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Abstract

We used the symbolic solution for the roots of a cubic

polynomial to derive expressions for the eigenvalues of a

three‐stage population projection matrix. As well, we

obtained expressions for eigenvectors, moduli, damping

ratios, sensitivities, and elasticities. The equations reveal

the existence of “superparameters;” natural groupings of

vital rates that drive population dynamics. We show that

growth rates can be calculated using (at most) three

superparameters in place of as many as nine original vital

rates, potentially simplifying data collection. Necessary and

sufficient conditions for extinction can be summarized

equivalently by three superparameter inequalities. For a

common life history (Noon & Biles, 1990, J Wildl Manag,

54, 18–27) four vital rate parameters are reduced to two

superparameters. The results are applicable to population

viability and recovery analysis and harvest planning.

Two recommendations for resource managers:

• Superparameters can be estimated to determine

population growth rates.

• Superparameters can be used to conduct rapid

assessments of extinction risk.
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1 | INTRODUCTION

The population matrix model is a foundational mathematical concept in wildlife ecology
(Caswell, 2001). The matrix model is used to project stage abundances of age or stage‐structured
populations in discrete time (Groenendael, Kroon, & Caswell, 1988). The model plays a key role
in demography, evolutionary theory, life history theory, population dynamics, and conservation
biology (Morris & Doak, 2002). In addition, the model has become an indispensable tool in
wildlife management (Dinsmore & Johnson, 2012). Inputs for the matrix model are “vital
rates,” including age or stage class fertilities and stage transition or survival probabilities (see
Caswell, 2001; van Groenendael et al., 1988). The demographic quantities arising from the vital
rates include the eigenvalues and eigenvectors of the matrix, from which one finds the
asymptotic population growth rate, stable stage distribution, net reproductive values, matrix
element sensitivities and elasticities, and the magnitudes, known as damping ratios, of transient
population oscillations (Caswell, 2001). The model has been used to understand asymptotic
(stable) population trends (e.g., Caswell, 2001), transient (oscillatory) population trends (e.g.,
Ezard et al., 2010), and stochastic population trends (e.g., Tuljapurkar, 1989).

Our broad focus here is on the parameterization, assumptions, and use of population matrix
models. Our particular focus is on obtaining and studying symbolic formulas for how
eigenvalues and eigenvectors depend on vital rates. The relative lack of such formulas has
hindered our understanding of how the vital rates contribute to and combine to produce a
population’s dynamical behavior. Obtaining eigenvalues and eigenvectors from a given matrix
is in general a numerically intensive task. Algorithms for calculating eigenvalues and
eigenvectors are readily implemented on modern computers, and software packages for such
calculations have been widely available for some decades. Numerical experiments on how the
changing of vital rates affect growth rates are easy to perform. However, the vast quantity of
possible numerical experiments suggests that important vital rate interactions might be easy to
miss. Stage‐structured models have always held out the prospect of helping ecologists
disentangle the varied ways births and deaths in subpopulations contribute to population
growth, and symbolic relationships can aid in that study.

Sensitivities and elasticities (per‐unit sensitivities) quantify the changes in the dominant
eigenvalue in response to changes in individual vital rates (Caswell, 2001). A sensitivity or
elasticity is defined in terms of the partial derivative of the dominant eigenvalue with respect to
an individual vital rate. Sensitivities and elasticities can help managers identify which vital rates
are influential in growth and require more precise estimation (Morris & Doak, 2002). A problem
is that numerical value of a sensitivity conceals its functional dependence on the values of the
other vital rates. Rates combine and interact nonlinearly toward producing population growth,
and a given sensitivity can change substantially in response to the change in another vital rate
(e.g., de Kroon, van Groenendael, & Ehrlén, 2000; Shyu & Caswell, 2016). The usual formulas
for sensitivities and elasticities involve eigenvectors (Caswell, 2001), which in turn must be
calculated numerically for populations with more than three stages. To the contrary, symbolic
formulas in terms of the vital rates themselves might help understanding of potential
interactions among the rates in producing population growth. Such understanding is crucial
toward avoiding unforeseen consequences of management actions, in that such actions often
involve altering vital rates.

