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Lattice effects in ecological time-series are patterns that arise because of the inherent discreteness of animal
numbers. In this paper, we suggest a systematic approach for predicting lattice effects. We also show that
an explanation of all the patterns in a population time-series may require more than one deterministic
model, especially when the dynamics are complex.
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1. INTRODUCTION

Animal population systems, with their pervasive noise yet
identifiable dynamic patterns, afford special opportunities
to study the interplay between stochasticity and low-
dimensional deterministic trends (Bjørnstad & Grenfell
2001). For nearly a century, the hypothesis that some
population fluctuations are shaped largely by low-
dimensional deterministic forces has caused considerable
controversy. During the last decade, however, careful
studies involving mathematical models, controlled labora-
tory population experiments and statistical techniques
have unequivocally identified many low-dimensional
deterministic nonlinear phenomena in population data.
These phenomena include equilibria, cycles, transitions
between dynamic regimes (bifurcations), multiple attrac-
tors, resonance, basins of attraction, saddle influences,
stable and unstable manifolds, transient phenomena and
chaos (e.g. Costantino et al. 1995, 1997; Benoõ̂ t et al.
1998; Cushing et al. 1998, 2003; McCauley et al. 1999;
Fussmann et al. 2000; Benton et al. 2001; Bjørnstad &
Grenfell 2001; Dennis et al. 2001; Nelson et al. 2001).

A powerful paradigm for analysing the mix of noise and
order in population time-series is the ‘deterministic skel-
eton’ (Tong 1993, 1995; Chan & Tong 2001). The deter-
ministic skeleton is what would remain of the system if
one could tune the unexplained stochastic variability down
to zero. The skeleton is a deterministic model that can be
analysed with the tools of dynamical systems theory; it
fixes the geometry of state space, providing a stage for the
dance of stochasticity. Chance events allow the system to
visit (and re-visit) the various deterministic entities on the
stage, including unstable invariant sets, which under strict
deterministic theory would have little or no impact on
population time-series. Thus ecological time-series can
display a stochastic mix of many of the dynamic features
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of the skeleton, including multiple attractors, transients,
unstable invariant sets, such as saddles, and stable or
unstable manifolds (Schaffer et al. 1993; Cushing et al.
1998; Henson et al. 1999).

Recently, ‘lattice effects’ joined the list of nonlinear
phenomena discovered in laboratory population data
(Henson et al. 2001; King et al. 2002, 2003). Lattice
effects in population time-series are recurrent patterns that
arise because of the inherent discreteness of animal num-
bers. Most deterministic skeletons

xt = f (xt21)

allow a continuum of system states xt, where xt is the num-
ber (or vector of numbers) of animals at time t; such mod-
els cannot predict lattice effects. Thus far, lattice effects
have been modelled in an ad hoc fashion (Henson et al.
2001; King et al. 2002, 2003) by simply rounding off the
state variables of continuous-state models to produce
integer-valued states:

xt = round[ f (xt21)].

In this paper, we suggest a systematic approach for pre-
dicting lattice effects. We also illustrate that an expla-
nation of all the patterns in a stochastic population system
may require more than one deterministic model, especially
when the dynamics are complex.

2. TRENDS IN STOCHASTIC POPULATION
SYSTEMS

We may view a population time-series as the realization
of a stochastic process in which the number of animals Nt

is a discrete random variable. Suppose Nt has unimodal
conditional distribution

Nt | P(nt21), (2.1)

given the observation of Nt21 = nt21 animals at time
t21, where the symbol ‘~’ means ‘is distributed as’. If the
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time-series is univariate, then the population size Nt has
values on the discrete set or ‘lattice’ of system states
X = {0,1,2,3,…}. If the time-series is multivariate, then Nt

is a vector whose entries have values in X. We denote the
expected value of Nt given Nt21 = nt21 by

E[NtuNt21 = nt21] = m(nt21).

One way to construct a deterministic skeleton for the
stochastic process (2.1) is by iterating the conditional
expectation as a deterministic map:

xt = m(xt21)

x0 = n0. (2.2)

That is, the population size xt at time t is predicted to be
the expected value of the distribution P (xt21), where
xt21 was the prediction at time t 2 1. The system states xt

of the ‘mean map’ (2.2), being expectations, are not con-
fined to the lattice X; that is, model (2.2) allows a con-
tinuum of states. Thus, the mean map (2.2) cannot
account for patterns that arise because of the discreteness
of animal numbers.

We can construct a skeleton with integer-valued system
states by using a different measure of central tendency—
one that is confined to the lattice. Given that we observe
nt21 animals at time t 2 1, the most probable next system
state on the lattice is

mode[NtuNt21 = nt21] = l(nt21).

A deterministic ‘mode map’ iterates the conditional mode:

xt = l(xt21)

x0 = n0. (2.3)

(If the mode is not unique, we can construct more than
one mode map.) The system states xt of the mode map
(2.3) are integer valued.

