
mating frequencies at high as well as low densities.

The NE function. The probability that a female does not find a
mate is of interest when one mating is sufficient for her to realize full
reproductive potential. This probability is given by (2.3) for the three
cases above, and in fact, for any form of §(z) as defined in (2.1). The
probability that a female finds one or more mates takes a negative
exponential (hereafter NE) form:

(2.12) Pr(X(a)>1=1-e"",

where 3 = ab. The quantity 1/3 is the population density at which
the probability of mating is 1 — e™' = 0.632. The expected number
of females that mate, and presumably reproduce, is then proportional
to n(1 — e~#™). Philip [1957] was the first to utilize (2.12) as an Allee
effect in a dynamic growth model (see §3). Southwood and Comins
[1976] later employed (2.12) in their “synoptic” population model, and
Gerritsen [1980] incorporated (2.12) in a Leslie matrix model. The
above derivation shows the NE function is a general expression valid
for a variety of spatial patterns.

An NE function, in fact, is an encounter frequency as well as an
encounter probability. The expected encounter frequency for a given
female is (2.11) if Case 3 is applicable. This interpretation of the
NE encounter function is preferable when a female reproduces at a
greater rate with increased number of copulations. In the spirit of
Volterra's model, the expected number of meetings between the sexes
(and consequently the expected reproductive rate) is proportional to
n(l — e~7") (where 3 = —ac) instead of n®.

The RH Function. What if the population is not homogeneous
with regard to the value of 37 For instance, 3 might vary between
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individuals due to differences in the distances traversed (Gerritsen and
Strickler [1977], Gerritsen [1978]) sizes of home ranges, factors affecting
pheremone diffusion (Scott [1973]) or attractiveness (Bobb [1972]),
or other random environmental factors. A continuous probability
distribution, with an associated probability density function f(3), could
then represent the heterogeneity in 4 values. An individual picked at
random from the population would constitute a sample value from that
distribution.

The NE function (2.12) is a probability conditioned on a fixed value
of 3. The unconditional probability of mating (i.e., for a randomly
selected female) is the average of (2.12) over all possible 3 values:

Pr[X(a) > 1(unconditional)] = /m (1 — e P™)f(B)dB
(2.13) :

. o = —fn o
= [ﬂ e=8n£(8)dB = 1 — ¢(n).

The function ¢(n) is seen to be the Laplace tranform of f(3). It is also
the probability that a randomly selected female does not encounter a
mate in a population of density n. That the Laplace transform of a
probability distribution might itself be interpreted as a probability is
well known (e.g., Rade [1972]).

One candidate probability density function for the form of f(3) is
that of the exponential distribution (not to be confused with the NE
encounter function):

(2.14) f(B)=0e"%, 0<p <o

The parameter @ is positive; the mean of the distribution is 1/6. Use
of this distribution does not entail a net increase of the number of
parameters, as /7 is integrated out of the mating probability (2.13).
The exponential is the “most random” of the probability distributions
with ranges 0 to oo and finite means (in the sense of having minimal
information content — see Shannon and Weaver [1964]). It is simple
and yet representative of a wide variety of stochastic phenomena. Owen
et al. [1973], for example, incorporate (2.14) into butterfly mating
frequency studies as an age distribution.

The unconditional probability of mating under the exponential dis-
tribution is, from (2.13) and (2.14),

(2.15) Pr[X(a) > 1] =1— ¢(n) = n/(8 + n).
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The function is a rectangular hyperbola (hereafter RH) in n; € is the
population density at which the probability of mating is 1/2. Ecologists
have often used such a function to describe the limitation of the growth
rate of an organism by its food supply (in which case n in this function
would be the food supply — see Williams [1980], Holling [1965]).
In the present context the RH (2.15) describes the limitation of the
reproductive rate of an organism by the sheer paucity of its own species
(83 and §4).

The RH as a fertilization probability was introduced by Kostitzin
([1940], a translation appears in Scudo and Ziegler [1978]). He supposed
that the number of “favorable chances” for fertilization would be
proportional to n, whereas the number of “unfavorable chances” would
be a constant, #. While this underlying chance mechanism is vague,
Kostitzin's primary purpose was to modify Volterra’s BC model to
produce reasonable behavior for all population densities. Hopf and
Hopf [1985] used a similar hyperbolic function as an Allee effect in
multiple species competition models.

The expected encounter frequency, in addition to the probability of
encounter, is an RH function if the Case 3 model (2.11) is applicable
and the parameter a (or J) has an exponential distribution. The RH
function can then be incorporated as a satiation effect into Volterra’s
collision model, thus providing an underlying basis for Kostitzin’s use
of the RH function. The number of encounters between the sexes here
becomes proportional to n?/(# + n) instead of n?.

Curiously, the RH encounter function arises in an entirely different
context as a model of an insect pest control method. Sterile males are
released and maintained at a density of v within the pest population
under this method. If the density of wild males is vn, the probability
that a female mates with a fertile (wild) male is n/[(y/v) + n]. Some
assumptions are: (1) the sterile males are as vigorous as fertile males,
(2) the sex ratio remains constant, and (3) the organisms have no trou-
ble finding each other. This model originated with Knipling [1955] and
is extended by Lawson [1967] and Costello and Taylor [1975]. Inter-
estingly, Kostitzin's chance mechanism seems to describe the sterile
male technique more appropriately than it does mating encounter lim-
itation. Subsequent discussions of dynamic growth models containing
the RH mating encounter function (§3 and §4) apply readily to models
containing the sterile male function.
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The RH function, compared to the NE function, tends to approach
the asymptote less quickly (see Figure 1). The shape differences of
these curves are slight enough, though, so that in practice these curves
often describe biological data equally well. Indeed, the NE and the
RH are usually statistically indistinguishable in their applications to
feeding rate studies (e.g., Mullin et al. [1975]). I prefer the RH purely
for mathematical convenience. Even the simplest dynamical population
growth models incorporating the NE can be quite intractable (§3 and

§4).

Other encounter functions. Virtually any continuous probability
distribution specified as the form for f(8) in (2.13) will yield an
encounter probability curve, 1 — ¢(n), shaped similarly to the two
curves in Figure 1. In particular, the encounter probability will not
be sigmoid (s-shaped) if f(3) does not depend on n. Note that the
second derivative of ¢(n) is

(2.16) ¢"(n) = /[, N Bre P £(B)df

for n > 0. If the variance of the distribution f(3) exists, then ¢”(n) is
defined for n = 0 as well. Since the integrand 32e~"? f() is never less
than zero in the range of the integral, ¢”(n) > 0, implying that 1—¢(n)
is concave, or in particular, has no inflection points. This property is a
special case of the completely monotone property of Laplace transforms
of probability distributions (see Feller [1966, p. 415]).

As an example, a possible form for f(3) is the gamma density:
(2.17) fiB)=078""1e"/D(r), 0<B<on,

where ['(-) is the gamma function, and 7,6 are positive parameters.
The distribution is very flexible and can approximate many data sets
(the exponential distribution (2.14) is a special case when 7 = 1).
Alternatively, a more mechanistic formulation of the mating process
might lead to the Raleigh distribution with density

(2.18) £(B8) = (B/c?)e /27 0 < B < oo,

where o2 is a positive parameter. The Raleigh distribution describes
the distance a randomly diffusing particle travels from its starting
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point (Skellam [1952], Pielou [1977, p. 172]). The distribution could
represent the spread of a pheremone (see Bossert and Wilson [1963]),
the release of gametes into the environment, or the sorties of an
organism from a fixed location (as in Siniff and Jessen [1969]).

When the Laplace transforms of (2.17) and (2.18) are obtained, the
mating probabilities are found to be

(2.19) (gamma) 1—¢(n) = [(8+n)" —07]/(0 +n)";
(2.20) (Raleigh) 1— é(n) = [1 — erf(on/V2)|on/(/2)e” ™ /.

