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Stocha.stic Diflerential Equations As
Lnsect PopuJation Models

Brian Dennis t

ABSTRACT Siochastic differential equations are a potentially important class ofmodels for describiag.insecr pop-ulation dynamics. Their tdr;;i";;i;clude ease ofuse, retatlve tractabrhty, ease.of understanding, and the potenliai-for approrimar,ingmany types- of stochasric variation affecting insecr populations- ThiT'paper is anexposition fo-1 Quantitative.ecolog-ists on paiameter estimation for one-dimensional
stochastic differential.equations. -stochastic 

versions oi ttt. eiponentiJ-erow!h modej
ancl tie logrstic.modei are developed in detail as examples. Topics disc"ussed includetransition distributions and moments, stationary disiributions,';"n;; likelihood
estimates, conditional least squares estimates, Taxim.uT quasi-Jikelihooa .rtl*ii.r,jackknifing, multiple stable and unstabre equilbria, and deterministi;;h;;;.

life is stochastic. Ecoiogists have long observed that the abundances of naturaj populations,
and of insect populations in particular, are highly variable (Allee et ai. 1g4g, p. 319, Andrewartha
& Birch 1954, p. 358). Field estimates of insect populations typically show large iemporal and
spatial fluctuations over and above pure sampling errors. Even replicate Iaboratory popuiations
started under similar initial conditions often display widely varying outcomes, as demonstrated by
ciassic experiments on arthropod systems discussed in most ecoiogy texts.

Traditionaily, ecological modelers have used simpie differential or difference equations for
sumnlarizing the general forces regulating population growth. This determinisr,ic approach in
ecology has a rich history dating back to Verhulst's logistic modei in the nineteenth ceniury.
Occasicnally some ecologists have raised questions about the wisdom of ignoring random
components of population growth. Most notabie were the insect population biologists who warned
of the inherent vacillations in field data during the rancorous
independence during the 1950,s. The deterministic approach

debates on density dependence vs.

stili predominates in popuiation
modeling, to the extent that unpredictable fluctuations in insect populations are now fashionably
hypothesized to be the result of deterministic forces producing rrchaoticil behavior.

Admittediy, stochastic models are sometimes proposed for describing insect population
abundances. The mathematical ecology literature contains numerous explanatory discussions oI
various stochastic processes presented as possible candidates for population models (May 1974a,
Goel & fuchter-Dyn 1974, Pielou 197?, tucciardi tg77, Nisbet & Gurney 19g2). Almost never,
however, are such modeis actually used to analyze real data sets, with the exception of
non-bioiogical time series models. Stochastic models exist mostiy as concepts in ecology rather
than as serious testable hypotheses about the forces affecting population growth. One reason for
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tljs state of affairs is that it has not been clear to ecologists just how to apply such models. It has

not been clear to statisticians, for that matter; methods for estimating parameters and testing

hypotheses in stochastic processes are only recently receiving comprehensive treatment in the

statistics literature (for instance, Basawa & Prakasa Rao 1980).

It is the intent of this paper to provide an exposition for quantitative ecoiogists on the use- of

stocirastic differential equations (SDE's) as population models. SDE's, known also as dilfusion

processes, offer great potential in population analysis, since they have many desirable statistical

properties and are easy to understand, to apply, and to test. I concentrate on one-species models

and show explicit ways of estimating parameters in these models from data. As examples, I

develop SDE versions of the exponential growth model and the logistic growth model'

The first section of this paper reviews the main statistical properties of SDE's needed for

parameter estimation. I present without proof the relevant results for subsequent use in

estimation. The next seciion discusses parameter estimation for time series data using the full

time-dependent statistical properties of SDE's. Maximum iikelihood (ML) estimates and

conditional Ieast squares (CLS) estimates are developed. In the third section, I present

SDE-based analysis methods for populations {Iuctuating around a stable equilibrium. Instead of

iocusing on a deterministic fixed point equilibrium, the section advocates estimating parameters

for a stationary probability distribution for population size. The last section discusses some

related topics and points out problems for further research. The topics include: maximurn

quasi-likelihood estimation, jackknifing, sampling variability, systems with multiple stable and

unstable equilibria, and deterministic "chaos" models.

Statistical ProPertie of SDE's

Deterministic models of single species populations are often in the form of an ordinary

differential equation (ODE):

dN(t) = N(t)s(N(t))dt (1)

Here N(t) represents a measure of population abundance (density, biomass, numbers, etc.), and

g(N(t)) represents the per-unit-abundance growth rate. Two examples ftequently seen are: (a)

the exponential growth model defined by g(N(t)) = r (constant), and (b) the logistic growth

model defined Uy g(N(t)) : r - (r/k)N(t). The logistic may be regarded as an approximation to a

more detailed growth model near a stabie equiiibrium population abundance (Dennis & Patil i984'

Dennis & Costantino 1988).

