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Abstract. Time series of population abundance estimates often are the only data avail-
able for evaluating the prospects for persistence of a species of concern. With such data,
it is possible to perform a population viability analysis (PVA) with diffusion approximation
methods using estimates of the mean population trend and the variance of the trend, the
so-called process variation. Sampling error in the data, however, may bias estimators of
process variation derived by simple methods. We develop a restricted maximum likelihood
(REML)-based method for estimating trend, process variation, and sampling error from a
single time series based on a discrete-time model of density-independent growth coupled
with a model of the sampling process. Transformation of the data yields a conventional
linear mixed model, in which the variance components are functions of the process variation
and sampling error. Simulation results show essentially unbiased estimators of trend, process
variation, and sampling error over a range of process variation/sampling error combinations.
Example data analyses are provided for the Whooping Crane (Grus americana), grizzly
bear (Ursus arctos horribilis), California Condor (Gymnogyps californianus), and Puerto
Rican Parrot (Amazona vittata). This REML-based method is useful for PVA methods that
depend on accurate estimation of process variation from time-series data.

Key words: measurement error; mixed linear model; modeling; population growth rate; popu-
lation viability analysis; process variation; PVA; sampling error; time series; trend estimation.

INTRODUCTION

Conservation or management policies generally re-
quire assessment of a population’s prospects for per-
sistence. Unfortunately, these assessments often must
be made with little data. Commonly, the most extensive
data available are count-based data in which the entire
population or a subset of the population is sampled
over multiple years. Count-based data may include time
series of population abundance estimates, catch-per-
unit effort, or samples of a portion of the life cycle,
e.g., spawning redds, nesting adults, or mother–cub
pairs. Dennis et al. (1991) presented methods for fitting
an exponential growth model to count-based data and
techniques to perform a population viability analysis
(PVA) with the fitted model parameter estimates using
diffusion approximations (DA). These PVA techniques
include the calculation of risk metrics such as the mean
time to extinction, distribution of extinction times,
probability of hitting a lower threshold (not necessarily
extinction), or the distribution of the population density
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in the future. The methods presented in Dennis et al.
(1991) have been used to calculate risks for a variety
of species (Dennis et al. 1991, Nicholls et al. 1996,
Gerber et al. 1999, Morris and Doak 2002).

Count-based PVAs using diffusion approximation
(DA) methods are useful for analyzing risk to a pop-
ulation. However, it has been noted that these methods
are vulnerable to sampling or measurement error in the
data. Ludwig (1999) found that errors in estimated
abundance could increase confidence intervals for qua-
si-extinction to the point at which estimates become
meaningless. Meir and Fagan (2000) found that sam-
pling error had its largest effect on estimates of ex-
tinction risk for cases in which it was uncertain whether
the population would go extinct, presumably a situation
applicable to many species of conservation interest.

PVA techniques with the Dennis et al. (1991) model
depend on the estimates of two population parameters
in the exponential growth model: the long-term geo-
metric mean growth rate and the variance of the real-
ized growth due to environmental effects. Estimation
of the latter parameter, termed process variation, is con-
founded by sampling error in the data. In this paper,
the term ‘‘sampling error’’ is used to indicate any de-
viation of the observed count from the true population
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size. This includes error from sampling only a portion
of the population (the traditional definition of sampling
error) in addition to error from incorrect measurements
within a chosen sampling unit (conventionally called
observation, or measurement, error). Sampling error
adds to the variability in the data leading to positively
biased estimators of process variation in the model of
Dennis et al. (1991). This bias leads to poor predictive
precision and pessimistic PVA projections. An ability
to partition variation in the data due to sampling error
from variation due to environmental effects would
greatly improve the quality of count-based PVA.

Holmes (2001) described a regression method for
estimating process variation and sampling error from
a single time series of population estimates. Holmes’
method, however, does not necessarily produce param-
eter estimates with desirable statistical properties. A
particularly worrisome feature of the Holmes method
is that estimators of process variation can be biased
high or low and the magnitude and direction of bias is
unknown in actual applications. For more detailed dis-
cussions of the Holmes method, see Morris and Doak
(2002) and Holmes and Fagan (2002).

We present a new restricted maximum likelihood
(REML)-based method for estimating trend, process
variation, and sampling error variance from a single
time series of count-based data that can be performed
in statistical computing packages such as SAS PROC
MIXED (Littell et al. 1996). These parameter estimates
are obtained by embedding a model of the sampling
process within a model of population growth. This al-
lows the estimation of process variation while account-
ing for variation in the data due to sampling error. The
method presented, however, has data requirements
more strict than those of Dennis et al. (1991) in that
the REML-based method requires uniformly spaced
population estimates in time, with no missing data
points.