Here erf(z) is the error function representing the area under the
standard normal curve between 2z and —2z (see Abramowitz and
Stegun [1965, p. 297]). The curves (2.19) and (2.20) resemble the RH
and the NE mating curves in shape. In fact, letting 7 — 0o, f§ — oo such
that 7/6 — 3 in (2.19) retrieves the NE model (2.12) in the limit, and,
as noted earlier, 7 = 1 recovers the RH model. However, a computer
is needed to solve the dynamic growth models in §3 and §4 if mating
functions such as (2.19) and (2.20) are utilized. The RH, by contrast,
permits rather simple mathematical analysis.

Data analysis. The RH and NE functions fit an existing data
set reasonably well (Figure 1). The data are from Nishigaki [1963],
who recorded copulation frequencies of newly emerged azuki bean
weevils at various population densities in laboratory experiments. I
obtained parameter estimates by the maximum likelihood method using
a product binomial likelihood function (see Dennis [1982] for details
of the iterative calculations necessary). The appropriate estimation
approach is similar to that of dose-response studies. The dependent
variable is a binary response (mated or unmated) of each female at
a given density (“dose”) of males. A likelihood ratio goodness-of-
fit test was derived for these mating models (Dennis [1982]). Both
models fit quite well according to this test (NE: pr = 0.30; RH: pr =
0.79). However, a superior fit for the NE is evident by inspection of
the graph (Figure 1). The RH appears to systematically over-predict
the mating frequencies at low population densities and under-predict
the frequencies at high densities. Both curves adequately describe the
general shape of the response, though, given the variability of binary
data.

There are two potential approaches to estimating parameters for these
mating functions. One approach is to fit the curves directly to data sets
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Population Density (No. Males/100 cm 2)

FIGURE 1. Estimated RH and NE encounter functions, n/(# + n) and
1—e~#" plotted with observed mating frequencies of azuki bean weevils.
Data are from Nishigaki [1963]. Maximum likelihood parameter estimates
are: (RH) 8 = 2.156, (NE) 4 = 0.2360.

involving the percent females which have mated (or percent which are
pregnant or display reproductive evidence such as litters, recent pla-
cental scars, etc.) at different population densities. This approach was
illustrated above using the Nishigaki [1963] data. A second approach
iIs to estimate the parameters directly from movement data or mat-
ing behavior studies. For instance, Mosimann [1958] utilized Stickel’s
[1950] data on box turtle movements and obtained estimates of en-
counter probabilities with the NE function. Gerritsen and Strickler
[1977] and Gerritsen [1980] computed encounter probabilities based on
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zooplankton swimming velocities and sensory detection distances. Jor-
gensen [1968] presented a technique for estimating probabilities of inter-
action and home ranges using recapture data on small mammals. Radio
telemetry studies might potentially contribute greatly to encounter rate
investigations.

3. Deterministic growth. Single species population growth models
are often of the form

(3.1) dn/dt = A(n) - p(n),

where n = population density, A(n) = rate of births in the population,
and p(n) = rate of deaths in the population. These models assume:
(1) population density is adequately characterized by a continuous
function of time, n(t), (2) the individual members of the population
are homogeneous in their impacts on the rate of change of n(t), and (3)
A(-) and p(-) are homogeneous in time and space.

This section considers models of population growth of the form (3.1).
The section first incorporates the mating encounter functions from §2
into the birth rate term, A(n). In particular, the NE and the RH
functions are used, the NE because of its biological generality, and
the RH due to its mathematical tractability. A simple linear birth
rate is used as a null hypothesis against which to test the birth rates
containing Allee effects. A BC birth rate is also treated in this section,
since it possesses some of the qualitative properties of the more realistic
NE and RH birth rates. The section then thoroughly analyzes various
deterministic population growth models containing these birth rates.
Pure birth models, for situations where mortality is insignificant, are
examined first. Birth-death models are then developed; a property
of these models is a critical density, or lower unstable equilibrium.
Next, this section incorporates mating functions into population models
having an upper stable equilibrium. The section closes with a study of
how harvesting amplifies Allee effects.

Mating encounters and birth rates. A copulation shortage would
affect the birth rate term in (3.1). The encounter frequency models
of §2 permit construction of several forms for A(n) (see Table 1).
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TABLE 1.
Forms of the birth rate, A(n), for the SL, BC, NE, and RH models

I[l] An simple linear (SL} } (non-mating)
Rt = (ii) Aan bimolecular collisions (BC)
(iii) }Lnfl — e_’ﬁ“) negative exponential (NE) } (mating
(iv) An? /(8 +n) rectangular hyperbola( RH) limited)

(i) The simple linear (hereafter abbreviated SL) birth rate does not
account for mating encounters (SL, Table 1). The assumption is that
A(n) is merely proportional to n when matings are frequent enough so as
not to limit reproduction. Models with the SL birth rate appear often
in ecological applications, and will here represent the null hypotheses
against which the models containing Allee effects may be tested.

(ii) The simplest birth rate incorporating some form of mating
limitation (BC, Table 1) assumes reproduction to be proportional to
the frequency of bimolecular collisions between the sexes. The BC birth
rate includes a separate proportionality constant, o, so that A is the
same quantity in the BC and the SL rates. The BC rate does mimic
one expected feature of an Allee effect: the per-individual birth rate,
A(n)/n, is an increasing function of n (Figure 2). However, the BC
rate exceeds the basic SL rate for higher population densities. This
undesirable property suggests that BC growth models, if used at all,
should be constrained to describing populations only at low densities.

(iii) The NE birth rate incorporates mating limitation in the form of
the NE encounter function (NE, Table 1). The reproductive rate is here
proportional to the expected number of females mating one or more
times under the assumptions discussed in §2. Alternatively, n(1—e~"")
represents the expected frequency of copulations in a population under
satiation assumptions of §2. The per-individual NE birth rate is an
increasing function of n, but it asymptotically approaches that of the
SL rate as n becomes large (Figure 2).

(iv) The RH encounter function is utilized for mating limitation in
the fourth birth rate (RH, Table 1). As in the NE birth rate, the RH
rate uses the encounter function as either an encounter probability or an
encounter frequency. Population growth models incorporating the RH
rate invariably have dynamical behavior similar to those models using
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the NE rate, as is clear from comparing the RH and NE per-individual
birth rates (Figure 2).

; I

SL

Specific Birth Rate

BC

Population Densily

FIGURE 2. The per-individual birth rates, A(n)/n, plotted as functions
of population density, n, for the SL, BC, NE, and RH models. Table 1
lists the functional forms for A(n).

Data analysis. Nishigaki [1963] collected data on reproductive rates
resulting from the azuki bean weevil mating experiments discussed in
§2. For each of the population densities, he recorded the number of:
(1) eggs hatched per female, and (2) eggs hatched per mated female.
The RH and NE curves are nearly indistinguishable when fit to the
data on number of eggs per female (Figure 3). Parameters here are
estimated through nonlinear regression, since the dependent variable is
continuous, not binary as was the example in §2. For the RH model,
the asymptotic normal distribution of the estimate of # may be used
in a statistical test of the hypothesis Hy : # = 0 vs. the hypothesis
H, : 8 > 0. The test rejects Hy, the SL model, in favor of Hy, the RH
model (pr = 0.01), for the data in Figure 3.
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FIGURE 3. Estimated RH and NE birth rates plotted with observed
number of eggs hatched per female bean weevil. Data are from Nishigaki
[1963]. Nonlinear least squares estimates are: (RH) 8 = 5.767, A = 75.28.
(NE) 8 =0.2086, A = 54.24.

The SL model provides a good description of Nishigaki's data on
the number of eggs per mated female (Figure 4). This would be the
expected model if the females had no trouble finding mates. The
parameter estimate for A is simply the sample mean of the observations
on the dependent variable.

Pure birth models. A pure birth model may be appropriate if
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FIGURE 4. Estimated SL birth rate plotted with observed number of
eggs per mated female bean weevil. Data are from Nishigaki [1963]. Here
A =51.94.

mortality losses are insignificant. Such a model sets u(n) = 0 in (3.1).

Integration of (3.1) explicitly gives the time, ¢, required for a population
of initial size m to reach a given larger size n :

(3.2) f ") do =t

Equation (3.2) yields an explicit solution for n in terms of m and ¢ for
only some birth rates.
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(i) The waiting time to reach size n for the SL model is, from (3.2),
(3.3) t = (1/A)[logn — log m].