Many stochastic versions of (1) can be constructed, but a type of stochastic differential

equation (SDE) has potential for describing many features of population fluctuations in a

relatively simple fashion. The stochastic version of (l) discussed in this paper is the foilowing

SDE:

Here dW(t)
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is the following

dN(t)= N(t)[8(N(t))dt + ah(N(t))dw(r)]. (2)

Eere dW(t) has a normal distribution with a mean of zero and a variance of dt, h(N(t)) is a
positiYe-valued function, and o is a positive constant. The formulation describes the addition of
random perturbations to the per-unit-abundance growth rate, with the function'h(N(t))
describing any dependence on N(t) of the magnitude of the fluctuations. A useful form for
ecologicai applications is h(N(i)) : 1, corresponding to "multiplicative noise", that is, the scale of
fluctuations in the overall growth iate N(t)g(N(t)) is proportional to N(t). Population trajectories
under this model may be simulated by generating a normal (independent) random variable dW(t)
during a small time increment dt, calculating the differential dN(t) using (2), and then computing
the new population size as N(t + dt) : N(r) + dN(t), etc.

Mathematically, the diflerential dN(t) is rigorously defined by either an Iio or a

Stratonovich stochastic integrai (see Soong 1973, Kariin & Taylor 1981, or Eorsthemke & Lefever
i984). The above simulation method corresponds to the Ito interpretation, which will be assumed
in this paper. The differences between Ito and Stratonovich calculi have generated a lot of
colorfui copy in the mathematical ecology literature (for instance, Turelli lg77, Feldman &
Roughgarden 1975). The differences t'rom the standpoint of modeling are to some extent semantic
(Braumann 1983a, Dennis & Patil 1984) and are not of concern to this paper.

The two examples of SDE's considered here arise from the exponential growth and the
logistic growth deterministic models. The exponentiai growth sDE is defined by

dN(t)= N(t)rdt + aN(t)dW(t),

and the SDE version of logistic growth becomes

dN(t) : N(t)[r - (r/k)N(t)]dt + aN(t)dw(t).

Both models use h(N(t)) = 1.

A siochastic process N(t) defined by an SDE in the form (2) is known as a diffusion process.

Such diffusion processes have the Markov property and are continuous functions of time (see

Karlin & Taylor 1981). Two functions are particularly important for obtaining statisticai
properties of diffusion processes. They are the infinitesimal mean, denoted m(n), and the
intrnitesimal variance, v(n), given by

m(n) = |ilottf arlulN(t+at) - N(t)lN(t) = nl = ns(n); (5)

v(n) = ]i5ttlo,lr[{N(t+at)- N(t;121N(t) = n] = oznz[h(n)]2. (6)

The infinitesimal mean and variance for the exponential SDE (3) are m(n) : rn and v(n) = 61212,

while those for the logistic SDE (4) become m(n) = n[r - (r/k)n] and v(n) = 621-2.

rc\

(4)
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Several properties of SDE's or diffusion processes make them vaiuable for modeling

applications. First, the Markov property allows the formulation of explicit likelihood functions for

fitting the modeis to data. Second, many statistical properties such as transition distributions and

moments, or approximations thereof, are straightforwardiy derived; these properties are useful for

fitting the models to data or for studying the dynamic behavior of the models. Third, many other

types of stochastic processes, such as birth-death processes, stochastic di{ference equations, or

branching processes, can be approximated by SDE's through scaiing techniques (see Karlin &
Tayior 1981, p. 168). Finally, if N(t) is a diffusion process, then a transformation X(t) = (N(t))
is also a diffusion process, provided f(N(t)) is a continuous, strictly increasing (or decreasing)

function. The infintesimal mean and variance of X(t) are given by

m*(*) = v,q(n)f'(n)/2 + m*(nX'(n),

u*(") : u*(r,)[f'(.)1',

where n = f-t(x) (Karlin & Taylor i981, p. 173). This property often permits the transformation

of a novel dilfusion process inio a known process with well-+tudied statistical properties.

Ali the essential properties of a diffusion process N(t) governed by an SDE (2) are embodied

in the transition probabiliiy density function (pdf) of the process. The transition pdf, denoted

p(n,tlne), is a pdf with time t and initial population abundance N(0) = n0 appearing as

par:meters. The area under the transition pdf between a and b gives the probability that the

population is in the interval (a,b] at time t, given that N(0) = n0'

Pr[a<N(t)!b] (e)

known as theThe transition pdf is a solution to a partial dillerential equation

Fokker-Planck or forward eouation.

0p I & = Q I z) 7'fvfl I an' - Q^pjl 0o, ( r0)

(7)

(8)

b
I: lp(n,tln6)dn

J

where p - p(n,tloo), t : v(n), and m =
p(n,0lns) = 4n - ns) (i.e. Pr[N(0) = no]

everywhere except for a rrspike'r of infinite

When appropriate, the solution p(n,t lns)

rn(n). The solution must obey the initial condition

= 1); (x) is the Dirac delta function which is zero

height at x = 0 such that tbe area under 6(x) is 1.

must aiso obey boundary conditions relating to

integrability and to reflection or absorption of the process at the edge of its range. The

Fokker-Planck equation has been solved for many specific SDE models; soluiion details and

examples are provided by Goel & Richter-Dyn (1974), Karlin & Taylor (1981), Gardiner (1985),

and Rjsken (i984).
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The transition pdf or suitable approximation is needed to fit an SDE to time series data

using ML estimation.

The transition pdf for the exponential growth SDE (3) is easily obtained using the

transformation X(t) : log N(t). The transformation formuias (7) and (8) yteld constant

ininitesimal mean and variance for the process X(t):

m*(x) =r-o2f2,

va(x) = az.

m*(*) =(t/t)-(r-oz)x,

v;(x) = azxl.

