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SUMMARY. Stochastic birth-death processes as models of sexually 
reproducing populations are discussed, with emphasis on the 
role of familiar univariate statistical distributions. Models 
of mating frequency in endangered species and insect pest popu
lations are proposed. The effects on reproduction of a paucity 
of matings are analyzed with respect to waiting times and extinc
tion probabilities in stochastic population growth models and 
compared to deterministic cases. The probabilities of extinction 
in the stochastic models are the tails of familiar discrete prob
ability distributions, with the lower critical population den
sity corresponding to the mode of the distribution. Mating limi
tation of population growth produces extinction probabilities 
identical to those produced by constant-rate population harvesting 
Distributional properties of extinction probabilities in birth-
death processes are discussed with reference to weighted distri
butions, power series distributions, and generating functions. 
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1. INTRODUCTION 

The evolutionary advantages of sexual reproduction are the 
subject of much debate among biologists (e.g., Williams, 1975). 
A quite obvious disadvantage of sexuality, however, has been 
somewhat neglected: namely, "it takes two to tango." An obligate 
sexual organism must encounter a fertile member of the opposite 
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to reproduce (In the case of many hermaphroditic organisms such 
V as snails, any fellow species member will suffice). A species' sur-
I vival at very low densities may be tenuous due to the uncertainty of 
' mates finding each other (Allee, 1938; Andrewartha and Birch, 1954). 

Entomologists routinely exploit this "copulatory imperative" 
I for controlling various insect pest populations at high as well 
- as low densities. Mating in such populations can often be dis

rupted by releasing large numbers of sterilized males 
(Braumhover et al., 1955; Steiner et at., 1970), or inundating 
an infested area with the pest species' chemical sex attractant 
(pheremone) (Sower and Whitmer, 1977; Richerson, Brown, and 
Cameron, 1976). 

Mathematical models of mating and growth in rare populations 
• are themselves rare (Volterra, 1938; Philip, 1957; Mosimann, 
i 1958). Few models of the sterile male technique have been pro-
f-' posed as well (Knipling, 1955; Costello and Taylor, 1975; 
I Prout, 1978). The mathematical perspective in these models tends 
} to be deterministic (but see Costello and Taylor, 1975). Sexual 
ii reproduction, however, would seem a natural topic for a stochas-
, tic approach. 

I This paper discusses stochastic birth-death processes as 
• models of sexually reproducing populations, with emphasis on the 
I role of familiar univariate statistical distributions. Section 2 
f presents birth process models of mating frequency in endangered 
\s or pest populations yielding several traditional prob-
i Sbility distributions. In section 3, deterministic population 
gfowth models are compared to their stochastic birth-death 

; processes counterparts. Here, the effects of a paucity of mating 
;': encounters on reproduction are analyzed with respect to waiting 
! times and extinction probabilities. The tails of familiar dis

crete probability distributions emerge in a novel context as 
' extinction probabilities. The "critical density" (the lower 

point where births in the population cease compensating for 
deaths) acquires an interesting meaning in the stochastic models. 
Mating limitation of population growth is seen to have effects 
similar to harvesting the population. Finally, section 4 cata
logues various additional properties of extinction probabilities 
in birth-death processes. 

2. MATING FREQUENCY DISTRIBUTIONS 

Stochastic fluctuations in the number of mating encounters 
may affect reproduction in sparse populations. The frequency of 
matings for a given individual female during a breeding season 
can be described by a discrete probability distribution as 
follows. Let X(a) = number of matings that a female has had 
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after searching an effective area a. The quantity a is taken 
as a measure of time if females remain stationary, waiting for 
males to arrive. Assuming that the ratio of males to females in 
the population remains constant, X(a) can be regarded as a 
stochastic, homogeneous pure birth process with a rate, 6(x), 
roughly proportional to the population density, n. For small 
n it is reasonable to assume that 6(x) is a linear function 
of x: 

6(x) = (b -I- cx)n. (1) 

This birth rate accommodates a variety of biological situa
tions. Given that a female has encountered males, she is: a) 
more likely to mate an additional time during a small interval 
Aa if c > 0 (aggregation); b) equally likely when c = 0 
(random); or c) less likely if c < 0 (regularity or sat
iation). From the general solution for Pr[X(a) - x] = Pj^(a) in 

pure birth processes (Bartlett, 1978, p. 58), cases a, b, and c 
yield the negative binomial, Poisson, and binomial distributions, 
respectively (e.g. Patil and Stiteler, 1974; Boswell, Ord, and 
Patil,1979): 