The mean map (2.2) and the mode map (2.3) together
may explain more of the low-dimensional patterns in the
stochastic system (2.1) than either map could explain
alone. Patterns in the stochastic realizations of (2.1) that
are predicted by the mode map but not by the mean map
are the result of lattice effects.

(a) Ricker-model example
For example, consider the stochastic Ricker model

Nt | Poisson[bnt21exp(2cnt21)], (2.4)

where b,c . 0. The (deterministic) mean map is the fam-
iliar Ricker model

xt = bxt21exp(2cxt21). (2.5)

To construct a mode map for equation (2.4), we must
calculate the mode of a Poisson distribution. The mode
of Poisson[m] for non-integer m is the greatest integer less
than or equal to m, that is, floor[m]. (If m is an integer,
then the mode of Poisson[m] is non-unique, being equal
to both m and m 2 1. However, for almost all values of b
and c, there is no positive integer nt21 for which this
happens.) Thus, a (deterministic) mode map is given by

xt = floor[bxt21exp(2cxt21)]. (2.6)

When b = 23, c = 1/43 and x0 = 10, the mean map pre-
dicts a three-cycle while the mode map predicts a five-
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cycle. Simulations of the stochastic process (2.4) show
episodes of both three-cycles and five-cycles (figure 1).
The episodes of five-cycles in the stochastic simulations
are lattice effects.

(b) Experimental-system example
A stochastic model for the population dynamics of the

flour beetle Tribolium is (Dennis et al. 2001)

î

ì

í

ï
ï
Lt | PoissonFbat21expS2

cea

V
at21 2

ce l

V
lt21D G ,

Pt | binomial[lt21,(1 2 ml)],

Rt | binomialFpt21,expS2
cpa

V
at21D G , (2.7)

St | binomial[at21,(1 2 ma)],

at21 ; rt21 1 st21,

where Lt is the number of feeding larvae, Pt is the number
of non-feeding larvae, pupae and callow adults, Rt is the
number of sexually mature adult recruits, St is the number
of surviving mature adults and lt21, pt21, rt21 and st21 are
the respective abundances observed at time t 2 1. The
total number of mature adults is given by Rt 1 St, and
at21 = rt21 1 st21 is the total number of mature adults
observed at time t 2 1. The unit of time is two weeks,
which is the approximate amount of time spent in each of
the L and P classes under experimental conditions, b .
0 is the average number of larvae recruited per adult per
unit time in the absence of cannibalism and the fractions
ma and ml are the adult and larval probabilities, respect-
ively, of dying from causes other than cannibalism in one
time-unit. The exponentials represent the fractions of
individuals surviving cannibalism in each unit of time,
with ‘cannibalism coefficients’ cea/V, ce l/V, cpa/V . 0.
Habitat size V has units equal to the volume occupied by
20 g of flour, the amount of medium routinely used in
our laboratory.

The (deterministic) mean map of (2.7) is equivalent to

î

ì

í

ï
ï
Lt = bAt21expS2

cea

V
At21 2

ce l

V
Lt21D ,

Pt = (1 2 ml)Lt21, (2.8)

At = Pt21expS2
cpa

V
At21D 1 (1 2 ma)At21,

where the total number At of mature adults is given by a
single expression. Equation (2.8) is known as the ‘LPA
model’. It is a well-validated deterministic skeleton for
Tribolium dynamics and has successfully predicted a wide
variety of nonlinear phenomena, including chaos, in lab-
oratory populations (Cushing et al. 2003).

A (deterministic) mode map is equivalent to

î

ì

í

ï
ï
Lt = floorFbAt21expS2

cea

V
At21 2

ce l

V
Lt21D G ,

Pt = floor[(1 2 ml)(Lt21 1 1)],
(2.9)

At = floorF (Pt21 1 1)expS2
cpa

V
At21DG

1 floor[(1 2 ma)(At21 1 1)].
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Figure 1. Ricker-model dynamics with b = 23, c = 1/43 and an initial condition of 10 animals. (a) The mean map predicts a
three-cycle (blue); (b) the mode map predicts a five-cycle (red). (c) Simulations of the Poisson model show recurrent episodes
of both the three-cycle and the five-cycle.
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Figure 2. (a–c) L-stage time-series for Tribolium models and (d) 148 weeks of experimental data. Parameter values and initial
conditions are given in § 2b. (a) The mean map predicts chaos, with recurrent fly-bys of a dominant saddle 11-cycle (blue) on
the chaotic attractor. (b) The mode map predicts a six-cycle (red). The six-cycle pattern appears as a transient of the mean
map (pink) and also as part of the saddle 11-cycle. (c) The Poisson–binomial model shows episodes of both the 11-cycle and
the six-cycle. (d ) The experimental data also show this effect.
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For the experimental parameters and initial condition
reported in Dennis et al. (2001)—b = 10.67, m l = 0.1955,
ma = 0.9600, ce l = 0.016 47, cea = 0.013 13, c pa = 0.3500,
V = 1 and [L0,P 0,A0] = [250,5,100]—the LPA model pre-
dicts chaos with a recurring 11-cycle pattern (Cushing et
al. 2001; King et al. 2003), whereas the mode map pre-
dicts a six-cycle. The realizations of the stochastic process
(2.7) contain episodes of the dynamics of the mean map
as well as episodes of the dynamics of the mode map
(figure 2).