(rl)

(12)

r7) These are the infinitesimal moments of a Wiener process 1{*"ir" motion) with drift. A

well-known result gives a normai transition distribution for X(t) (e.g. Ricciardi 1977' p. 58): X(t)

. normal(xo + (r - o2l2)t, a2t), where xo = log ns. Thus, the distribution of N(t) is lognormal

with transition pdf given by

p(n,tlns) = fr(ozt2r)tll-texp{-[log n -1og no - (r - ol"l[f lQr.2t)\,

0(n(o. (13 )

This highly skewed distribution starts as a spike at ns and spreads rapidly as t increases'

The process N(t) governed by the logistic SDE (4) can be transformed into a process with a

linear infinitesimal mean through the Bernoulli transformation X(t) = 1/N(t)' The infinitesimal

ncments (7) and (8) for X(t) are

(r4)

/1<\

As Prajneshu (1980) poinied out, these infinitesimai moments correspond to a process introduced

by Wong (1964). Wong (1964) provided an expression for the transition pdf of X(t)' and

Prajneshu (1980) transformed the pdf to obtain the transition pdf of N(t).

Unfortunately, tbe resulting transiiron pdf for the logistic SDE is extremely complicated,

invoiving an integral of fuactions of complex variables. Computing it is not out of the question'

but is hardly within the scope of routing insect population analyses. Fortunately, though, one can

obtain suitable approximations for the transition pdf amenable to computing using perturbation

methods (details ate beyond the scope of this paper; perturbation methods are discussed by

Gardiner 1985). Ooe such approximaton is displayed later in this paper (equation (27)). The

transition pdf so approximated starts as a spike at n6 and resembles aa S-thaped ridge converging

r:ltimately to a stationary distribution.



If the deterministic population trajectory goverend by (t) approaches a stabie point

equilibrium, a corresponding SDE (2) may possess a limiting stationary distribution. As t
becomes large, the transition pdf p(n,tlns) may approach a pdf, denoted p(n), that does not

depend on t or no. The form of the pdf is given by

p(n) : cexp{(2 I oz) l((t/n)g(n)/[h(n)]z)dn - 2 logn - 2 logh(n)l t rol

(see Dennis & Patil 1984). The constant C is found by setting the area under the curve p(n) equal

to one (if the area is infinite, then a stationary distribution for the process does not exisi). The

exponential growth SDE (3) does not have a stationary distribution, but the logistic SDE (4) does

have a stationary distribution. It is a straightforward exercise to use (16) to obtain a stationary
gamma distribution, with pdf given by

p(n) = l0alt@)lrLb1.-fo, o ( n ( o, /r7\

for the logistic SDE. Eere o = (2rloz) - L, P = 2rl(ko2). Just as the deterrninistic logistic

aporoximates more detailed deterministic models, the gamma distribution (17) can be regarded as

an approrimate stationary distribution for more detailed SDE models (Dennis & Patil 1984).

lfoments of N(t) and other distributiona] properties of p(n,tln6) are useful for summarizing

the statistical behavior of the process through time. Moments or other expected values are also

needed for estimating parameters with the CLS method. The expected value of a function,

(N(t)), of a dillusion process given that N(0) = ne is itseif a function of ne and t:

Etf(N(t))lN(0) : ', = 
"j 

f(n)p(n,t Ins)dn = u(n6,t).

{
(18)

Setting f(n) : a gives the time{ependent mean of N(t), f(n) = az gives the second moment, etc.

Such expectations can be computed directiy from (18) using the transition pdf. Alternatively,

u(ne,t) satisfies a partial diiferentiai equation known as the backward equation:

Anl At = !(l.i l2)7'uldno2 + m(ne)du/0ne. (1e )

The function u(ns,t) is obtained by solving (19) subject tQ- the condition u(ns,0) = f(no). A

derivation of the backward equation from the definition of u(n6,t) (i8) is provided by Karlin &
Taylor (1981, p. 214).

For the exponential growth SDE, the yih moment of N(t) defined by n[(N(t))zlN(0) = ne] =
ur(no,t) is obtained straightforwardly from (18) using the lognormal iransition pdf (t3) and f(n) =

n'
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ur(no,t) = no'e*p{[r -(o'12)]^ + (ozl2)uzt].

The mean E[N(t)lN(0) = ns] of the process given by

u1(n6,t) = noeri (21)

corresponds to the solution of the deterministic model. However, the mean is not necessarily a

good characterization of ihe behavior of the plocess. In fact, if 0 < r < o2f2, it is easy io

demonstrateusingthetransitionpdf(lf) thatPr[O<N(t)!r] .1ast+oforarbitrarilysmalle

> 0 (see, for instance, Dennis & Patil 1988). In biological terms, the SDE predicts virtually

certain extinction of the popr:lation if ol is large compared with r'

For the transformed process X(t) = l/N(t), where N(t) is defined by the logistic SDE (4), a

recursion expression reiates the vth moment of x(t) to the (r+1)th moment' Derivation of this

relationship is beyond the scope of this paper bui is based on a moment result for SDE's (Goel &

Richter-Dyn 1974, p.46). Letting E[(X(t))/lX(0) = *o] = E[(N(t))-"lN(0) = n6] = u-r(no,t),

the relationshio is

u-r(no,t) -- exp{(uozl2)[, - 1 - 2(r-o2)l oz]t']{ns

In particular, the mean of X(t) is found by setting v = 1 and noting that uq(nq,t) = l;

u-,(n6,t) : (rlk)l(t-o2) + [t/no -$lk)l$-oz)]exp[{r-or)t]. (23)

An immediate consequence of (23) is that the harmonic mean of N(t) grows according to a

logistic equation. The harmonic mean of N(t) is defined as l/u-(n6,t):

1/E[l/N(t)lN(0) = nol = k(1 -(orlr))l{L +

(r/n6)[k(t - (ozlr)) - ns]exp[{r-or)t]}. (24)

In other words, the harmonic mean is a solution of a logistic ODE except wiih a loss term a2n

subtracted: dn/dt = rn - (r/k)nl - ozr'. lt is interesting that this nonlinear SDE (4) preserves a

logistic-type trajectory for one of its measures of central tendency.