. , .b/c-Ex-l,, -acn,b/c,, -acn.x „ •• / r.\ 
Pjj(a) = ( ' ^ )(e ) ' (1-e ) , x = 0,1,2,--- (c > 0) 

(2) 

p^(a) = e"^''"(abn)''/xl, x = 0,1,2,-•• (c = 0) (3) 

, x .-b/cx/, acnxX.. acnx(-b/c)-x . i \ r̂>s 
p (a) = ( )(l-e ) (e ) ' , x = o,1,•••,-b/c) (c<0). 

X X 

(4) 

For many species, a female must encounter only one male 
during a breeding season to realize full reproductive potential. 
Under these circumstances, the quantity of interest is the pro
bability of finding one or more mates: 

Pr[X(a) 5 1] = 1 - e~^". (5) 

Here 3 = ab is a measure of the inherent mate-finding abilities 

of the species members. This mating probability was first pro

posed by Philip (1957), who derived it using Poisson process 

assumptions (case b). Mosimann (1958) provides some interesting 

estimates of 3 for box turtle populations. The expected number 

of females that mate, and presumably reproduce, is assumed pro

portional to n(l-e ^"). 

For other species, a female's reproductive rate increases 
with actual mating frequency. The expected mating frequencies 
for (2), (3), and (4) above are, respectively. 
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E[X(a)] = (b/cXe'*'- -1), (6) 

E[X(a)] = abn, (7) 

E[X(a)] = (-b/c)(l-e^''") (8) 

The assumption that n is small is seen to be important in (6) 
and (7), for mating frequency could hardly increase indefinitely 
with increasing n due to biological constraints. In (8) an 
upper limit to mating frequency (satiation or saturation) is 
built in. 

If the per individual reproductive rate is proportional to 
expected mating frequency, then (7) is essentially the mating 
model proposed by Volterra (1938). Volterra presumed that 
mating encounters between the sexes were analogous to bimolecular 
collisions of gas molecules. Note also that the functional 

; dependence of (8) and (5) on n are similar. Thus, Philip's nega
tive exponential mating function (5) could represent a mating 
frequency as well as a mating probability. 

It is reasonable to assume that a population is not homo-
'( geneous with regard to the value of $. For instance, 8 might 

vary from individual to individual or from day to day due to 
-•• difference in distances traversed, home ranges, weather factors 
. affecting pheremone diffusion, or other random environmental 
I factors. Heterogeneity in 6 can be represented by a continu-
j ous probability density, f(8). The unconditional probability 
1 of mating is then, from (5), 

S Pr[X(a) > 1 (unconditional)] = 1 - / e"^"f(6)de 
' 0 

= 1 - g(n). (9) 

The function g(n) is the Laplace transform of f(6), and 
occurs as a simple example of "marking" a renewal stream with a 
Poisson process (Rade, 1972). 

The exponential density, 1(8) = Se"®^, is a likely candi
date for the form of f(8), as it describes a wide variety of 
stochastic phenomena without entailing a net increase in the 
number of model parameters. The probability of mating, from (9), 
is a rectangular hyperbola in n: 

Pr[X(a) > 1] = n/(e + n). (10) 

The parameter 9 is the population density at which the prob
ability of mating is 1/2. 
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We might surmise that releasing a pheremone into a pest 
population has the effect of increasing 9. The insects' chemi
cal communication system becomes disrupted with high concentra
tions of pheremone in the air, making it difficult for mates to 
locate each other. Specific quantitative relationships between 
9 and pheremone concentrations have not been studied, however. 

We note that any other probability density specified as the 
form for f(8) in (9) yields a mating probability curve shaped 
similar to (10) as a function of n. In particular, (9) 
will not be sigmoid unless f(8) depends on n. This stems from 
the complete monotone property of Laplace transforms (Feller, 
1966, p. 415). 