The subdominant eigenvalues have received far less attention in theoretical and applied
ecology than the dominant eigenvalue. The dominant eigenvalue, as the finite population
growth rate and the ultimate indicator of a population’s fate, is a focus of endangered species
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management policy (McGowan, Allan, Servoss, Hedwall, & Wooldridge, 2017). As well, the
dominant eigenvalue is accompanied by an entourage of important quantities in the form of the
stable stage proportions (right eigenvector) and the net reproductive values (left eigenvector;
Caswell, 2001). The subdominant eigenvalues, by contrast, are frequently complex valued and
accompanied by eigenvectors with negative or complex elements, rendering ecological
interpretation difficult. Although all the complex components of the trajectories of stage
abundances (as in when the projection matrix is written in terms of its eigenvalues and
eigenvectors) cancel each other out (stage abundances remain positive and real), the influence
of the subdominant eigenvalues appears in the form of stage oscillations (Fox & Gurevitch,
2000). The subdominant eigenvalue with the largest magnitude appears in the denominator of
the damping ratio (e.g., Caswell, 2001), making this eigenvalue central for predicting the nature
and severity of oscillations that occur during nonasymptotic population dynamics. The
oscillations damp out provided the projection matrix is not pathological (i.e., produces
sustained oscillations), but the initial amplitudes of the oscillations can be critically large,
perhaps large enough to send the population into such low abundance levels that extinction
vortex forces at the genetic and population levels take hold. Enhanced understanding of the role
played by subdominant eigenvalues in stage‐structured population dynamics will help
ecological management (Fox & Gurevitch, 2000; Yearsley, 2004).

In general, a species with k life stages (where k = 2, 3,…) is modeled with a k k× population
matrix containing up to k k× vital rates. The population matrix has a characteristic equation in
the form of a k‐degree polynomial (Cull & Vogt, 1973). The k eigenvalues of the matrix are roots
of the characteristic polynomial (Beyer, 1978; Cull & Vogt, 1973), with one of the eigenvalues
being the finite rate of population growth. Furthermore, the characteristic polynomial equation
has up to k coefficients that are functions of the underlying vital rates. We suggest that these k
“superparameters” represent combined demographic meta‐events in the organism’s life history.
The meta‐events encapsulated in the superparameters are potentially interpretable and might
be estimated directly with redesigned field studies, studies possibly involving a reduced number
of stages. Because the empirical studies necessary for estimating vital rates are costly and, in
some cases, risky to the animals, any such method of reducing the empirical requirements for
estimating the finite growth rate might be a valuable addition to the tools of wildlife
management.

Moreover, the demographic quantities that are calculated from eigenvalues, in particular
sensitivities, elasticities, and damping ratio, also depend on the superparameters, opening
the prospect that the superparameters might provide insights into how the demographic
quantities vary with life history changes. Heppell, Caswell, and Crowder (2000) derived
simplified estimates of elasticities in a general life table using eigenvector expressions,
resulting in a condensation of the parameters necessary to obtain these demographic
quantities. Representation in terms of superparameters offers potential for further
condensation.

In the absence of stochastic forces, a population’s fate—recovery or extinction—is foretold
by its finite rate of increase. The dominant eigenvalue is therefore a key focus, if not the
determining factor, for studies and management policies regarding the viability of populations
(Morris & Doak, 2002). Although a population with a finite growth rate greater than one might
not persist long in a stochastic world and might even have a large chance of extinction (Dennis,
Munholland, & Scott, 1991; Lewontin & Cohen, 1969), a finite growth rate less than one spell
nearly certain doom. Because of the complexity of the relationships between vital rates and the
finite rate of increase, the only way to determine whether the finite rate is less than one has
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been to calculate it numerically from the projection matrix. It would be of interest to have
criteria for extinction represented symbolically in terms of the vital rates.

Here, we examine some relationships between the vital rates and demographic quantities for
a three‐stage population matrix model. The projection matrix contains nine or less vital rates.
We exploit the symbolic solution for the roots of a cubic polynomial to derive expressions for
the dominant and subdominant eigenvalues of the three‐stage projection matrix. The symbolic
eigenvalue solutions further give rise to analytical expressions for matrix eigenvectors, complex
moduli, damping ratios, sensitivities, and elasticities. In the characteristic equation, the nine
demographic parameters (fertilities and stage transition probabilities) collapse into no more
than three superparameters, giving rise to an expression for the growth rate containing the
inputs of three superparameters only.