The mean of N(t) defiaed by u1(ns,t) = E[N(t) iN(0) = ns] does not obey a logistic equation.

The mean of N(t) has been derived by Ilamada (1981) and is a complicated expression involving

(20 )

{22)

t

+ lr lk)lexp{luoz l2)1, - t - 2(r-oz) I ozlw}u-r* r(no,w)dwi.J
0



numerous intractable integrals. An approximation for u1(n6,t) can be obtained from the backward

equation (19) using singular perturbation methods:

u1(ne,t) I k/[1 + ((k-ne)/n6)e-n] + (ozl2)(kir)[r + ((k-n6)/ne)e-t]-3 *

{[1-(2k/no)]e-2n+(2klns)e-rt-1-2r[(k-ns)/no]te-'t1' (25)

Wiesak (1g88) has given a rigorous justification of this approximation as well as for the following

one (26). The mean of N(t) has the familiar sigmoid shape, but is iess than the solution of the

deterministic logrstic. Additionaliy, an apploximation for the second moment is

u2(n6,t) ! tk/[i + ((k-n6)/n6)e-"1rr

+ (ozl2)(klt)'21;t + ((k-ne)/ns)e-'!-*{[- (aklns) + (5/2)]e-"t

2-
+ [(akln6)-z]e-t{1/2)+r[((k-ns)/ne)e-'t-f]((k-no)/no)te-*1. (26)

Witb these two moments, one can approxrmate the transition pdf for the stochastic logistic with a

time-dependent gamma distribution having matching moments. Let o(n6,t) = uPlluz - u12],

p(ns,t) : u,/[uz - u12], where u1 &nd u2 are given by (25) and (26). Then the transition pdf Siven

by

p(n,tlne) =[p4/f(o)]na-1u-fn,0(n(o, (27)

where a = o{ne,t) and p - g(no,t), saiisfies the initial condition p(n,0lns) = d(n-no), has first

two moments identical to (25) and (26), and approaches the exact stationary gamma pdf (17) as t

becomes large.

Time-DePendsal [nelYsis

Suppose an insect population is observed at times 0, t1, t2, ..., to. the recorded observations

of population size will be denoted n(0) : n0, n(t,) = n1, ..., n(to) : nq, ond the time iniervals (not

necessarilyequal)betweenobservaiions denotedtl-0 = rt,tz-tr= 12, "', tq-tq-t = rq' A

recommended way of fitting an SDE to such observations is ML estimation.

ML estimation typically requires an approximate or exact transition pdf for t'he process N(t)

governed by the SDE (2). The SDE will generally contain one or more unknown parameters; tbe

vector of unknown parameters wili be dencted by d. The initial population size r0 can be regarded

as fixed in many population studies; the ML estimates developed here are consequently

conditioned on no. The likelihood function {d) is defined as the joint pdf for N(t1), N(t2), "',

N(to), given N(0)
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the backward N(tn), given N(0) : n0, evaluated at observations tr1, rl2, ..., Irq. Since N(t) is a Nlarkov process

with stationary transition probabilities (pdf of ni given ni-1 depends only on ri, not ti-r), the

Iikelihood function is a product of iransition pdfs:

-/-. -. | -. . r\y\rrr, / rl rrt-lru.,.

Eere p(ni,rilni-1;d) = 
p(ni,rtlni-1) is the transition pdfdefined by (9) evaluated at ni, r;, and ni-1

(likelihood of system moving to ni from ni-l in a time interval of ri); the above^notation

emphasizes the dependence on the unknown parameters in d. The ML estimates, d, of the

parameters in 0 are the parameter values jointly maximizing tQ) otlog t(0).

ML estimation for the exponential growth SDE (3) was studied by Braumann (1983b) for

thecaseof equaltimeintervalsbetweenobservations: rt:l2:... = ro. Itisstraightforwardto
generalize lds results for unequal intervals. The SDE has two unknown parameters: r and o2. It
is somewhat more convenient to reparameterize by letting p : v - qzf2 and finding estimates of p

and a2 instead. Using the transition pdf (13), the log-likelihood function becomes

qq
log t(p.,oz):,E,log p(n;,rilni-i l.r,o2) = -E,log[ni(rr2r)'l 1-(qlZ)log 6t

q

-11 t(ra2\l I (1/.,'ltlnof '2t-' \-- /r - \^r ' 171'-ptllillli'l) - pri)

It is an easy exercise to set partial derivatives oflog t(pt,oz) with respect to p and a2 equal to zero

and solve for the ML estimates:

^qq
ll = {.!rlos(nt/ot-')}/. lr"i = [los(no/n6)]/tq;

d
!

oz = (tlq) E (1/ri)flos(n lni-,) -ir;12.