Equation (3.3) of course may be rearranged to give the more familiar
expression for exponential growth:

(3.4) n = me*.

(ii) The waiting time for the BC model approaches a constant,
1/(mAa), as n — oo :

(3.5) t=[1/(Aa)][(1/m) — (1/n)].

This means the solution trajectory for the BC birth model is explosive:
n becomes infinite in a finite time. A population’s growth could thus
be approximated by this model only for short time periods and low
initial densities.

(iii) The integral (3.2) for the NE model is an infinite series:
js_e]
(3.6) t=(1/A)[logn —logm]+ (1/)) E [Ei(—kBn) — Ei(—kBm)).
k=1

Here Ei(-) is the exponential-integral function (see Gradshteyn and
Ryzhik (1965, p. 925]). The expression (3.6) follows from (3.2) by
noting: (a) 1/(1-e#") =1/(1-q) =14+qg+¢*+..., and (b)
J(e**/z)dx = Ei(sz) + constant (Gradshteyn and Ryzhik [1965, p.
93]). It is seen that the NE waiting time (3.6) exceeds the SL waiting
time (3.3) by an amount depending on the parameter 3.

(iv) The reciprocal of the RH birth rate, 1/A(n}), is the sum of an “SL
component,” 1/(An), and a “BC component,” 8/(An?). The waiting
time resulting from (3.2) thus contains a term resembling (3.3) and a
term resembling (3.5):

(87)  t=(1/A)logn — logm] + (8/)[(1/m) - (1/n).

Note that (3.7) is a linear function of 6.

Population growth at low initial densities under the RH and NE birth
models is sluggish compared to the non-mating SL model. The waiting
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times to reach size n are greater in the two mating models by amounts
that depend on the parameters # and 3. Recall that these parameters
are related to the mate finding abilities of the population members. As
0 increases or § decreases, the mating rate decreases, and the waiting
time increases. Also, (3.7) and (3.6) begin to resemble exponential
growth (3.3) for large initial densities.

Birth-death models. The events of population decline and extinction
become important when mortality losses are significant. For simplicity,
a constant per-individual death rate is assumed, so p(n) = pn in (3.1).
Equation (3.1) is readily solved for the waiting time to reach size n :

(3.38) [ /D) - woiav =

A positive equilibrium, 7, will typically exist in the encounter-limited
models where A(72) = p#i. This equilibrium is given by

(3.9) n=h""(u),

where h(n) = A(n)/n is the per-individual birth rate (an increasing
function of n). The equilibrium is unstable, that is, the population
increases if m > 7 and decreases to extinction if m < 7i. This is shown
by noting that h'(n) > 0 by definition and A'(n) = h(n) 4 nh'(n). The
stability of the equilibrium (3.9) depends on the sign of the (single)
eigenvalue in the linear approximation to dn/dt = A(n) — pn near 7.
That eigenvalue is 8(dn/dt)/Gn evaluated at 7 :

d(dn/dt)/On| = N(A)—pu
(3.10) n
= h(h™ () + 7K' (R) —
= p+ ak'(A) — p=ahk'(a) > 0.
The positive sign indicates that solution trajectories near 7 deviate
away from 7i; in other words, i is locally unstable. Mating encounters

are just sufficient to compensate for deaths at the point 7. I term this
equilibrium the critical density.

(i) From (3.8) we have
(3-11) t = [1/(A — p)]log(n/m)
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if the organisms have no trouble finding each other. Under this SL
model the population grows exponentially (n = me*~#)), assuming
A > .

(ii) Volterra [1938] proposed the BC birth-death model. The solu-
tion in terms of the waiting time is

(3.12) t = (1/p){log[(n — a)/(m — #)] — log(n/m)},
or in terms of n is
(3.13) n=n/{1+ [(R —m)/m]e"'}.

Here the critical density is 2 = p/(Aa). The model could only describe
population growth for short time intervals if m > 7, as the solution
trajectories explode toward infinity at time £ = —(1/u)log[l — (R/m)].

(iii) The critical density for the NE model is n = —(1/3) log[1l —
(/A)]. If n > m > n the waiting time solution is

t = [1/(A — p)|log(n/m)

(3.14) +[1/(> — )] i[*r"“‘ — )] *[Ei (=kBn) — Ei (—kpm))].
k=1

If n < m < i the solution is
(315)  t=[1/(A - w)] D[\~ w)/NF[Ei (kBm) — Ei (kBn)].
k=1

These expressions are obtained by expanding the integrand of (3.8),
or 1/[An(1 — e=#") — un], in a geometric power series. If m > #,
then the integrand can be written as 1/[(A — p)n(1 — q)] = [1/(An —
pn))(1 +q + q* +...), where ¢ = [A/(A = p)le ™. If m < #, then
the integrand becomes —[e”™/(An)][1/(1 — )] = —[e®"/(An)][1 +r +
r? +...], where r = [(A — u)/Ne’™. These expressions, despite being
analytical solutions to the NE birth-death model, are not very useful
computationally.

(iv) The critical density for the RH model is i = fu/(A — ). The
waiting time solution contains a term resembling the SL model (3.11)
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and a term resembling the BC model (3.12), when n > m > # or
n<m<n:

a1g L= [1/0 = w)]log(n/m)
+ M)/ (A = )l {logl(n ~ 7)/(m — )] — log(n/m)}.

In neither the RH model nor the NE model does the population
become infinite in finite time. Instead, the trajectories tend to resemble
exponential growth (SL) for large population densities. Population
increase is slow when m is near, but greater than, n; note how the
Wwaiting times (3.14) and (3.16) are increased over the SL model (3.11).
Plots of the RH solution (3.16) for various initial densities illustrate
the decline of the population toward extinction when m < # (Figure 5;
NE plots are similar).

[ — W —— W —— e — W — g S S N o

Population Density

Time

FIGURE 5. Population density, n, graphed as a function of time, t, for
the RH birth-death model (3.16). The critical density is 7.

The critical density is proportional to # in the RH model and 1/83 in
the NE model. To reiterate, both quantities are in units of population
density and are inverse measures of mate finding ability (§2).
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Upper limit to population growth. Growth above critical density con-
tinues indefinitely under the preceding models. Such models might rep-
resent. populations during chronic or recurring periods at low density,
or colonizing species during early phases of growth. These models can
be generalized to higher densities by incorporating an upper limit to
population growth, for purposes of, say, studying reduction of abundant
populations through harvesting, habitat removal, or biological control.

(1) An important single species model of population limitation is
the logistic equation. Hutchinson [1978] and Kingsland [1985] provide
thorough ecological and historical reviews of this model. The model
plays a significant role in the theory of managing renewable resources
(Miller and Botkin [1974], Clark [1976], Brauer and Sanchez [1975],
May et al. [1979]). The central assumption of the logistic is that
the difference of the per-individual birth and death rates is a linear
declining function of n :

(3.17) (1/n)dn/dt = [A(n) — p(n)]/n =7 — (r/k)n.
Integrated forms of (3.17) are:

(3.18) t = (1/r){log(n/m) — log[(n — k)/(m — k)]};
(3.19) n=k/{1 + [(k —m)/m]e "}

The logistic is a descriptive model purporting to approximate many
models with more realistic assumptions. Consider a growth model of
the general form

(3.20) dn/dt = ng(n),

where g(n) is the per-individual growth rate. An equilibrium, 7, will
be a root of

(3.21) g(7) = 0.
Furthermore,

(3.22) ¢'(7) <0
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gives the criterion for local stability of that equilibrium. Expanding

g(n) in a Taylor series about 7i gives the logistic approximation to
(3.20):

dn/dt = n[g(i) + (n — a)g'(R) + -]

(3.23) ~ 7i[—g' ()| + [g'(7)]n”
= rn — (rfﬁc)n21
where r = —iig'(ii), k = 7. This derivation is emphasized here because

the usual presentation in the ecological literature expands ng(n) around
zero, which obtains a value of k not equal to, in general, the true
equilibrium 7.