As well, we obtain necessary and sufficient criteria for extinction in the form of three
inequalities that demonstrate when the dominant eigenvalue is less than 1. The three
inequalities are represented in terms of the three superparameters. The inequalities reveal 511
possible structures of vital rate relationships which in turn are categorized into 40 structures
involving superparameters. We provide a complete catalogue of superparameters and extinction
criteria (Supporting Information S.1) for the various vital rate structures for the three‐stage
matrix model.

As an example, we study a particular three‐stage life history with four vital rates that has
been featured in wildlife studies, in which only members of the third stage (“adults”)
contribute to the juvenile stage, and only adults can remain in their stage after one time
unit. For the corresponding matrix model, the information in the vital rates condenses into
two superparameters representing adult survival and adult recruitment. The condensation
allows graphical portrayal of how interactions between the two superparameters can lead to
high sensitivity (or in statistical terms, low estimability) of the finite rate of increase and
other demographic quantities. Results are illustrated using data from the Northern Spotted
Owl (Strix occidentalis caurina) study by Noon and Biles (1990). For this life history, the
three criteria for extinction collapse into one simple inequality involving the two
superparameters.

Analytical solution is, of course, possible for a four‐stage matrix model, as the general quartic
polynomial has a resolvent cubic equation (Beyer, 1978). We defer until later (and even to other
investigators) an evaluation of whether the resulting enormous formulas can lend insights into
population dynamics and resource management. Matrix models with five or more stages, in
general, are not solvable, although special cases might exist that can be solved. For the present,
the three‐stage model practically beckons for such analytical attention, due to its widespread
applicability in wildlife management.

2 | MATERIALS AND METHODS

The life history of a species determines the structure of its corresponding population matrix
model. A common life history in wildlife populations contains three stages: a juvenile
(newborn) stage ( j = 1), a subadult stage ( j = 2), and an adult stage ( j = 3; e.g., Lande, 1988;
Noon & Biles, 1990). We use the terms “juvenile,” “subadult,” and “adult” as they are in wide
use but remark that the first two stages could represent reproductive stages by age but having
different reproductive or survival rates than the third (“adult”) stage. The three‐stage life history
appearing in Figure 1 corresponds to the following population projection matrix L:
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a a a
a a a
a a a

L = .
11 12 13
21 22 23
31 32 33

(1)

Here, aij represents the vital rate in the ith row and jth column of L. Each vital rate a j1 in the
first row represents the fertility at stage j ( j = 1 represents juvenile, j = 2 represents subadult,
and j = 3 represents adult), or the average contribution of an individual in stage j into the
juvenile stage at each time unit. The ajj vital rate represents the probability that an individual
will survive one time unit and remain at stage j, or the probability that an individual in stage
j will neither die nor advance in each time unit. Notice that a11 can be interpreted as either
fertility of the juvenile stage (with a positive real value), or the probability that a juvenile
survives and remains a juvenile (with a value constrained between zero and one). The off‐
diagonal elements in the second and third rows represent the probability that any individual
will survive the discrete time unit and transition into another stage (Figure 1).

Depending on the species, some vital rates may be negligible (demographic event happens
too rarely to be of population‐level consequence) or zero (biologically implausible). In these
cases, the corresponding arrows in Figure 1 vanish, and the corresponding vital rate in
Equation (1) becomes a zero. We note that plausible situations exist for any of the vital rates to
be positive. For instance, if the second stage is not an age but rather a reduced‐reproductive or
nonreproductive adult stage, such as an adult without a territory, pack, or harem, then a23
represents the probability of a transition from the fully reproductive third stage to the reduced‐
reproductive second stage.

A leading purpose of a matrix model is to represent the life history of a species so that the
dominant eigenvalue (finite rate of growth) can be estimated. Caswell (2001) provides a
thorough summary of the various theorems (such as Perron–Frobenius) related to population
projection matrices, the pertinent results for the dominant eigenvalue being as follows.
Specifically, a system with k stages represented by a k k× matrix of nonnegative elements will
have k eigenvalues, one of which, termed the dominant eigenvalue, is guaranteed to be real,
nonnegative, and with modulus greater than or equal to the moduli of the other eigenvalues.