The ML estimate for r becomes i -- i + @lZ)
One can obtain information on the distribuiions of p and o2 by recalling that X(t) = leg

N(t) is Brownian motion with drift. Then, Iet Yr = log[N(tt)/N(ti-r)] = X(i, - X(ti-t). The

variables Yr, Yz, ..., Yo are increments of Brownian motion with drift, and are therefore normal,

independent, and stationary (e.g. fucciardi 197?). In fact, if Y = [Yr, Yr, ..., Yq]' &nd r -- lr1, 12,

..., rq)'are defined as column vectors, the distribution of Y becomes a multivariate normal:

(28 )
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Y * normai(pL a2T). 1ao\

Eere T - diag (1) is a matrix with the elements of r on the main diagonal and zeros elsewhere.
Let G = diag (/r1, ..., y'"q), that is, T = G,G. A transformation of y produces an ordinary
normal linear model (e.g. Graybill 1976, p. 202):

Y* = G-ry - nornal(pl/rr, ..., JrJ,, o2I). l'1.r \

This is seen to be a modei for a simple linear regression without intercept. In practice, one
transforms the data by yi = log (n;/ni-1), i = 1, ..., q. The regression approach uses y1//r1,
lzf ,/r2, ...,ycl,/rcas values of the "dependent variabie",,,/rt, ..., y'ro as varues of the'rindependent
variabie", and a linear regression without iniercept is performed. The formula (30) for i is
recognized as the slope parameter estimate, *6 oz (f 1) is the (biased) ML estimate of the error
variaace parameter.- The^unbiased estimate is qal/(q-l). The usual linear model theory yields
the distributions of pand o2: p- normal(p, o2/to), and qozf oz * chisquare(q_1).

Though the approximate transition pdf.(27) for the logistic SDE is tractable, ciosed formulas
for the ML estimates of r, k, and a2 cannot be obtained. Instead, the likelihood function (2g)
must be maxircized nunerically using one of various iterative algorii,hms (see press et al. 1gg6)
and a computer. Matrix programming ianguages such as GAUSS, SAS/IML, or ApL make the
calculation of ML estimates a fairly straightforward task.

When ML estimation is impractical, an alternative estimation method is cond.itional least
squares- CLS estimates of parameters for an SDE model do not have ali the statistical qualities of
ML estimates. CLS estimates, Iike ML estimates, are consistent (i.e. d tends to be ,'closer,, to d as
the sampie size becomes large), asymptoticaliy unbiased, and have asymptotrc normal
distributions (Klinl<o & Nelson 1978). However, CLS estimates tend to be less efficient (i.e. they
have larger variances) than ML estimates. In addition, practical experience suggests that a bias is
often present in CLS estimates for smaller sampies. On the other hand, there are some
Gauss-Markov style optimality results for certain CLS estimates arising from the theory of
estimating equations (Godambe 1985).

The main practical advantage of CLS estimates is ease of calculation. They can often be
computed for SDE models using linear or nonlinear regression packages. They make convenient
"starterrr values for iterative ML caicuiations.

CLS estimates are based on timedependent moments or other expected values. Suppose
one can write the time-dependent expected vaiue of a function, X(t) = (N(t)), of a diffusion
process N(t):

Elx(t) lx(0) - *ol = E[(N(t))lN(0) = n,]

= u(n6,t) 
= u(n6,t;d). (34)
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One could obtain the form of u by solving the backward equation (19). Due to the Markov

property, u(ni-1,ri;d) is then the expected value of (N(tr)) given N(t1-1) = ri-r. CLS estimates

arise from a sum of squared differences between observed vaiues, f(ni), and their conditional

expected values, u(ni-1,ri; d):

s(d): [f(nr) - u(ni-q,ri; d)]2

v
!

CLS esiimates are the vaiues of parameters itr , that Fintly
di{ferent CLS estimates may be available for a given SDE,

. (35)

minimize s(d). Note that many

based on dilferent forms for the

(.rtJ

function f(N(t)).
CLS estimates for two of the parameters in the logistic SDE (4) can be constructed from the

meanofX(t)=1/N(t)givenby(23). Letpl-(rlk)l$-ot),gz=r-ax,andf(n)=17o,sothat

u(n;1,ri;71,p) = E[l/N(ti) | N(ti-1) = ji-t1

= gr(L - e-1t"t) + (i/ni-,;e-0rri. (36)

One could perforn a nonlinear regression to find the CLS estimates, i.e. the values of p1 an'd' p2

minimizinq

tlll
I
I

!

I

i

l'
I

l

t
t

I

q

s(0#z) = x [(1/ni) - u(ti-1,r1;p1'p2)]2
i-1

The values l/ni, i = 1,..., q, would be entered as the t'dependent variable" in a computer

package, with the modei to be fit given by (36).

It is interesting to note that minimizing (37) reduces to a simpie linear regression of 1/ni on

1/ni-1 when the time intervais between ObservatiOns are equal. When rro= T2 = ... = 7q = r, then

(36) can be written as d1 + 02(llq-1), where dr = 0r(l-"-F"),02= e)-P2r.