(ii) Volterra [1938] noted the similarity of (3.19) to the earlier BC
birth-death model (3.13). The per-individual growth rates for both are
linear functions of n. The slope (Aa) of the linear per-individual growth
rate in the mating model is positive, though, and the intercept (—u) is
negative. Volterra tamed the consequent explosive trajectories of (3.13)
by subtracting a quadratic term from the per-individual growth rate:

(3.24) (1/n)dn/dt = —p+ Aan — yn°.

He reasoned that the birth parameter ) in the BC birth rate might be
expected to decline linearly with n. Then A(n) becomes (Aan —yn*)n,
and y(n) = pn as before. The integrated form of (3.24) is

t = (1/p){[A2/(Rz — Ay)]log[(n = A1) /(m — 7i1)]

(3.25) P ERE AR = ¢
~ 1/ (72 — 1)) log[(n — Ri2)/(m — 7i2)] — log(n/m)},
where
(3.26) = {Aa - [(Aa)? — 4my]'?}/ (2m),
(3.27) iz = {Aa+ [(Ma)? — 4uy]' 2}/ (2p).

The quantities 7i; and fip are equilibria; 7 1s unstable (lower critical
density), and 7y is stable. Thus, the population reaches a high steady-
state value 7, if m > 7, whereas the population faces extinction if
m < ﬁ'l-

(iii), (iv) The logistic model accommodates the RH or NE encounter
functions in the following manner. If n/(@ + n) is the probability of
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mating, using the RH function as an example, then 1 — n/(# + nr) =
8/(6 + n) is the probability of not mating. One may subtract a term
proportional to /(6 + n) from the per-individual growth rate in (3.17)
to represent the reduction of reproduction due to mating shortage. We
then have the logistic model adjusted for mating encounters:

(3.28) dn/dt =rn — (r/k)n* — Mon/(6 + n).

Kostitizin [1940] briefly mentioned the growth model (3.28), and Den-
nis [1982] and Jacobs [1984] examined its behavior. Similar equations
received attention as models of populations growing logistically but suf-
fering harvesting or predation in the form of some functional response
(Brauer [1979], Ludwig et al. [1978], Huberman [1978], May, [1977b]).
Philip [1957] presented the version of (3.28) using the NE mating func-
tion (see also Elseth and Baumgardner [1981, p. 343]). Equation (3.28)
is dynamically similar to Philip’s model, though (3.28) integrates more
easily. The waiting time solution resembles (3.25):

(339) 1= [1/(h— )| {[a(R: —0)/(8(2 — )] logl(n — ) (m — )]
— [ (Rg — 8)/(8(R2 — 721))] log[(n — 7i2)/(m — 7i2)] — log(n/m)},

where
(3.30) iy = {-B + [B? —4AC]'/?}/(24),
(3.31) fi; = {—B — [B® - 4AC]'/*}/(24),

with A = =r/k, B = v(1 —8/k), and C = (r — A). The critical density
is 7t1; the upper steady-state density is 7. Solution (3.29) graphed for
various values of m shows the critical density and the upper stable
density (Figure 6).

A diagram of the k-n plane, displayed by Philip [1957] for the NE
version of the logistic, allows examination of the behavior of (3.29) for
different values of k (Figure 7). The curves of the equilibria 7, and
fiy divide the plane into four regions of increase or decline. The dia-
gram contains important implications for wildlife management strate-
gies. Traditional management techniques are often based on habitat
manipulation (Allen [1962, p. 61]). We might presume such techniques
have the effect of adjusting the parameter k in the model. An increased
k would be expected to yield an increased steady-state population if
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Population Density
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FIGURE 6. Population density, n, graphed as a function of time, t, for
the RH-logistic model (3.28). Equilibria occur at 7y (unstable) and nsg
(stable).

the population is in regions 3 and 4, in agreement with classical wildlife
theory. Considerable increases in k& might be futile toward saving an
endangered population, however, if the population is in region 2. Man-
agement measures directly increasing reproduction, density, or survival
(e.g., captive breeding, transporting animals, breeding ground or nest
site protection) would be more effective for populations experiencing
Allee effects.

Harvesting. Simple assumptions can extend the previous growth
models to account for population losses through harvesting. One type
of model, known as a “constant effort” harvesting model, assumes the
population suffers losses at an instantaneous rate En. The quantity
E is a measure of harvesting effort, based perhaps on the number of
boats, number of hunters, or type of gear, and is assumed constant
through time. Another type known as a “constant rate” harvesting
model simply assumes the instantaneous loss rate due to harvesting
is a constant, E. Clark [1976] discusses these and other harvesting
assumptions.
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Population Density

FIGURE 7. Equilibria of the RH-logistic, (3.30) and (3.31), divide the
k-n plane into four regions. (1) Population declines to extinction. (2)
Population declines to extinction. (3) Population increases to ng. (4)
Population decreases to ns.

With constant effort harvesting, a population model such as (3.20)
hecomes

(3.32) dn/dt = ng(n) — En.
An equilibrium, f, of a harvested population is now a root of

(3.33) g(A) — E =0.

The effect of such harvesting is to decrease locally a stable equilibrium
and increase an unstable one. To see this, recall that an equilibrium,
i, of an unharvested population is a root of (3.21), with (3.22) giving
the criterion for local stability. Near 71, g(») = —ng'(n) + ag'(7) by
Taylor series approximation. Substituting the approximation for g(7)
in (3.33) gives

(3.34) Aen+ Bl (R)
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The harvested equilibrium 7 is locally greater than or less than n
depending on the sign of ¢'(#).

Encounter limitation in the absence of an upper stable equilibrium
has an effect similar to constant rate harvesting. Under constant rate
harvesting, the instantaneous harvest rate does not depend on n :

(3.35) dn/dt = ng(n) — E.

Consider now an SL birth-death model harvested at a constant rate
pf. In other words,

(3.36) dn/dt = An — un — pb.
The equilibrium (unstable) for this model is

(3.37) n=0p/(A— p),

identical to the critical density equilibrium from the RH birth-death
model (see discussion preceding (3.16)).

The logistic model (3.17) with constant effort harvesting is known in
the fisheries literature as the Schaefer model (after Schaefer [1957]):

(3.38) dn/dt = rn — (r/k)n® — En.

The integrated form is

(3.39) n=(k—kE/r)/{1+[(k—kE/r —m)/m]e” (" E}},
or just a logistic equation with an equilibrium at

(3.40) n=k(1-E&/r).

The equilibrium exists provided E < r. Graphically, the equilibrium
occurs at the intersection of the line £'n with the symmetric parabola
rn — (r/k)n?. The so-called sustainable yield curve is a plot of the
equilibrium harvest rate, Efi = kE — (k/r)E? as a function of harvest
effort, E. The Schaefer model has a symmetric sustainable yield curve,
with the maximum sustainable yield (MSY) occurring at Eya = v/2
(see Clark [1976)).
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Allee effects would considerably alter these predictions of the Schaefer
model. Mating encounter limitation in the logistic has effects on the
population similar to harvesting, as is true for the simple models
without an upper equilibrium. Only, in the logistic model the effects
are those of constant rate plus constant effort harvesting. Consider the
model

(3.41) dn/dt = rn — (r/k)n® — B, — Ean,

where E; = #(A — #) and E; = r8/k. The equilibria of this model are
exactly those of the encounter-limited logistic (3.30, 3.31). Additional
harvesting by man effectively increases E; or Ep, exacerbating the
consequences of the Allee effects.

The encounter-limited logistic (3.28) under constant effort harvesting
becomes

(3.42) dn/dt = rn — (r/k)n® — A@n /(0 +n) — En.

Equilibria, #i; and fi, are given by the quadratic formulas (3.30) and
(3.31), only with A = —r/k, B=7(1-6/k)—E,and C =0(r—A—E).
Harvesting increases the critical density, ;, and decreases the steady-
state density, 7fio, as compared with the non-harvesting equilibria 7
and 7i3. The sustainable yield becomes Eng. A striking consequence
of increasing the harvesting effort becomes clear from a graphical
depiction of the harvesting rate superimposed on the population’s
biological growth rate (Figure 8). Population increase occurs when
the difference of the growth rate and harvesting rate is positive. As £
increases, 1 and 72 become closer and closer together, until merging
upon reaching a harvest effort E*. Setting 7y = fia, or B? = 4AC, and
solving for £*, we have

(3.43) E* = r(1 + 6/k) — 2/ 761 k.