FIGURE 1 Three‐stage population matrix model corresponding to Equation (1). The arrows represent the
fertilities or transition probabilities within and across the three conventionally defined life stages; juveniles
( j = 1), subadults ( j = 2), and adults ( j = 3). The vital rates a j1 represent the fertility at stage j, or the magnitude
of reproduction that stage j contributes to the juvenile stage per time unit (0 ≤ ∞a <j1 ). The ajj vital rate
represents the probability (0 ≤ ≤ajj 1) that an individual will survive the discrete time unit and remain at stage j,
or that they will neither die nor advance to the next stage. The a j j( +1), vital rates represent the probability
(0 ≤ ≤a j j( +1), 1) that any individual will survive the discrete time unit and transition from stage j to stage j + 1.
Less common (but plausible) vital rate a23 represents the fertility of adults replenishing the subadult cohort
(0≤ ∞a <23 ), whereas vital rate a31 represents the probability that any given juvenile will survive and transition
in one time unit to an adult (0 ≤ ≤a31 1)
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The dominant eigenvalue is the finite population growth rate characterizing the eventual
geometric rate of population change once stage oscillations damp out and the stages approach
stable proportions (in pathological cases, the stage oscillations can be permanent; Caswell,
2001). The dominant eigenvalue value has a simple interpretation: If the value is greater than
one the population is ultimately increasing if the value is less than one the population is
ultimately decreasing, and if the dominant eigenvalue is equal to one, the population will
ultimately approach an unchanging abundance (Caswell, 2001). The magnitude of the
dominant eigenvalue has been used as evidence to support managerial action in conservation
and preservation applications (e.g., Doak, Kareiva, & Klepetka, 1994), making the dominant
eigenvalue one of the most important and influential quantities arising from any mathematical
population model.

The other k − 1 eigenvalues are those eigenvalues with moduli less than or equal in
magnitude to the dominant (Fox & Gurevitch, 2000). These “subdominant eigenvalues” are
typically complex valued, and appear as complex conjugates. Using these long‐known facts n
the context of our study, the system in Figure 1 has three stages, so the corresponding
population matrix L will (typically) have three distinct eigenvalues, a dominant, real‐valued
eigenvalue, and two complex conjugates.

The sensitivity for a vital rate in a population matrix model is defined as the change in the
eigenvalue consequent to a change in the vital rate, whereas the elasticity is defined as the
proportional change in the eigenvalue resulting from a proportional change in each vital rate
(Caswell, 2001). Sensitivities and elasticities are utilized for management prescription in that the
quantities can suggest to managers how to manipulate the system to obtain a desired dominant
eigenvalue. Information about sensitivities and elasticities has guided managerial efforts and policy
to produce desired future population effects (see studies in Salguero‐Gómez et al., 2014, 2016).

2.1 | Eigenvalues and other demographic quantities

An eigenvalue of the matrix L in Equation (1) is a solution, denoted λ, of a characteristic
polynomial (Beyer, 1978)

p q rλ + λ + λ + = 0.3 2 (2)

In Equation (2), the coefficients (p q, , and r) are natural groupings of the vital rates (aij) of L,
where

p a a a= −( + + ),11 22 33 (3)

q a a a a a a a a a a a a= ( + + − − − ),11 22 22 33 11 33 32 23 21 12 13 31 (4)
and

r a a a a a a a a a a a a a a a a a a= ( + + − − − ).11 32 23 12 21 33 31 13 22 11 22 33 21 13 32 31 12 23 (5)

Notice, in Equations 3–5, the quadratic coefficient (p) is the negative trace of L, the linear
coefficient (q) is the trace of the cofactor matrix of L, and the constant coefficient (r) is the
determinant of L (Lax, 1997). We refer to the coefficient groupings p q, , and r as the
“superparameters.” Knowledge of the values of the superparameters is sufficient for calculating
the eigenvalues and any demographic quantities that depend only on eigenvalues.
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The roots of a cubic polynomial have a well‐known symbolic solution described in the 16th
century by Cardano (Beyer, 1978; Hazewinkel, 1988). The result provides analytical expressions
for each eigenvalue of a three‐stage population matrix. Denoting the eigenvalues as λ1, λ2, and
λ ,3 the roots of the characteristic equation of L (Equation (2)) are

λ A B
p

= + +
3

,1 (6)

λ A B p
i A B= − +

2
+

3
+ −

2
3,2 (7)

λ A B p
i A B= − +

2
+

3
− −

2
3 ,3 (8)

where

a
q p

= (3 − )
3

,
2

(9)

b
p pq r

=
(2 − 9 + 27 )

27
,

3
(10)

⎜ ⎟⎛
⎝

⎞
⎠{ }A b b a= −

2
+

4
+

27
,

2 3 1/3

(11)

and

⎜ ⎟⎛
⎝

⎞
⎠{ }B b b a= −

2
−

4
+

27
.