As an alternative, one could estimate all three pararneters r, k, and a2 with the CLS method

through use of the approximate first moment of N(t) given by (Zf) using the untransformed data,

ni, i : 1, ..., g s the dependent variable, and ur(ri-l'Ti) (from (25)) as the model to be fit.

Equilibrium Analysis

The data considered in this section consist of observed sizes of an insect population, or

ensemble of popqlations, fluctuating around an equilibrium. The main idea is to estimate

paremeters and test the fit of a stationary distribution for population size, instead of

concetrtrati1g on estimating a fixed point equilibrium. The data are a time series (or group of

l.:

ii,

(34)



time series) of the form ol : n(tl), n2 = n(t2), "' ' flq = n(tq)' The methods described here are

better when the intervals between observations are large, but the intervals can be small if there

are many observations over a iong period of time'

The statistical methods are based on the fact that the transition pdf, p(n,tlns;d) approaches

a statioDary pdf, p(n;d) as t becomes large, for some SDE models (16). Thus, as the intervals {ri}
between observations increase, the iime-dependent likelihood function (28) would approach a

Droduct of stationarY Pdfs:

q

t(0\ = l1 p(ni;d). ( 38)

onecomputesMLestimatesoftheparametersindbymaximizingt(0)otlogl(d).
If a chisquare goodness of fit test is desired, or if the time intervais between observations are

small, use of a multinomial likelihood is recommended instead of (38)' The investigator partitions

the positive real line into m aburdance ciasses: (0, s1], (s1, sz], ..., (s'-t, t), where 0 < sr ( "' (

s6-1 ( o. Grouped data denoted by yr, yl, "': Ym &r€ formed; y1 is the number of observations that

are less than or equal to s1, y2 is the number of observations that ale Sreater than s1 but less than

or equal to s2, etc. Define 11(d) as the area under the stationaly pdf between s.i-r and s;, j = 1, "',

m (where so = 0 and so = *o):

-.t A\ - p(n; d)dn. / 10)

Since a dillusion process with a stationary pdf is ergodic, ri(d) represents the iong-run proportion

of time the process spends in the interval (s1 -r, si]. The multinomial likelhood function is

sj
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my.
40)=C II [r1(d)]-t'

i- l

(40)

where C = ql/lyr I y, ! ... y' l]. The ML estimates are obiained by computing the values of the

paramtels in d which maximize l(d) or log (d). Goodness of fit testing can be accomplished with

the Pearson statistic, X2 or the likelihood ratio statistic, G2:

X2=

m
^2 - 

$

ly: - q".i(i)l'l[q":( d)],

{viliqni(7}li

m
F (41)
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A term in G2 is understood to be zero if the corresponding count yj is zero. The statistics X2 and
G2 have identical large-sampie chisquare distributions with degrees of fteedom given by . _ (#parameters estimated in d) - 1. The chisquare approximation is adequate when qr.;(d) ) 5 for atleast 80% of the abundance classes (and this should be kept in mind when constructing theclasses)' If the time iniervals between observations are small, then properties of the G2 statistic
are unknown at this time' rlowever, under such circumstances X2 is known to reject the nullhypothesis (that the moder fits) somewhat too often (Greser & Moore r98s;.

The multinomial likelihood (+0) is easily maximized using nonlinear regression packages.
The procedure is to use the yi values as observations on the ,,dependent variable,,. corresponding
to each yj value, qri(d) is computed. with programming statements as the model to be fit. AIso,
weights of tlfqr;(o)l are computed (and recomputed every iteration) for each yj vajue. T'is setup
"tricks" the nonlinear least squares (Gauss-Newton) aigorithm into maximizing the multinomial
likeiihood (a0) (see Jennrich & Moore 1925).

Further details and many numericai examples of stationary distribution analysis have beenpresented recently by Dennis & Costantino (1ggg).

Discussion

This section discusses various topics reiated to sDE analysis and points out problems forfurther research' The topics inciude other approaches to statistical inference for SDE,s,incorporating sampling variability, models with multiple stable/unstable equiiibria, and
dis ti n gui shi ng s tochasticity from deterministi c chaos.

Additional Approaches to Inference.

one alternate approach to parameter estimation for sDE,s is through the concept ofquasi--iikeiihood' Quasi-likelihood is finding many uses in statistical theory, particulariy in theliterature of generalized linear moders (Mccuriagh & Nelder r9g3). suppose x is a vector of
observations arising from some stochastic modei with a mean vector given by E[x] = p and a
variance-covariance natrix of qY(p), where 4 is a positive constant. The quasi-likeijhood
function F(p) is defined by a set of partial derivatives:

ar fu,) I Ap, = y-r(p)(x _ 
1r). (43)

li
t'l
L
:

I:
ril

rf p' = l0), i'e' p depends further on a vector d of underlying parameters, then the maximum
quasi{ikelihood (MQL) estimate of d is the solution to 0t(10))100 = O. By lerting D(r) :
a{g)l a0 be a matrix of partial derivatives, applying the vector derivative chain rule, and using
(43), we have
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orqa;v-'1p,1 o))[x - (d)] = e (44)

as the system of equations for the MQL estimates of the parameters in d.