When E > E*, the equilibria ny and i, vanish (become complex-
valued), leaving 0 as the only system equilibrium. Such over-harvesting
spells ultimate extinction for the population. The sustainable yield
curve has an abrupt discontinuity at E* (Figure 9). Clark [1976]
presents a similar figure as a graphical model of “critical depensation.”
Harvesting such an encounter-limited population at MSY might be
precariously close to exterminating the resource.
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Growth and Harvest Rate
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FIGURE 8. The RH-logistic harvesting model. Growth rate, rn —
(r/k)n* — A@n /(@ + n), and harvest rate, En, plotted as functions of n.
Their intersections provide locations of equilibria, 72, and 2. Equilibria
merge when E = E*.

4. Stochastic growth. This section incorporates stochastic forces
into the population growth models of §3. Those models served to
quantify Allee’s concept of a critical density within the framework
of traditional deterministic modeling in ecology, and to establish the
underlying dynamic behavior of populations experiencing Allee effects.
The presence of stochastic forces, as will be seen in this section,
considerably alters the deterministic predictions. For example, the
deterministic models allow but one predicted population density to
originate from a given initial density, m. Stochastic models afford a
variety of possible outcomes from a given m value. A population below
critical density might increase, and a population above critical density
might decrease. The very concept of critical density, in fact, takes
different forms in stochastic models.

The discrete birth-death processes discussed first in this section
offer certain advantages as models of low density populations. The
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FIGURE 9. The sustainable yield curve for the RH-logistic harvesting
model.

assumption of §3 that n is a continuous variable applies more properly
to larger populations (see May [1974, p. 30]). Discrete birth-death
processes reflect the fact that organisms come in integer packages by
treating population size as a discrete variable. Also, individual births
and deaths in the population are modeled directly as stochastic events.
Discrete pure birth models are constructed first in this section using the
various encounter functions of §2. Attention centers on the stochastic
counterpart to the waiting time defined for the deterministic birth
models in §3. Later in this section, extinction probabilities are derived
from various discrete birth-death models. If present, a critical density
appears as an inflection point in the curve of extinction probability
(or probability of never reaching a fixed large size before extinction)
plotted as a function of m.

Continuous stochastic models, in the form of diffusion processes (or
stochastic differential equations), are discussed at the end of this sec-
tion. Such processes seem more appropriate for modeling populations
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with an upper stable equilibrium, since discrete stochastic versions of
models such as the logistic are awkward and artificial. Instead, contin-
uous stochastic versions are simpler and portray more accurately the
type of stochastic forces experienced by populations at high densities.
This section shows that a critical density in continuous stochastic mod-
els appears as an inflection point in the probability of never reaching
a fixed large population density before reaching a fixed small density.
If a stationary probability distribution for population density exists, a
critical density may be manifested as a local minimum in the distribu-
tion.

Discrete birth-death processes. The assumptions of discrete birth-
death processes revolve around stochastic birth and death rates, A(n)
and p(n), respectively. The probability that a birth occurs in the
population during a short time interval, At, is assumed to be

(4.1) Pr[N(t + At) =n+1| N(t) = n] = A(n)At.

Population size, N(t), is now a nonnegative, integer-valued random
variable with a distribution that depends on ¢. The measurement units
of N(t) are numbers of organisms; dividing N(t) by area produces
population density at time f. Likewise the chance of a death during
that interval is assumed to be

(4.2) Pr[N(t + At) =n— 1| N(t) = n] = p(n)At.

The probability that two or more events occur in At is assumed negligi-
ble. Thus, neither a birth nor a death occurs during At with probability
1 — A(n)At — p(n)At. The rates A(n) and p(n) are assumed homoge-
neous in time and space, and the population members are assumed
homogeneous in their impacts on those rates. These assumptions spec-
ify a stochastic birth-death process. The probability distribution of
N(t) satisfies a system of “forward” differential equations and typically
contains m and ¢ as parameters (e.g., Bailey [1964], Feller [1968], Karlin
and Taylor [1975]). Letting Pr[N(t) = n] = p,(t), we have:

(4.3) 'dp;# = A(n = 1)pn-1(t) + p(n + 1)pn41(t)

— [Mn) + p(R)|pa(t), n=0,1,2,....

Unfortunately, the distributions resulting from all but the simplest
forms for A(n) and p(n) are typically not available in closed form. Goel
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and Richter-Dyn [1974] list most birth-death processes with known
explicit distributions.

Clues about the dynamic behavior of these distributions become
available by listing a few additional properties of birth-death processes
(Karlin and Taylor [1975]): (1) the time, S,, between events (an event
being a birth or death) in a population of size n has an exponential
distribution with E[S,] = 1/[A(n) + x(n)]; (2) the probability that the
next event is a birth in a population of size n is A(n)/[A(n) + p(n)]; (3)
the probability that the next event is a death is likewise u(n)/[A(n) +
p(n)]. Properties 1, 2, and 3 are, among other things, a recipe for
simulating birth-death processes with computers.

The expected value of N(t) by definition is some function of ¢ :
(4.4) w(t) =E[N()] =) npa(t).
n=>0

The function w(t) satisfies a differential equation found by multiplying
both sides of (4.3) by n and summing from n =0 to oo :

dw/dt =" A(n)pa(t) — Y p(n)pn(t)
[45} n=I( n=0

= E[MN(1))] - E[p(N(2))]-
Since E[AM(N(t))] = A(w) if A(-) is linear, equivalence of the determin-
istic model (3.1) to the mean of the stochastic model occurs when the
birth and death rates are linear functions of n.

Pure birth processes. Stochastic pure birth processes set pu(n) = 0 for
all n. This assumption is reasonable if losses from the population are
insignificant. Population decline or extinction, like the deterministic
case, is not possible under a stochastic pure birth process. The en-
counter frequency models of §2 are birth processes: the “population” is
the number of encounters, X (a), and a plays the role of time. The com-
plete probability density for N(t) resulting from almost any arbitrary
AMn) is available in closed form (Bartlett [1978, p. 58], see caption,
Figure 10) or recursively (see equations (2.3) and (2.4)). Additionally,
from property 1, the expected waiting time for the population to reach

size n from initial size m is
n—I1

(46)  E[T] = E[Sw] + E[Sms1] + -+ + E[Saci] = Y, 1/A(K),

s =TI
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where T' is the waiting time (a continuous random variable). This
expected waiting time in a sense may be compared to the waiting time
(3.2) of the deterministic birth model. The stochastic mean waiting
time (4.6) will always be greater than the deterministic waiting time
(3.2) if 1/A(n) is a decreasing function of n. The SL, BC, NE, and
RH birth rates (Table 1) all have decreasing reciprocals, and thus yield
longer stochastic waiting times.

(i) The birth process incorporating the SL birth rate was first in-
troduced as a mathematical model of speciation (Yule [1924]). I here
adopt the process in its more familiar context of population growth,
to represent the null hypothesis of no Allee effects. The probability
distribution for N(t) is a shifted negative binomial (Figure 10). The
expected value of N(t), from (4.5), increases exponentially with time:

(4.7) E[N(t)] = me™*.

The equivalerice of (4.7) to its deterministic counterpart (3.4) is a
consequence of the fact that A(n) is linear in n.

The expected waiting time (4.6) is compactly expressed with a func-
tion, ¥(-)(=I'(-)/T(-)), known as the digamma function:

n—=|

(4.8) E[T] = ) 1/(Ak) = (1/A)[%(n) - (m)].

k=rm

This expression utilizes the fact that the digamma satisfies the recur-
rence relation ¥(k+1) = ¥(k)+1/k (Abramowitz and Stegun [1965, p.
258]). A graph of ¥(k) resembles, but is always less than, log k. How-
ever, ¥(k) increases faster than logk (approaching logk as k — o0).
Also, (4.8) is greater than its deterministic counterpart (3.3) since
1/(An) is decreasing in n.