3. DISCUSSION

We have illustrated how recurrent patterns in stochastic
processes may be predicted by various deterministic mod-
els derived from the parent stochastic process. The mean
and mode maps are examples of two such deterministic
models.

The patterns predicted by the mean and mode maps are
related. One can imagine that the mode map presses a
lattice ‘screen’ onto the continuum state space of the mean
map, requiring that each step be ‘rounded’ to a nearby
lattice node. Thus, when the dynamics of the mean map
are simple (for example, a globally attracting cycle of small
period), the dynamics of the mode map are typically simi-
lar to those of the mean map. When the dynamics of the
mean map are complex, however, the mode map may
drastically simplify the mean-map dynamics, as a tra-
jectory on a lattice must eventually cycle. In this case, the
mode map locks on to a cycle that results from discretizing
the geometry of the continuum state space of the mean
map. Thus, a mode-map cycle typically reflects some fea-
ture of the mean-map dynamics, such as a transient pat-
tern, an unstable cycle, a fragment of an unstable cycle or
some attractor that lies ‘nearby’ in the mean-map para-
meter space. Lattice effects become important when the
cyclic patterns predicted by the mode map occur more
frequently in the stochastic system than they do in the
mean map. A tool called the ‘lag metric comparison’
(LMC) can be used to quantify the existence, length and
frequency of cycle episodes in stochastic data (King et
al. 2003).

In the Ricker example (figure 1), the mean map predicts
a three-cycle. It seems strange at first glance that the mode
map would lock onto a five-cycle rather than something
resembling the mean-map three-cycle. The model para-
meters, however, place the mean map in the big period-
locking window of the Ricker bifurcation diagram, where
an unstable chaotic set lurks in the background, influenc-
ing transients. Thus, it is not surprising that the mode
map can lock onto dynamics that are quite different from
the mean-map three-cycle—nor is it surprising that the
stochastic model (2.4) shows much richer dynamics than
a simple noisy three-cycle.

In the LPA example (figure 2), a probable reason that
the mode map locks onto the six-cycle is that a similar
pattern appears in the mean map as a transient and as part
of the recurrent saddle 11-cycle fly-by predicted by the
mean map. The mean map also has a six-cycle ‘nearby’
in parameter space (at ma = 1). The six-cycle, however, is
not a prediction of the mean map in the sense of being an
invariant set on the chaotic attractor of equation (2.8), or
in the sense of being predicted by equation (2.8) to occur
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in episodic runs. Thus, the recurrent six-cycle observed in
the stochastic model is a lattice effect.

The theoretical considerations in this paper were, in
fact, motivated by episodic cyclic patterns observed in
chaotic Tribolium data (Cushing et al. 2001; Henson et al.
2001; King et al. 2002, 2003). It is therefore interesting
to compare the predictions of models (2.7)–(2.9) with the
experimental data reported in Dennis et al. (2001),
although strictly speaking the stochastic model does not
conform to the experimental protocol. (A consequence of
the protocol was that adult recruitment and survivorship
were made deterministic with respect to process error.)
The data, like the simulations of the stochastic model,
contain episodes of both the mean-map 11-cycle and the
mode-map six-cycle (figure 2). In Henson et al. (2001)
and King et al. (2002, 2003), the six-cycle episodes occur-
ring in the data were hypothesized to be lattice effects.

Discretizing the state variables of a chaotic system gen-
erally fragments the chaotic attractor into multiple lattice
attractors (Domokos & Scheuring 2002; King et al. 2002,
2003); that is to say, the mode map generally predicts
multiple cycles, dependent upon the initial condition. Fur-
thermore, the mode-map cycles tend to be ‘weakly stable’
in the sense that small perturbations on the lattice cause
complex transients, as the system attempts to follow the
underlying mean tendency of chaos on the continuum.
The stochastic discrete-state system is a transient kaleido-
scope of all of the cycles predicted by the mean and mode
maps. The specific lattice cycles involved depend on the
granularity of the lattice, which depends on population
size (Henson et al. 2001). However, lattice effects can
occur even for large population sizes ( Jackson 1989) and
may possibly hamper the detection of chaos in ecological
data. In Dennis et al. (2001, 2003) and King et al. (2003),
we explore what it means for a stochastic discrete-state
system to be influenced by chaos, and use the LMC to
suggest new ways to detect chaos in population data.

Ecological time-series are stochastic, but contain pat-
terns. To the extent that such patterns can be explained
and predicted by low-dimensional deterministic models,
the dynamics of the system are amenable to the powerful
tools of dynamical-systems theory. A suite of low-
dimensional deterministic models, derived from a parent
stochastic model, may give a more complete account of
the dynamics than any one deterministic model alone.
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