The hyperbolic mating function (10) curiously arises in an 
entirely different context as a model of the sterile male method 
of pest control. In this method, large numbers of males are 
reared and sterilized with radiation or chemicals. They are 
then released and maintained at a density of E, in the pest 
population. If the density of wild males is Vn, the probability 
that a female mates with a fertile (wild) male is n/[(E,/v) + n]. 
The argument assumes the sterile males are as vigorous in mating 
as fertile males, the sex ratio remains constant, and the organ
isms have no trouble finding each other to mate. This sterile 
male model originated with Knipling (1955), though Kostitzin 
(1940) proposed a vaguely similar chance mechanism for using the 
hyperbola as a fertilization probability. 

3. POPULATION GROWTH MODELS 

3,1 Stoohaetia vs. Deterministia. Single species growth models 
in the ecological literature are customarily deterministic and 
continuous. The growth rate of a population is given by 

dn/dt = X(n) - M(n), (11) 

where n = population density (a continuous function of time), 
and A(n) and )J(n) are the instantaneous natality and mor
tality rates, respectively, in the population. 

A stochastic approach, however, seems more appropriate for 
sparse populations, affording a variety of possible outcomes 
from a given Initial population density. A stochastic model 
"corresponding" to the deterministic model (11) might be defined 
as the Markov birth-death process with birth rate A(n) and 
death rate u(n). There are usually numerous stochastic 
"versions" of any deterministic model; a birth-death process has 
the advantage of treating n as a discrete variable. The fact 
that organisms come in Integer packages is critical for 
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endangered species. Furthermore, the probability of ultimate 
extinction, a quantity of obvious interest, is easily computed 
for a birth-death process. 

Three forms for X(n) are considered: 

A(n) = An; A(n) = Aen^; A(n) = An^/O + n). (12)-(14) 

The first is a simple linear birth rate for a population not 
experiencing a mating shortage. The second, the bimolecular 
collisions model suggested by Volterra (1938), is the simple 
linear rate multiplied by a factor proportional to the expected 
per capita mating frequency (7). The third is the simple linear 
rate multiplied by the expected proportion of organisms that find 
mates under the hyperbolic mating function (10). A fourth birth 
rate based on the negative exponential function (5), 

A(n) = And - e ^"), behaves quite similarly to (14) in dyna
mical growth models, but tends to be less tractable. 

3.2 Pure Birth Models and Waiting Times. Pure birth models set 
U(n) = 0 for all n. This assumption is reasonable when losses 
from the population are insignificant. Though decline or extinc-

itlbti is not possible, the effect of a mating shortage is to 
increase greatly the waiting time necessary for the population to 
'reach a certain size. This is seen by examining such waiting 
times in both the deterministic and stochastic birth models. 

The deterministic waiting time, t, required for a popula
tion of initial size m to reach a given size n is found 
explicitly by integrating (11): 

t = [1/A(u)]du. (15) 

For the three birth rates (12)-(14), we have, respectively, 

t = (1/A)[log n - log m] , (16) 

t = [l/(Ae)][(l/m) - (1/n)], (17) 

t = (1/A)[log n - log m] + (e/A)[(l/m) - (1/n)]. (18) 

Rearranged, (16) give-; the more familiar form n = mê*̂. In 
(17), t •* l/(mAe) as n <», showing that n becomes infinite 
in a finite time under this model. A population's growth could 
thus be approximated by this model only for short time periods 
and low initial densities. The reciprocal of birth rate (14) in 

(15) is 1/A(n) = l/(An) + e(An^). The waiting time (18) is 
thus the sum of (16) and a component resembling (17). Growth in 
the hyperbolic mating-limited population is delayed over (16) 
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by an amount related to the "collisions" between the sexes. 

In stochastic pure birth processes, the waiting time to 
reach size n from initial size m is a continuous random 
variable, denoted T. The expected value of T is similar to 
(15), except that it is found by summing, rather than integrating, 
the reciprocal birth rates. 

n-1 
E[T] - I 1/A(k). (19) 

k=m 

With the birth rates (12), (13), and (14), we have 

E[T] = (1/A)['l'(n) - f(m)], (20) 

E[T] = [l/(Ae)][4"(m) - 4'(n)], (21) 

E[T] = (1/A)[4'(n) - t(m)] + (G/A) [t" (m) - 4" (n) ] (22) 

Here 4'(') is the digamma function (Abramowitz and Stegun, 
1965, p. 258). Expression (20) is always slightly greater than 
its deterministic counterpart (16) for the same values of A, 
n, and m. Noting that d(log n)/dn = 1/n, we see that (21) 
bears the same relationship to (20) as does (17) to (16). The 
birth process resulting from (13) is stochastically explosive, in 
that there is a positive probability that the population becomes 
infinite in a finite time (see Feller, 1968, p. 453). Using 
the more realistic birth rate (14), (22) is again the sum of a 
simple linear component (20) and a collisions component, as was 
the case for (18). However, (22) is always somewhat greater 
than (18). 