(ii) The expected waiting time for the BC birth process is (note that
Y'(k+1) =9'(k) - 1/k?) :

(49) BT =Y 1/(0ek?) = [1/Qa)][¥'(m) - ¥'(m)]

k=m

Noting also that dlogn/dn = 1/n, we see that (4.9) bears the same
relationship to (4.8) as does (3.5) to (3.3). Also, (4.9) is greater than
(3.5).
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This birth process additionally displays a stochastic equivalent of the
explosive growth seen in the deterministic model. Since %'(n) — 0 as
n — 00, E[T] — ¥'(m)/(A«), implying that the expected waiting time
until the system becomes infinite is finite. The transition probabilities
for N(t) are deficient (sum to less than one): there is positive probabil-
ity that the population becomes infinite in a finite time ¢ (Feller [1968,
p. 451]). Clearly, this process offers at best an approximation of very
low populations for brief intervals only.

(iii), (iv) The RH or NE birth processes are not explosive. The prob-
abilities for N(¢) always sum to one and always lag behind those of the
SL process (Figure 10). This property would seem more representative
of a population experiencing an Allee effect. The RH version again
proves more tractable than the NE version. For instance, the expected
RH waiting time contains “contributions” from an SL birth process and
a BC birth process:

n—1 n—1
E[T] = Y 1/(0k) + D 0/(A?) = (1/X)[¥(n) — $(m)]
(4.10) k=m k=m

+ (/M) W' (m) — ¢'(n)].

Thus, E[T] under the RH birth process is increased over that of the SL
process (4.8) by an amount proportional to the expected waiting time of
a BC process (4.9). The proportionality constant is again # (recalling
(3.7), (3.5), and (3.3)). However, (4.10) is always greater than (3.7)
for the same values of \,f,m, and n, since 1/A(n) = (n + 6)/(An?) is
decreasing in n. Similar expressions for the NE process are available
but are quite messy (Dennis [1982]).
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FIGURE 10. Dashed lines show the probability distribution of N(t) for
various values of ¢ under the SL birth process. The pdf is

=1

n - —_— —_
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Solid lines depict the distribution for the NE birth process. The pdf is

n=1 n

pn{t)={—1}“—"‘n:~mz e-"*““/ﬁm{j}—m)) ,n=mm+1,...,

i=m Jj=mn Ie-=1-|.m
k#j

where A(n) = An(1 — e=87),
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Birth-death processes. Models allowing the possibilities of decline
and extinction are appropriate when mortality losses are significant.
Population size in stochastic birth-death processes undergoes a random
walk on the non-negative integers with the time between jumps varying
according to property 1 discussed earlier. I will assume mortality takes
the form p(n) = un. Of particular interest is the probability, denoted
§(m), that the population goes extinct from an initial size m. Properties
2 and 3, discussed earlier, define a recursion relation for {(m) :

§(m) = £(m + 1)A(m)/[A(m) + p(m)]

(4.11)
+ &(m — 1)p(m)/[Mm) + p(m)].

This relation merely decomposes “extinction from size m” into two
mutually exclusive events: (1) a birth occurs, followed by extinction
from size m + 1, and (2) a death occurs, followed by extinction from
size m — 1. The solution to (4.11) is readily found to be (e.g., Karlin
and Taylor [1975, p. 145]).

P ém)= 3 vla) [ 3 v(a),
T=m =0
where
(413) @ ={ s =0,
g vr) = 1)p(2)-pulr) g
EEui{z}..,i{;J TR o P e

under the condition that Yuv(x) converges. Extinction is certain if the
sum does not converge. In practice, the form of £(m) is quite generally
the summed right tail probabilities of a discrete probability distribution
(Dennis [1981]):

(4.14) £m)=Y_ p(z).

Here p(x) is a discrete probability mass function defined on the non-
negative integers with the recurrence relationship

(4.15) plz)/p(z - 1) = p(z)/Mz).
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Note that a mode of p(x) corresponds to an inflection point in £(m)
plotted as a function of m. A mode m is defined here as a value of
z where p(fh — 1) < p(m) > p(m + 1). Since §{(m) — {(m + 1) =
p(m),m=0,1,...,one finds that £(m —1)—&(m) < £(m)—&(m+1) >
E(m 4+ 1) — £(m + 2) if m is a mode of p(z). Furthermore, a mode
of p(z), and the resulting inflection point in &(m), corresponds to a
deterministic unstable equilibrium. An unstable equilibrium 7 is given
by M#) = u(#), where p(n) > A(n) for n < 7t and p(n) < A(n) for n >
fi, in a local region of n values containing 7. The recursion relationship
(4.15) implies that u(m)/A(m) > 1 and u(m + 1)/A(m + 1) < 1 when
m is a mode of p(z); thus m <n <m + 1.

(i) Ecologists have used the SL birth-death process as a stochastic
model of a species colonizing an island (MacArthur and Wilson [1967],
MacArthur [1972, p. 121], Crowell [1973]). The full probability
distribution for N(¢) is available in closed form but is somewhat lengthy
(e.g., Bailey [1964, p. 94], see also Richter-Dyn and Goel [1972],
for many additional properties of this model). The probability of
extinction is, from (4.14) and (4.15), the right tail of a geometric
probability distribution (provided A > p):

(4.16) Em) =Y L= (w/ (/X" = (u/X)™

r=m

A plot of £(m) as a function of m declines in the characteristic geometric
fashion (Figure 11).

(ii) The BC birth-death process is explosive; an infinite number
of births can occur in finite time. However, the process admits a
possibility of extinction due to the positive death rate. The chance
of that event is the tail of a Poisson distribution:

o0

(417)  &m) = Y e O u/(xa)]" /2! = y(m, p/(Aa))T(m).

L=TrL

Here +(,) is the incomplete gamma function (Gradshteyn and Ryzhik
(1965, p. 940]). If Aa > u, (4.17) as a function of m resembles (4.16)
in shape. If A\a < p, &(m) acquires a declining sigmoid shape: the
extinction probabilities remain high until abruptly decreasing within
a small range of m values. The inflection point of £(m), m say,
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FIGURE 11. The probability of extinction, £(im), plotted as a function of
initial population size m. Shown are the SL model (4.16), the BC model
(4.17), and the RH model (4.18).

occurs at m &~ u/(Ma). This quantity corresponds to the mode of
the Poisson probabilities in (4.17); it also is the population size near
which A(n) = p(n). Thus, the critical size m is the counterpart to the
deterministic critical density of (3.12). These properties of {(m) in the
BC model foreshadow similar properties in the RH and NE versions.

Interestingly, a population harvesting model leads to the same chance
of extinction as does the BC model. Envision a population with an SL
birth rate that is harvested at a constant (stochastic) rate p/a. In
other words, A(n) = An and p(n) = p/a. The probability of extinction
for this process is exactly (4.17). This parallel between encounter
limitation and harvesting also emerges in the subsequent models.

(iii), (iv) Birth-death processes utilizing the NE and RH birth rates
have similar dynamic behavior. The probabilities for N(¢) tend to pile
up at low values of n when m is less than the critical size, and they
disperse, slowly at first, toward higher values of n when m is greater
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than the critical size.

The probability of extinction for the RH model is, from (4.14) and
(4.15), the right tail of a negative binomial distribution:

o0

wis)  em=Y ("7 @

r=m

This function of m displays the declining sigmoid shape for values of
# > (A — p)/p (Figure 11). The curve shows extinction probabilities
for small populations greatly increased over those of the SL model
(4.16) when @ represents a sizeable fraction of m. The RH extinction
probability is greater than (4.16) for all m if # > 0; by contrast the BC
extinction probability is much smaller than (4.16) for high m values
due to the absurdly high birth rate. The inflection point of £(m) again
occurs approximately at the critical size: m = 6u/(A—u). The quantity
m also corresponds to the mode of the negative binomial distribution
in (4.18). Setting # = 0 in the RH birth rate of course recovers the SL
birth rate. Note that the geometric distribution (4.16) is a special case
of (4.18). Additionally, (4.18) is equivalent to the left tail of a binomial
distribution under the circumstance that @ is an integer (Patil [1960]):

(4.19) Em) =)

x=()

= (") - e

I

A harvesting model yields an identical extinction probability. Con-
sider a population growing according to the SL birth-death process
that is harvested at a constant rate, pf. Thus A(n) = An, and
p(n) = un + pd. The probability of extinction is exactly (4.18). The
parallel between encounter limitation and harvesting makes intuitive
sense: failure to find fellow species members essentially removes organ-
isms from the reproductive process. As seen in §3, a similarity between
Allee effects and harvesting manifests itself in the equilibria of the de-
terministic models.