2 3 1/3

(12)

With λ1 being the dominant eigenvalue and λ2 being the subdominant eigenvalue, the
expression for the damping ratio is then

( ) ( )
ρ λ

λ

A B
= =

+ +

− + + 3
.

p

A B p A B

1

2

3

+
2 3

2 −
2

2
(13)

A low damping ratio (near 1) indicates that an unequilibrated system will exhibit wild oscillations,
whereas a high ratio (»1) indicates a fast return to geometric growth and stable stage structure.

Using Equation (2) in conjunction with the Implicit Differentiation Theorem (taking care to
meet all assumptions; see Hadley, 1961), sensitivities for the superparameters are then written as

∂

∂

λ
p

λ
λ pλ q

= −
3 + 2 +

,
2

2 (14)
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∂

∂

λ
q

λ
λ pλ q

= −
3 + 2 +

,2 (15)

and

∂

∂

λ
r λ pλ q

= − 1
3 + 2 +

.2 (16)

Letting i indicate the ith row of L, and j indicate the jth column of L, by the chain rule
(Thomas, 2008), the sensitivity of the kth eigenvalue by the aijth vital rate is then

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ
a

p
a

λ
p

q
a

λ
q

r
a

λ
r

= + + .k

ij ij

k

ij

k

ij

k (17)

The sensitivities calculations using Equation (17) will arrive at the same conclusion to the
sensitives calculated using the numeric method in Caswell (2001) and Fox and Gurevitch
(2000). The derivatives of the superparameters with respect to vital rates in Equation (17) are
easy to calculate from Equations 3–5.

Superparameters reflect overall, integrated demographic forces (such as adult‐to‐adult
recruitment). Whether superparameter sensitivities will aid management decisions akin to
traditional individualized vital rate sensitives is not yet clear. The usefulness of superparameter
sensitivities will depend on the structure of the 3×3 matrix. In general, each vital rate appears in at
least two superparameters (Equations 3–5), producing dependencies between the superparameters
that complicate the interpretations of the sensitivities. However, in some cases such as that of a
model of the Northern Spotted Owl (see below), each vital rate appears in only one superparameter,
and the superparameters have straightforward demographic interpretations.

Using Equations 14–16, the elasticities of the dominant eigenvalue with respect to the
superparameters are

e
pλ

λ pλ qλ
= −

3 + 2 +
,p

2

3 2 (18)

e
λq

λ pλ qλ
= −

3 + 2 +
,q 3 2 (19)

and

e r
λ pλ qλ

= −
3 + 2 +

.r 3 2 (20)

By the chain rule (Thomas, 2008), the elasticity of the kth eigenvalue by the aijth vital rate is

∂

∂

∂

∂

∂

∂
e

p
a

e
q
a

e r
a

e= + + .ij
ij

p
ij

q
ij

r (21)

The Supporting Information S.2 of this study contains derivations and expressions of
Equations 2–21, in addition to individual vital rate sensitivities and elasticities (expansions of
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Equations 17 and 21). As well, the Supporting Information S.2 contains derivations and
expressions for the traditional dominant and subdominant eigenvectors but in this context, plus
novel derivations for the sensitivities and elasticities of the subdominant eigenvalues with
respect to the superparameters.

Some demographic quantities require only the values of the superparameters, whereas
others require the values of the vital rates. As seen above, we discover that dominant and
subdominant eigenvalues, damping ratio, and sensitivities and elasticities of the dominant
eigenvalue with respect to the superparameters require only the superparameter values.
However, the stable stage distribution and reproductive value vector (dominant right and left
eigenvectors), along with sensitivities and elasticities of the dominant eigenvalue with respect to
the individual vital rates require values of the individual vital rates.