3.3 Birth-Death Models and Extinction. Models allowing the 
possibilities of decline and extinction are appropriate for 
populations experiencing significant mortality losses. For 
simplicity, the form of the loss rate is hereafter assumed to be 
p(n) " pn, where p is a constant less than A. 

Population increase occurs for all initial densities under 
the deterministic model (11) with the simple linear birth rate 
(12). For either of the mating birth rates (13) and (14)^ an 
equilibrium, denoted n, typically exists where A(n) = pn. The 
equilibrium is unstable, that is, the population increases if 
m > n. This equilibrium is termed the critical density in a 
loose analogy to the critical mass of atomic fission. Indeed, 
the solution trajectories of (11) using (13) as abirth rate are 
explosive when m >_n. The critical density is n = p/(Ae) 
using (13) and is n = ep/(A-p) using (14). 
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Stochastic birth-death processes incorporating (12), (13), 
or (lA) more reasonably allow possibilities of increase or 
decrease from a given initial population size. This property is 
particularly important for low population densities. As 
X(0) •= 0, zero is an absorbing state; extinction is a possible 
outcome of these processes. 

The chance of extinction is a quantity of special interest 
for preserving endangered species or eradicating injurious ones. 
It is a well-known result from birth-death processes (e.g., 
Karlin and Taylor, 1975, p. 149) that the probability of extinc
tion from an initial size m, denoted a(m), is 

OO 00 

a(m) = [ I p(x)]/[l -I- I p(x)], (23) 
x=m x=l 

where 

p(x) = [p(l)p(2)---p(x)]/[A(l)A(2)---X(x)], (24) 

under the condition that ^ p(x) converges. Extinction is cer
tain if the sum does not converge. 

Observe that a discrete probability distribution can be 
defined by 

OO 

1/[1 + I p(k)], X = 0; 
k>l 

Pr[X = x] = (25) 
OO 

p(x)/[l + I p(k)], X = 1,2,--- . 
k-1 

The probability of extinction is seen to be the tail of this 
distribution: 

00 

a(m) = Pr[X ^ m] = I Pr[X = x]. (26) 
x=m 

Ecologists have adopted the simple linear birth-death 
process incorporating (12) as a stochastic model of a species 
colonizing a new environment such as an island (MacArthur and 
Wilson, 1967; Crowell, 1973). The birth-death process incor
porating (14) is a slightly modified version of the pest control 
model given by Costello and Taylor (1975). The probabilities of 
extinction for the three birth-death processes incorporating 
(12), (i3), and (14), are, respectively, the tails of geometric, 
Poisson, and negative binomial distributions: 

CO 

a(m) = I (l-p/A)(p/A)'' - (u/A)"", (27) 
x=m 
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ot(m) = I e ^^^^^\v/\e)''/xl = y(m, y/Ae)/r(m), (28) 
x=m 

a(m) = I ^ ''Vl - p/A)^-'\y/A)^. (29) 
x=m \

In (28), Y('>*) represents the incomplete gamma function 
(Gradshetyn and Ryzhik, 1965, p. 940). 

In (27), a(m) as a function of m decreases in the 
characteristic geometric fashion. If Ac > p, (28) as a function 
of m resembles (27) in shape. If Ae < y, (28) acguires a 
declining sigmoid shape with the inflection point, m say, 
occurring at m =; y/Ae. This quantity corresponds to the mode 
of the Poisson probabilities in (28) and is also the population 
density at which A(m) = ym. The function (29) also displays 
the declining sigmoid shape for values of 6 > (A-y)/y; the 
extinction probabilities for this mating model are greatly 
increased over those in (27) when 6 represents a sizable frac
tion of m. The inflection point of (29) occurs at m = 9y/(A-y), 
corresponding to the mode of thenegative binomialprobabilities 
and to the point where A(m) = ym. The quantity m for both 

(28) and (29) is the stochastic counterpart to the critical den
sity of the deterministic models. 