Many stochastic processes proposed in the conservation biology liter-
ature as rare species models predict certain extinction (e.g. Goodman
[1987]). Such models typically have an upper reflecting boundary, rep-
resenting a maximum population size that a region can support. The
studies focus upon properties of the mean time to extinction instead of
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the probability of extinction. I chose not to emphasize such models in
this paper, because: (a) an upper reflecting boundary is a difficult pa-
rameter to estimate from data sets (see Dennis [1989)] for approaches to
estimating parameters in stochastic population models); (b) unbounded
processes offer reasonable approximations to the stochastic properties
of bounded processes at low population sizes; (c¢) diffusion processes,
discussed later in this section, provide in my judgement more realistic
descriptions of population fluctuations at high densities. Nonetheless,
[ sketch here a feature of Allee effects in birth-death models with or
without a maximum population size.

For birth-death processes with an absorbing state at zero, a critical
size corresponds to an inflection point in the probability of never
attaining a large population size n from an initial size m (where n
is larger than the deterministic critical equilibrium 7). Let &(m;n)
denote the probability of never attaining n from m (i.e., of extinction
before reaching size n). Goel and Richter-Dyn ([1974, p. 20]) listed a
formula for £(m;n) in terms of the stochastic birth and death rates.
The formula can be expressed as

L | n—1
(4.20) Emin) = Y w(2) /Y o(a),
r=m =1}

where v(z) is defined by (4.13). This expression holds regardless
of whether or not an upper reflecting boundary exists. Notice this
is the right tail of a discrete probability distribution defined on the
integers 0,1,2,... ,n—1. The recursion relationship for the probability
distribution is

(4.21)  [§(zin) —€&(z + Lin)] / [E(x — 15 n) = E(z3n)] = p(z)/A(z),

identical to the recursion relationship (4.15) for p(x) in the probability
of extinction. By an argument identical to that for £(m) (below (4.15)),
£(m:n) plotted as a function of m has an inflection point near an
unstable equilibrium #.

If extinction is not certain, the infinite sum v(0) + v(1) + v(2) + ...
converges, and £(m) = £(m;o0). The probability of never reaching n
before extinction (4.20) can then be written as

n—I1 =1

(4.22) gmin) =Y p@) / Y pla),

F=m m=(}
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where p(z) is the probability distribution associated with §(m) (4.14).
Here, £(m;n) becomes the right tail of a truncated version of the
probability distribution defined by p(z).

Extinction data. Data on extinction probability as a function of popu-
lation size are scarce. Mason [1977] presents evidence of density depen-
dent extinction in ambushbugs, but specific quantitative relationships
are not discernable. Crowell [1973] experimentally introduced different
densities of small rodent species (Peromyscus sp. and Clethrionomys
sp.) onto islands in the Gulf of Maine, and he collected data on the
resulting populations through many years of field work. He noted that
the data were generally consistent, to an order of magnitude, with the
SL stochastic birth-death model (the parameters A and p were esti-
mated from natality and mortality data, not from extinction data).
Interestingly, Crowell’s observed extinction frequencies for Peromyscus
show a hint of sigmoid shape when plotted as a function of initial popu-
lation size (Figure 12). The Clethrionomys data appear not to have an
inflection point. However, not enough data exist in either case to jus-
tify applying an asymptotic statistical test, derived by Dennis (1982],
of the SL vs. the RH extinction curves.

Laboratory experiments to obtain data for such a test would be
feasible for numerous organisms. Normally, the probability of mates
not finding each other in a laboratory culture vessel would be extremely
low, unless the culture vessel were so large as to be unwieldy to sample
or maintain. The parameter 6, if positive, would be too small to detect
with extinction experiments under usual laboratory conditions. The
key to detecting whether @ is positive is to increase the death rate by
artificially removing organisms. Prolific laboratory invertebrates can
repopulate a culture after only one mating: A is usually high compared
to w. If g is increased artificially, though, the effect is to amplify the
sigmoid shape of the extinction curve (4.18) through increasing the
critical size m. If § is not positive, the extinetion curve would maintain
the SL geometric shape (4.16) even under an artificially high death
rate.

Continuous diffusion processes. Discrete, birth-death stochastic ver-
sions of the logistic model do not seem entirely satisfactory. The
problem, if I may call it that, is a certain vagueness about the birth
and death rates in the logistic. Any forms for A(n) and p(n) will
do, so long as A(n)/n — u(n)/n is a linear declining function of n.
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FIGURE 12. Proportion of colonizing populations surviving (= 1-
probability of extinction) plotted as a function of initial population size.
Open circles: Clethrionomys sp. Solid circles: Peromyscus sp. Data are
from Crowell [1973].

Fraction of Populations Surviving

Birth-death processes commit the model builder to more specific as-
sumptions concerning A(n) and p(n). One might assume, for instance,
that A(n) = (a — bn)n for n < a/b, A(n) = 0 for n > a/b, and
u(n) = (¢ + dn)n (Pielou [1977, p. 27]). However, this eliminates
any chance of birth occurring for n > a/b and hence any chance of the
population drifting stochastically above a/b. The effect is an artificial,
rigid barrier at a/b that bounces the population downward. Such re-
flecting boundaries in population models have the additional drawback
of being nearly inestimable (in the statistical sense) from data.

As noted in §3, the logistic is an approximation to continuous popu-
lation models of the form listed in equations (3.20), (3.21), and (3.22).
Such a general form does not necessarily specify birth and death rates,
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but only specifies a net population growth rate, ng(n). Here I discuss a
stochastic version of (3.20) that preserves this character of the under-
lying deterministic model. Also, the equilibrium population sizes are
likely to be quite large. Using discrete processes to model population
fluctuations around a large steady state introduces unnecessary mathe-
matical complications, while the continuous models at large population
sizes offer good approximations and are much simpler.

A stochastic treatment maintaining the spirit of deterministic models
of the form (3.20) is to introduce “white noise” into the per-individual
growth rate, g(n) :

(4.23) dN(t) = N(t)g(N(t))dt + aN(t)dZ(t),

where Z(t) is a standard Wiener (Brownian motion) process, and ¢
is a positive parameter. In this model, N(t) is a continuous stochas-
tic process known as a diffusion process. The noise phenomenologi-
cally represents effects of unpredictable environmental fluctuations on
the per-individual growth rate. Such stochastic forces are commonly
termed “environmental,” as opposed to the “demographic” stochastic
forces of the discrete birth-death processes treated earlier (May [1974]).
The fluctuations in the population growth rate given by the expression
aN(t)dZ(t) are termed “multiplicative noise” and lead to many types
of emergent system behavior (e.g. Dennis and Costantino [1988]). Lu-
cid accounts of the mathematical details involved in such stochastic
differential equations are available (Goel and Richter-Dyn [1974], Lud-
wig [1974], Ricciardi [1977], Karlin and Taylor [1981]). Many proba-
bilistic properties for this type of model, such as transition probability
distributions and waiting time distributions, have been derived, Goel
and Richter-Dyn [1974] catalogued many known results (see also Haken
[1983a, b], Risken [1983], Horsthemke and Lefever [1984]).

I restrict attention here to two properties: (a) the probability of
never attaining an upper population density before attaining a low one
(analogous to £(m. n) in discrete birth-death processes (4.20)), and (b)
the stationary probability distribution for population density. A critical
density caused by Allee effects manifests itself in both quantities.

A critical density appears as an inflection point in the probability
of reaching a small population density before reaching a large one.
Let £(m,z,n) denote the probability of never reaching population
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density n from initial density m before attaining a low density z,
where 0 < < m < n. The density z could represent a low point
where extinction is certain (perhaps z = 1). A result listed by Goel
and Richter-Dyn [1974, p. 62] applied to the particular stochastic
differential equation (4.23) yields

(420)  elmizn) = [ expl-ody / [ expl-o)d,

T

where
(425)  4(y) = (2/0?) j la()/v]dy + 2[1 — (w/®)]log.