2.2 | Extinction criteria

Whether or not the dominant eigenvalue is less than one can be determined, for a given set of vital
rates, with some simple calculations and without having to calculate the eigenvalue itself. The criteria
for the dominant eigenvalue to be less than one are contained within Samuelson’s (1941) criteria for
all the roots of a polynomial to lie within the unit circle. The Samuelson criteria were originally
motivated by the problem of ascertaining whether a linear autoregressive time series model is
stationary. The criteria arise as a simple transformation of the eigenvalues into roots of another
polynomial for which the Routh–Hurwitz criteria (e.g., Pielou, 1977) for local stability in a differential
equation model can be applied. The Routh–Hurwitz criteria are the necessary and sufficient
conditions for all the roots of a polynomial equation to have negative real parts. As such, in theoretical
ecology, they are much featured in “local stability theory” for equilibria of systems of differential
equations (May, 1974; Pielou, 1977).

We provide a brief explanation of Samuelson’s (1941) criteria in the novel context of the
superparameters of the three‐stage model. The characteristic polynomial for the three‐stage model is
given by P λ λ pλ qλ r( ) = + + +3 2 , where p, q, and r are the superparameters (Equations 3–5). The
eigenvalues are roots to P λ( ) = 0. Consider the complex transformation z λ λ= ( + 1)/( − 1), which
reverses to λ z z= ( + 1)/( − 1). Write z as some complex number z a ib= + . It is straightforward
to show that ⇔a λ< 0 < 1, that is, if the real part of z is negative, then λ must lie within the unit
circle on the complex plane, and vice versa. Now, P λ( ) = 0 is the same as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

z
z

p z
z

q z
z

r+ 1
− 1

+ + 1
− 1

+ + 1
− 1

+ = 0.
3 2

(22)

Multiply both sides by z( − 1)3 and then multiply out all the products and collect like powers
of z together to represent z as a root of a new polynomial equation

z c z c z c+ + + = 0,3
2

2
1 0 (23)

where

c
p q r
p q r

=
1 − + −
1 + + +

,0 (24)

HANLEY AND DENNIS Natural Resource Modeling | 9 of 16



c
p q r
p q r

=
3 − − + 3
1 + + +

,1 (25)

c
p q r
p q r

=
3 + − − 3
1 + + +

.2 (26)

Applied to the cubic Equation (23), the Routh–Hurwitz criteria becomes

c > 0,0 (27)

c > 0,2 (28)

c c c> .2 1 0 (29)

It follows that these superparameter inequalities are the Samuelson criteria for all roots of
P λ( ) = 0 to lie within the unit circle. Thus, Equations 27–29 are the extinction criteria for the
three‐stage matrix model; when all three inequalities are satisfied, the dominant eigenvalue is
less than one. The criteria have various algebraic variants (see Farebrother, 1973; May, 1974;
Okuguchi & Irie, 1990), a useful version of which is the set

p q r1 + + + > 0, (30)

p q r3 + − − 3 > 0, (31)

r pr q1 − − − > 0.2 (32)

Derivations for Equations 22–32 appear in Supporting Information S.3.

3 | RESULTS

3.1 | Northern Spotted Owl Model

In a three‐stage life history common in wildlife, only adults reproduce, adult stage members
face a common annual survival probability, and both juveniles and subadults advance each time
unit according to their own survival probabilities (Figure 2). The life history adequately
describes many avian, reptilian, and amphibian species (Deevey, 1947; Salguero‐Gómez et al.,
2016) and formed the basis of a well‐known model of the Northern Spotted Owl (Noon & Biles,
1990). We term this the “generic” life history for wildlife species. The projection matrix for the
corresponding population matrix model is

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

a
a

a a
L =

0 0
0 0

0
.

13

21

32 33

(33)
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The vital rates represent the four important transitions in this life history; juveniles survive
and advance to subadults with probability a21, subadults survive and advance to adults with
survival probability a32, while adults survive with probability a33, and reproduce with fertility
a13. Further common characteristics of this life table are: (a) the time intervals an individual
spends in the juvenile and subadult stages are approximately equal, (b) subadult reproduction is
negligible, and (c) surviving adults reproduce each time period.