For an SDE model, one can think of a quasi-likeiihood as approximating a product of
iransition pdfs (28). The elements of the vector x in (a ) are taketr as the observations f(n1),

f(or), ..., f(nf of a diffusion process X(t) = f(N(t)), the corresponding elements in L4..0) are found

ftorn E[f(N(tt))lN(ti-r) - oi-t] =^ u1(ni-1,ri;d) (34), and V becomes a diagonal matrix of
conditional variances: n[{f(N(tr))}'lN(ti-r) = ni-1] - [u1(ni- t,r;t0)] = uz(ni-r,ri; d) - [u1(ni-1,r1;
d)]2, say. Also, D becomes a matrix (q rows) of partial derivatives of u1(n;-1,ri;d), i = l, ... q,

with respect to each parameter in d. Thus, the estimating equations (a ) for d resembie those

resulting ftom finding CLS estimates by minimizing (35), except that tbe terms in (44) are

weighted by (the reciprocals of) the conditional variances.

The calcuiations to solve (44) can be accomplished with iterative reweighted least squares.

From a curretrt set of parameter values, dl, the algorithm computes improved values, d2, according

to

0z = 0t+ (lTv-rn;-tDTV-t(* - /r), // <\

where D, V, and p are evaluated at 0y In nonlinear regression packages, this amounts to using

f(ttt), ..., f(no) as observations on the dependent variable, u1(ne,r1;d), ..., u1(nq-r,rqid) as the model

to be fit, with weights of 1/w1, ..., 1/*q computed at each iteration, where wi = uz(nt-r,rt; d) -
? / ^rt2lul(ni-l,fi;uJl .

MQL appears to be a promising inference approach for stochastic population models. Much

research remains to be done concerning the statistical properties of MQL estimates appiied to SDE

modeis; I would recommend that Monte Carlo studies be undertaken to examjne MQL estimates

in comparison to ML and CLS estimates, for specific models such as the stochastic logistic.

Another approach to statistical inference for SDEs invoives jackknifing. Recent research by

Lele (tSeS) indicates that jackknifing may be a highly useful way of handling a long-standing
probiem in stochastic processes: how to estimate the variance of parameter estimates. Lele has

shown that jackknifing the linear estimating equations leads to a consistent estimate of the

variance-covariance matrix for the parameter estimates. His results applied to SDE models are

sketched here briefly. ML, CLS, and MQL estimates of parameters in SDE models are found by

solving equations of the form

l"i/-. -. -.. d\ 
- 

nIl\Irr)rll-l' | |1v) _ w (46)

For example, in ML estimation h is a vector of partial derivatives of the log-transition pdf, iog

p(ni,rilni-rid), with respect to parameters in d. Let-d denote the estimate resulting from (46).

One finds as many as q additional estimates, denoted dj, j = 1, 2, ...,9., by solving

q
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q

Hj(r) = X h(ni,ni-1,ri;d) = 0
i+j

where E1(d) represents E(d) except with h(n1,ni-r,rj;d) deleted from the sum.

estimate of d is

(JK)d = d - [(q-t)/q]x(0: - 0).
j

We may exp€ct an improvement in any finite sample bias of d by using (JK)d.
estimaie of X(d), the variance-covariance matrix of d (or (JK)d), is

(JK);(r) = t(q-r)/qll(ri - i)',
J

(47)

The jackknife

(48 )

The jackknife

(4e)

where T3 = 
^0: 

- p 
"na 

i = (X1T1)/C. Large sample theory provides that O (or (lX)O; has an

asymptotic multivariate normai distribution with mean vector d and variance-covariance matrix
x(r).

In practice, (48) and (a9) will be computer-intensive, since they require solving not just one

system of nonlinear equations, but up to q * 1 of them! However, the benefits would appear to be

well worth the trouble. Lele's results apply to linear estimating equations in general, opening up

many valuabie applications in spatial analysis, stochastic processes, and statisticai distribution
modeling.

Sampliag Variability.

A problem that has been glossed over in the previous discussions is the question of sampiing

variabiiity. The abundances of field popuiations must typically be estimated with samples. The

variability ftom sampiing produces variability in the parameter estimates beyond that inherent in
thE SDE.

One model for incorporating sampling variability is a compound Poisson model. Suppose

Y(t) represents the number of insects appearing in a sample at iime t. The compound Poisson

model wou:d assume a Poisson distribution for Y(t) with a mean of )N(t), where N(t) is itself a

stochastic process defined, for example, by an SDE (2), and the proportionality constant ,\ reflects

sampiing eflbrt. The sampled abundances y(tr), y(t2), ..., y(tq) rrould constitute a reaiization of
Y(t) and not N(t).

In principle, one can easily write down a,probabilistic model (i.e. a joint pdf, and hence a

likelihood function) for the sampled abundances. In practice, the expression involves numerous

repeated integrals and is not likely'to be very useful. Instead, there are ways of dealing with
sampling variability in applications. The first is to ignore it. One fits the SDE model directly to

;li!iili
lilii



the observations using the methods described earlier. This is a reasonable approach if large

samples (e.g. many hundreds) of insects appear in each sampie, since the variability from sampling

would then be small. For instance, under Poisson sampiing, if 400 or more insects appear in a

sample, the estimated coefficient of variation ftom sampiing is under 5%. The second is to

broaden the conceptual interpretation of the SDE to include sampling. One regards the sample

observations (say, numbers of insects caught in pheromone traps at times t1, t2, ...) as being

generated by a stochastic difference equation having variance components due to population

fluctuations and sampling; one then uses an SDE merely as an approximation to that process.