Here w is an indicator constant reflecting whether an “Ito” or a
“Stratonovich” stochastic integral is used for interpreting the stochas-
tic differential equation (4.23) (Ito: w = ¢?; Stratonovich: w = o?/2).
The technical distinctions between the two types of stochastic calculi
are unimportant for the results in this paper (see Mortensen [1969], Ric-
ciardi [1977], Braumann [1983] for information about the distinctions).
Interestingly, £(m; z,n) is the right tail of a continuous probability dis-
tribution defined on the real interval (z,n), which parallels the result
(4.20) for £(m;n) in discrete birth-death processes.

[f present, an inflection point in £(m; z,n) plotted as a function of m
(with = and n fixed) is a root of 8[— log(d¢/8m)]/0m = 0. One easily
finds from (4.24) that an inflection point, 7, is a solution of

(4.26) g(m) + (6% —w) = 0.

Recall that deterministic stable or unstable equilibria are roots of
g(n) = 0. Thus, inflection points of £(m;z,n) correspond exactly
to underlying deterministic equilibria when the stochastic differential
equation (4.23) is interpreted in the Ito sense (and approximately in
the Stratonovich sense). In particular, a lower critical density marks a
point of locally steepest decline in the function £(m;z,n). By contrast,
an upper stable equilibrium is indicated by a point of locally most
gentle decline in &(m; z,n).

A critical density can also become evident in the stationary proba-
bility distribution for population density, if such a distribution exists.
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The transition probability distribution for N(¢) in (4.23) changes with
time; in some models, the transition distribution approaches a station-
ary distribution as time gets large:

(427)  f(n) = K exp{(2/0?) f la(m)/n] dn — (2w/0?) log n},

0<n<oo.

Here f(n) is the probability density function for the stationary distri-
bution. The quantity K is a normalization constant found by setting
the area under the curve f(n) equal to one. Dennis and Patil [1984]
discussed the role of this distribution in population ecology and its
relationship to underlying deterministic stable or unstable equilibria.
They also showed that the form of the stationary distribution (e.g. log-
normal, gamma, etc.) is invariant under either the Ito or Stratonovich
calculus.

The function f(n) portrays the long-run stochastic history of popula-
tion size fluctuating around a steady state. If g(n) is approximated by
a straight line (see (3.23)), the underlying deterministic model is the
logistic equation. Substituting g(n) = r — (r/k)n into (4.23) produces
a stochastic logistic model (see Dennis [1989] for various properties of
this model). In particular, the stationary distribution (4.27) for this
stochastic logistic is a gamma distribution of population density:

(4.28) f(n) = Kn*"'e™®", 0<n<oo,

where a = 2r/(ko?), s = (2r/0?)+1—(2w/0?), and K = a*/T'(s). The
mode, or region of the most likely population size, is smaller than the
mean population size (Figure 13).

The gamima distribution has been shown to give an extremely accu-
rate portrayal of laboratory flour beetle populations fluctuating around
a steady state (Dennis and Costantino [1988]).

Stochastic logistic-type models with mating encounter limitation can
be similarly constructed. The version using the RH mating function is,
from (3.28) and (4.23),

(4.29) dN(t) = N()[r — (r/k)N(t) — X8/(0 + N(t))|dt + o N(t)dZ(t).
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FIGURE 13. The gamma distribution of population abundance. The
expected population size, E[N], is greater than the most likely population
size (mode).

The stationary distribution resulting from (4.29) and (4.27) is a type
of weighted gamma distribution:

(4.30) f(n)=Kn*"7"'e™™ (@ +n)", 0<n<oo.

Here v = 2M\/0?, and a and s are given with equation (4.28). The
normalization constant K is complicated and is given by Dennis and
Patil [1984]. A typical shape of (4.30) has several interesting features
(Figure 14): (1) f(n) = occasn — 0. (2) f(n) = 0asn —o00. (3) A
local minimum (antimode), n, say, exists at

(4.31) i = [-B + (B? — 4A0)/?)/(24).

where A= —r/k, B=r(1-0/k) —w,and C=08(r—-A—w). (4) A
local mazzmum (mode), 7, exists at

(4.32) iy = [ B — (B% — 4AC)'/?)/(24).
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Interestingly, (4.31) and (4.32) are exactly identical to the deterministic
harvesting equilibria of (3.42), with the constant w in the role of
the harvesting effort, E. Consequently, (4.31) is larger than the non-
harvesting deterministic critical density (3.30), while (4.32) is smaller
than the non-harvesting deterministic steady state (3.31). In a sense,
an antimode, or unlikely region of population size, is a stochastic
manifestation of a deterministic critical density. Multiplicative noise
magnifies the effects of mating limitation, though, by increasing the
size of the antimode over that of the deterministic critical density. For
high noise levels (high o?), the stationary distribution (4.30) ceases to
exist (i.e., is not integrable at zero), and the population faces certain
extinction, even if the initial population size is above the deterministic
critical density (Dennis and Patil [1984]). This is an example of
a “noise-induced transition,” a type of emergent dynamic behavior
common in stochastic systems (Horsthemke and Lefever [1984]).

Continuous stochastic models constructed from the BC-logistic (3.24)
and the NE-logistic (see discussion of (3.28)) have properties similar
to the RH version. The resulting stationary probability densities are,
respectively,

(4.33) (BC) f(n) = Kn*'explan —bn?], 0<n < oo;

(4.34) (NE) f(n) = Kn*~'exp[—an — bEi(—fn)], 0<n < co.

The constants in the above distributions are:  (BC) s = —(2u/0?) —
(2w/0®)+1,a = 2)a/o?,b = v/o?; (NE) s = (2r/c?)—(2w/0*)+1,a =
2r/(ke?), b = 2)\/a?. The normalization constants are best left to a
computer.

5. Conclusions. In this paper I have proposed some quantitative
theories for addressing Allee's question about the minimal numbers
necessary for a species’ survival. Few data are available on this
question; in fact, Andrewartha and Birch's (1954, p. 335]) appraisal
of the topic is still true thirty-five years later: “This is at present,
one of the most important and most neglected branches of population
ecology.” Large amounts of data, however, would shed little light
on the question without a framework of mathematical models for
hypothesis testing and interpretation. The models presented here
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FIGURE 14. A typical shape of the stationary distribution (4.30) for the
stochastic RH-logistic model. The antimode, 7, is a stochastic equivalent
of a critical density.

are relatively simple; [ considered it important to concentrate on
building a foundation of basic biological concepts before more detailed
bioeconomic superstructures are erected.

A species’ critical density is manifested differently in different types
of population models. The basic concept of a critical density is a point
where the net per-individual growth rate is zero but increasing as a
function of population density. In a traditional deterministic differen-
tial equation model, a critical density is simply an unstable equilibrium,
below which a population is doomed to extinction, above which a pop-
ulation survives. In a stochastic discrete birth-death process, though,
a critical size appears as a sudden drop in the probability of extinction
plotted as a function of initial population size. In a stochastic con-
tinuous diffusion process, a critical density corresponds to an unlikely
region of population density. It also corresponds to a sudden drop
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in the probability of reaching a small population density (extinction)
before a large one, plotted as a function of initial density.

Allee effects would seriously impact management of biological re-
sources. Populations experiencing Allee effects have dynamic prop-
erties similar to harvested populations, since organisms that fail to en-
counter fellow species members are effectively removed from the repro-
ducing population. Actual harvesting would therefore amplify existing
Allee effects by increasing the critical density. Some types of stochastic
forces, multiplicative noise in particular, also exacerbate Allee effects.
Recent theories of managing biological reserves for species preservation
are based on stochastic population models lacking Allee effects. These
models give overly optimistic predictions if the target species do indeed
have Allee effects. Sparse, encounter-limited populations might fail to
respond to management efforts aimed at habitat or carrying capacity
improvement. An Allee effect unfortunately would be very difficult to
detect or measure in a natural population.
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