Setting 9=0 in birth rate (14) of course recovers birth 
rate (12). The geometric distribution in (27) follows as a 
special case of the negative binomial in (29). Additionally, 
(29) is equivalent to the left tail of a binomial distribution when 
9 is an integer: 

a(m) = ®) (1 - y/A)''(y/A)'^^-^. (30) 

3.4 Relationship to Harvesting Models. Guriously, the mating 
models incorporating (13) and (14) are identical to population 
harvesting models with respect to their extinction probabilities. 
Consider a population with a simple linear birth rate (12) that 
is harvested at a constant (stochastic) rate y/e. Thus, 
A(n) = An and y(n) = y/e. The probability of extinction for 
this process is exactly (28). Also, consider a population growing 
according to a simple linear birth-death process that is harvested 
constantly at rate y9. Thus, A(n) = An and y(n) = yn -E y9. 
The probability of extinction for this second process is exactly 
(29). Failure to mate essentially represents removal of popu
lation members from the reproductive process. 
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It is interesting to further consider the effect of har
vesting on a mating-limited population. Letting 

2 

A(n) = An /(6 + n) and u(n) = yn + Y. where Y is a constant 
stochastic harvesting rate, we obtain the tail of a probability 
distribution based on a hypergeometric power series: 

»<"' • J„ F(0. y/v, 1, u/» - 1 • 

Here F(-,•,-,•) is the hypergeometric function (Gradshteyn and 
Ryzhik, 1965, p. 1039). This probability distribution is a trun
cated, translated version of a generalized hypergeometric dis
tribution given by Kemp (1971). 

4. DISTRIBUTIONS AND EXTINCTION PROBABILITIES 

The negative binomial in (29), the Poisson in (28), and 
the generalized hypergeometric in (31) are all weighted versions 
of the geometric distribution in (27). A generalized weighted 
distribution (Patil and Rao, 1978) takes the form 

f*'(x) = w(x)f (x)/E[w(X)], (32) 

where f(x) is a probability density, and w(x) represents the 
weight associated with each value. Here f(x) is the geometric 

distribution in (27), w(x) = (l/e)''/x! in (28), 
w(x) = (9 + DO + 2)-• • (6 + x)/x! in (29), and 

w(x) = (9-H)(9+2)---(9 + x)(Y/y+l)(Y/y+2)---(Y/y+x)/(x!)^ 

in (31). The latter two weight functions are increasing in x, 
giving to their corresponding probability densities heavier tails 
than the geometric, and hence, higher extinction probabilities 
for all values of m. By contrast, the extinction probability 
(28) is much smaller than (27) for high m values due to the 
unrealistically high birth rate (13). 

In other applications of stochastic birth-death processes, 
many traditional probability distributions may emerge as forms 
for Pr(X = x] in (25) provided the birth and death rates are 
suitably chosen. For instance, the recursion relationship 
for such a distribution is given by 

Pr[X = x]/Pr[X = X - 1] = y(x)/A(x). (33) 

Also, p(x) (24) frequently takes the form p(x) = h(x)r , 
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where r is a constant, and h(0) = 1. The probability of 
extinction is then the tail of a power series distribution 
(Patil, 1962; Ord, 1972): 

OO 

Pr[X = x] = h(x)r''/ I h(x)r'', x = 0,1,2,-•• . (34) 
x-0 

Examples seen in this paper have all been power series. An addi
tional, unrelated example yielding the log series can be cata
logued: let A(n) = A'(n -E 1), n = 1,2,---; A(0) = 0; and 
y(n) = yn; then 

OO 

a(m) = I -(y/A)''"^^/[(x+l)log(l - y/A)]. (35) 
x=m 

Finally, it is worthwhile to note a relationship between the 
generating functions for a(m) and Pr[X = x]. Define the 
following: 

<X> 00 

T(s) = I s'^r[X = x]; (j>(s) = J s\(x) (36) 
x=0 x=0 

One obtains <t>(s) from the familiar recursion relation for a(m) 
(see Karlin and Taylor, 1975, p. 140). 

a (m) = a (m -E 1) A (m) / [ A (m) + y (m) ] -E a (m - 1) y (m) / [ A (m) -E y (m) ], 

(37) 

using the conventions oi(0) = 1 and a(m) = 0, m < 0. One 
might then utilize the relation (see Feller, 1968, p. 265) 

(l)(s) - [1 - sT(s)]/(l - s). (38) 
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