The procedure involves fitting the SDE directly to the sample observations; the resulting Iarger

value of the parameter o2 conceptually reflects variabiiity due to sampling as well as stochastic

popuiation fluctuations. Garcia (1983) incorporated sampling variability into an SDE model of

forest growth by transforming the model to a Gaussian (Ornstein-Uhlenbeck) process and

incorporating normally distributed sampling error. Eoweve!, one of the variance parameters was

neariy non-identifiable (i.e. data provided little information for its estimation) in his applications.

This problem of how to account for sampling variability is not peculiar to SDE modeis; it

must be confronted with virtually all dynamic models of population abundances. SDE's are

proposed here mainly for situations in which actual population fluctuations are the prime source of

variabiiity in the observed data. It is my contention that such situations are more numerous in

ecological studies than has been previously acknowledged.

Multimodal Model6.

Several forest insect systems, including gypsy moth and spruce budworm, have been

hypothesized to have two or more stable equiiibria (Takahashi 1964, Campbeil & Sloan 1978'

Ludwig et ai. 1978, Berryman 1978). The insects are thought to be held in check at a

low-abundance endemic equilibrium by a complex of many preCator species. If for some reason

the insects increase in abundance beyond a threshold value, however, reproduction gains outpace

predation losses. The insects then continue increasing until reaching an upper, epidemic

equilibrium where population size is regulated by sheer lack of resources (due to defoliation).

Deterministic models in the form of (1) have been proposed to describe such systems (see review

by May 1977).

Stochastic forces are likeiy to play an important role in such systems. Stochastic popuJation

fluctuations cculd provide the initial population increases necessary to move away from a lower

stable equilibrium into a basin of attraction to an upper stable equilibrium. Such population

outbreaks would occur seemingly at random.

SDE models in the form of (2) can be constructed from deterministic models wiih multiple

stable and unstable equiiibria (see Dennis & Patil 1984). One of the more interesting predictions

from these SDE models involves the stationary pdf (t6) for population abundance' For moderate

noise levels, the stationary pdf from such a model may display muitiple modes and antimodes

corresponding to (though not equal to) the underlying stable and unstable equilibria. For higher
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Ever since the papers by May (19?4b, 1g76) and May & oster (1976) appeared, it has been
well-knowu among mathemat'ical ecologists that simple difference equation models of population
growth can display complicated behavior seemingly indistinguishabte from a random process.
(The same is true for nonlinear differential equation systems of three or more species, as discussed
for example, by Schaffer & Kot (1986); the discussion here is restricted to one-species systems.)
Indeed, mathematical ecologists had long been steeped in a deterministic traditon, yet had been
increasingly confronted with fluctuating population data; the ,,chaos,, hypothesis of population
regulation is now regarded as an important contending expianation of unpredictabie data.

Chaos can in fact be ciassified as a type of stochastic behavior. Current thinking by
Diaconis and others on the meaning of "randomness" (see Research News, science vol. 231, 7
March 1986, p' 1068) views as random a system with output beharior extremely sensitive toiniiiai conditions' That perenniai random system, a coin toss, is in principie a deterministic
system' Eowever, a tiny change in, say, the initial angular and/or upward velocity of the coin can
cause a drastic change in the system output (heads or tails); thus the system may be regarded asrandom' Anoi'her such system is a string of pseudo-random numbers generated on a computer.
change the seed number siighily and a wholly different sequence emerges. similar things happen
in a chaotic deterministic modei. Model trajectories differing only slightly in initiai conditioas
diverge from each other exponentially (see rev,ew by Grebogi et ai. lggz). It is reasonable, then,
to contemplate the use of stochastic-based analysis methods on possibly chaotic time series data
to see what statistical properties are present.

The statistical properties of SDE models such as the stochastic logistic (a) differ
substantially from those of deterministic chaos modeis (such as the models catalogued by May &
oster 1976)' For instance, the concept of a stationary d.istribution can be applied to the chaotic
behavior of a difference equation modei. The typicai difference equations used as population
modeis possess so-called invariant measures; that is, the long-run abundance frequencies of a
chaotic population approach a limiting sta.iionary distribution (see Lasota & Mackey iggs). For
instarce, the simpie difference equation given by nt*r = 4nt(1 - ns) has a 'rstationary distribution,,

of p(n) = r-1[a(1 -o)i-t", 0 < n < 1. stat,ionary distributions for other chaos models can seidom
be obtained analytically, but it is straightforward to iterate any given model until limiting relative
frequencies are obtained. Such exercises carried out to date in my knowiedge typically produce
U-+haped, multimodal, or irregular stationary distributions for population abundance. By
constrast' the iogistic SDE produces a unimodal mound-shaped or J-+haped distribution.

If data on population abundance existed for systems suspected
multimodal stationary pdfs such as those iisted by Dennis & patil (19g4)
methods discussed in this paper.

Chaos.

ibria. For higher
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Also, a common feature of chaotic behavior is the presence of quasiperiodicity. A chaotic

system may have time intervals of seemingly periodic behavior followed by irregularity, or

periodicity in which the amplitudes and frequencies undergo gradual precession. "Windows" of

actuai p€riodic behavior seem to be abundant in parameter sets corresponding to chaotic regimes

(see Grebogi et al. 1987). One-species SDE models, by contrast, do not produce periodic behavior

unless periodic forcing terms are included in the models. Time series methods such as spectrai

anaiysis can help determine if periodic components are present in the data.
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