For the generic life history, the superparameter q = 0, and so the characteristic equation of L is

λ pλ r+ + = 0,3 2 (34)

in which the four vital rates have collapsed into two superparameters

p a= − 33 (35)

and

r a a a= − .13 21 32 (36)

We point out that the quadratic equations displayed in Noon and Biles (1990) and Noon and
Sauer (1992) do not correspond to the generic life history as defined here.

The formulas given by Equations 6–21 represent the various matrix quantities for the
Northern Spotted Owl life history when the value q = 0 is substituted. The eigenvalues of L are
then identical to Equations 6–12, whereas the damping ratio of L takes on the same form as
Equation (13). The sensitivities of L with respect to the superparameters and individual vital
rates can be found with Equations 14, 16, and 17, whereas the elasticities of L with respect to
the superparameters and vital rates are given by Equations 18, 20, and 21, respectively. Noon
and Biles (1990) give estimated vital rates as a = 0.11,21 a = 0.7132 , a = 0.94233 , and a = 0.2413 ,
giving a characteristic equation of λ λ− 0.942 − 0.0187 = 03 2 . The eigenvalues are λ = 0.9621 ,
λ i= −0.010 + 0.139 ,2 and λ i= −0.010 − 0.1393 . The damping ratio of L is ρ = 6.894, which is
much greater than one, meaning that oscillations in the population caused by perturbations or
imbalances in the stage distribution will damp out quickly to recover the stable stage
distribution (and asymptotic growth rate). The sensitivity of the dominant eigenvalue to the
superparameters of L are: ∂ ∂λ p/ = 0.201, and ∂ ∂λ r/ = 0.217, while the elasticity of the
dominant eigenvalue to the superparameters of L are e = 0.197p , and e = 0.004r .

FIGURE 2 A species with this life history is modeled by matrix L (Equation (34)). Specifically, juveniles
survive and advance to subadults with probability a21, subadults survive and advance to adults with survival
probability a32, whereas adults survive with probability a33, and reproduce with fertility a13. The Spotted Owl
(Noon & Biles, 1990), and many avian, reptilian and amphibian species (e.g., Deevey, 1947, and many species
found in the archived material for Heppell et al., 2000) adequately satisfy this representation
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In the Northern Spotted Owl example, the elasticities and sensitivities with respect to
superparameters have straightforward and important interpretations. The superparameter
p is (minus) adult survival, while the superparameter r , being proportional to the product
of adult fertility (a13), juvenile survival (a21), and subadult survival (a32), is adult
recruitment. The elasticities indicate, for example, that an increase in adult survival alone
will cause a greater change to the dominant eigenvalue than the same relative increase in
adult recruitment. The interpretation is consistent with, but provides even more
information than the conclusion of Noon and Biles (1990): Mortality of an adult Northern
Spotted Owl has a much graver impact on the population any other vital rate. The
sensitivities indicate that the dominant eigenvalue responds about the same to small
changes in p and r as measured in their original units.

The extinction criteria for the generic life history, found by substituting q = 0 in Equations
30–32, boil down into a single inequality

a a a a1 − > .33 13 21 32 (37)

In words, extinction is certain if adult mortality is greater than adult recruitment. For the
Northern Spotted Owl model of Noon and Biles (1990), the inequality is estimated as
0.058 > 0.0187, so that the model predicts that the population is not viable.

The superparameters in the Northern Spotted Owl model appear in a univariate version of
the stage‐structured model, thereby lending more insights into growth dynamics and the
extinction criteria (Equations 30–32 and 37). The system of three difference equations
represented by n Ln=t t+1 where L is the matrix in Equation (33) and nt is the column vector of
the three‐stage abundances, by substitution reduces to a single scalar equation for the adult
stage

A a A a a a A pA rA= + = − − .t t t t t+1 33 13 21 32 −2 −2 (38)

The characteristic equation of this third‐order linear difference equation is the same as the
characteristic equation of L (Equation 34). Zero is an equilibrium of the difference equation,
and for all the roots to be within the unit circle implies that zero will be a stable attractor of the
trajectories of the difference equation, or in other words, certain extinction results. The
difference equation for the adult stage also opens the possibility that estimation of characteristic
roots and population viability analysis for the generic life history might be accomplished with
ordinary time series analysis of abundances of just the adult stage.

3.2 | Other three‐stage life histories

For all 3 × 3 matrix models, the nine vital rates combine into no more than three
superparameters, with extinction criteria in the form of three superparameter inequalities.
The Suppoting Information S.1 contains the p, q, and r expressions and extinction criteria for all
histories containing all nine vital rates, any eight vital rates (i.e., one rate is zero), any seven
vital rates (two rates are zero), any six vital rates, any five vital rates, any four vital rates, any
three vital rates, any two vital rates, and any one vital rate, for a total of 511 possible three‐stage
life histories ((9

9) + (9
8) + (9

7) + (9
6) + (9

5) + (9
4) + (9

3) + (9
2) + (9

1) = 511). Embedded in this
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set are the 15 possible ((4
4) + (4

3) + (4
2) + (4

1) = 15) two‐stage life histories (e.g., Sibly, Hansen,

& Forbes, 2000), and their corresponding p, q, and r superparameters and extinction criteria.
Matrix models with different vital rates can have identical superparameters. Any two

matrices having identical superparameters will have identical dominant eigenvalues,
subdominant eigenvalues, and damping ratios. As a result, the two population models will
display similar degrees of transient reactivity and identical asymptotic growth rates. Model
trajectories themselves depend on the eigenvectors as well as eigenvalues (via spectral
decomposition of L) and therefore are in general different in models with identical
superparameters.

There are classes of model behaviors defined by unique p q, , and r magnitudes.
Furthermore, the combination of the life history structure (superparameter expressions) and
the actual values for each vital rate determine the superparameter magnitudes and therefore to
which behavior class that model belongs. An extensive analysis cataloguing superparameter
patterns for all 511 possible 3 × 3 matrix structures appears in Supporting Information S.1.

4 | DISCUSSION

The superparameters represent the complicated cycles in the life history by which stages
are replaced and in general are not likely to be readily interpretable, but some exceptions
exist for particular life histories. In the generic life history model, the superparameters are
adult per‐individual survival probability and adult per‐individual recruitment. For the
general Leslie–Lewis matrix model with k = 3 age classes (i.e., generic life history except
with a = 033 ), the characteristic equation is the discrete form of Lotka’s integral equation
for the instantaneous growth rate and is represented by Caswell (2001; equation 4.42,
adapted to our notation)

a λ a a λ a a a λ1 = + + ,11
−1

21 12
−2

21 32 13
−3 (36)

Multiplying both sides by λk produces the k‐degree polynomial form, or in this case, the
cubic. The coefficients for the powers of λ are the superparameters. Each superparameter here
is the average number of offspring of an individual in the jth age class that will survive to
reenter the jth age class.

When the superparameters have straightforward biological interpretations, managers
might be able to estimate the superparameters with redesigned field studies. Potentially the
estimation of no more than three superparameters would be needed to estimate the finite
rate of increase for three‐stage populations, and therefore extinction assessments. The
eigenvalues, elasticities, and sensitivities for the generic life history (e.g., Northern Spotted
Owl) depend functionally on just two superparameters involving adult demographics,
suggesting that the tagging of juvenile or subadult individuals to obtain individualized
survival probabilities might not be necessary. Along with altering the natural behaviors of
tagged animals, there exist demographic costs associated with carrying tags in some species
(Jones et al., 2013). Additionally, due in part to detectability challenges for smaller age
classes (Gilroy, Virzi, Boulton, & Lockwood, 2012; Pike, Pizzatto, Pike, & Shine, 2008),
sampling younger age classes to obtain estimates of survivability can be difficult (e.g., Doak
et al., 1994). The superparameter results presented here could help reduce scientific visiting
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and handling impact on entire cohorts of wildlife populations, resulting in potential cost
savings for managers and lessened hazards for juveniles.

Any population projections using results presented here are obtained under the assumption
that the vital rates do not change. Although significant research has been published on the use
of matrix models in varied environments (e.g. Ezard et al., 2010; Tuljapurkar, 1989), the results
and interpretation of this study currently require the assumption that static population
dynamics arise over long periods of stable environments.

Population matrix models are central to contemporary wildlife management, as they
enhance understanding of the dynamics, structure, and demographic consequences to changes
within populations (Caswell, 2001). Improved understanding of how vital rates contribute to the
finite growth rate and other demographic quantities is critical for the management of our
wildlife legacy.
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