METHODS

The underlying change in population density over
time is modeled with a stochastic, discrete-time model
of exponential growth. This model represents an as-
sumption of density-independent growth for the pop-
ulation, a reasonable assumption for depleted popula-
tions. The population density at time (t 1 1) is thus

N(t 1 1) 5 N(t) exp(m)E(t) (1)

for t 5 1,2,. . . , T; where N(t) represents the actual
population density at time (t) and exp(m) is the deter-
ministic per-unit-abundance growth rate in population
density. Natural population growth is not constant from
year to year, so a multiplicative term, E(t), is included
to represent the process variation or deviation from the
long-term trend at time (t) due to environmental effects.
The random variables E(1), E(2), . . . are assumed to
be independent and identically distributed (iid) as log-
normal(0, ), that is, ln(E(t)) has a normal distribution2sp

with a mean of 0 and variance . We write this as E(t)2sp

; lognormal(0, ) and ln(E(t)) ; normal(0, ). Den-2 2s sp p

nis et al. (1991) used this model as an approximation
of a more complicated demographic population model
under the assumption of constant trend (m) and process
variation ( ) in the absence of density dependence.2sp

The parameters m and are the main quantities of2sp

interest when using DA methods for PVA. If this model
is used for abundance estimates, a discrete random var-
iable, as opposed to density, a continuous random var-
iable, then caution may be required should the popu-
lation abundance not be large enough to justify the
continuous approximation with the exponential model.

If process error is the sole source of error, the esti-
mates of the parameters m and given in Dennis et2sp

al. (1991) are unbiased. However, estimation is com-
plicated when observed variability in the data reflects
sampling error as well as process variation. Holmes
(2001) proposed a model in which the population
growth model (Eq. 1) is embedded in a model that
includes sampling error. The observed data are modeled
as

O (t) 5 N (t)Z (t) (2)

where O(t) is the observed estimate of population den-
sity at time (t) and Z(t) represents sampling error. The
random variables Z(1), Z(2), . . . are assumed to be
iid lognormal(ms, ) and independent of E(t). Bias in2ss

measurement is represented by ms. By combining the
population growth and sampling models, the obser-
vation at time (t 1 1) is represented as

O (t 1 1) 5 N (t) exp(m)E (t)Z (t 1 1). (3)

Define M(t) 5 ln(N(t)), «(t) 5 ln(E(t)), and w(t) 5
ln(Z(t)). Note that « ; normal(0, ) and w ; nor-2sp

mal(ms, ). Log transformation of the observed values2ss

yields

Y(t) 5 ln[O(t)] 5 M(t) 1 w (t) (4)

Y(t 1 1) 5 M(t) 1 m 1 « (t) 1 w (t 1 1). (5)

Note that the entries of Y are autocorrelated because
the effect of each realization of the process variation,
«(t), is passed on to later population densities through
the exponential growth of the population, e.g., Y(t 1
2) 5 M(t) 1 2m 1 «(t) 1 «(t 1 1) 1 w(t 1 1) and Y(t
1 3) 5 M(t) 1 3m 1 «(t) 1 «(t 1 1) 1 «(t 1 2) 1
w(t 1 2) and so on. The differences W(t) 5 Y(t 1 1)
2 Y(t) for t 5 1,2,..,T 2 1 give the growth rate plus
error at each individual time step due to process var-
iation at time t and sampling error at times t and t 1
1. The mixed model representation of W(t) and W(t 1
1) are

W(t) 5 m 1 « (t) 1 w (t 1 1) 2 w (t) (6)

W(t 1 1) 5 m 1 « (t 1 1) 1 w (t 1 2) 2 w (t 1 1). (7)

The vector W is a series of the observed log population
growth rate at each of the (T 2 1) one-step time in-
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tervals in the time series of observations. The distri-
bution of W is multivariate-normal with common mean
m and variance–covariance matrix S. The empirical
growth observations in W can be expressed as a con-
ventional linear mixed model:

W 5 X m 1 n (8)

where X is a column of ones with length (T 2 1) and
n ; (0, S). Autocorrelation in Y due to exponential
population growth is removed in the creation of W by
the differencing step. The entries of W are still cor-
related, however, because a single realization of the
sampling error will be shared by two successive entries
of W, e.g. w(t 1 1) appears in both W(t) and W(t 1
1). This creates a one-step covariance in W. Accord-
ingly, the variance-covariance matrix for W has a struc-
ture composed of the variance of individual entries of
W on the main diagonal and the one-step covariance
on the diagonals above and below the main with zeroes
elsewhere (this is known as a banded Toeplitz(2) struc-
ture (Graybill 1983)). Let s1 and s2 represent the var-
iance and one-step covariance of W, respectively.
Then,

 s s 0 0 · · · 01 2

s s s 0 ·2 1 2

0 s s s 0 ·2 1 2 0 0 s · · · ·2
S 5 . (9) (T21)(T21) · 0 · · · · ·

· · · · · 0

· · · · s2 
0 · · · · 0 s s2 1 

The parameters in S are functions of the process
variation and sampling error. The variance of an in-
dividual entry of W is s1 5 1 . The one-step2 22s ss p

covariance of the entries of W is s2 5 2 .2ss

In simulations, maximum likelihood estimators of m,
, and were strongly biased. Biased estimators are2 2s ss p

a common problem in variance component problems
when using maximum likelihood. That is, the maxi-
mum likelihood estimate of a sample variance is biased
as it ignores the difference of the sample mean from
the true mean. This bias is overcome by using restricted
maximum likelihood (REML) estimation (Searle et al.
1992) in which a transformation of the data is used to
eliminate the fixed effect (m) before estimating s1 and
s2. The data transformation used in this case is again
a one-step difference of the W series:

J(t) 5 W(t 1 1) 2 W(t) (10)

where J(t) is the transformed data vector of length (T
2 2). This transformation can be constructed as J 5
U9W, where U is a (T 2 1) 3 (T 2 2) contrast matrix
with negative 1’s on the main diagonal and 1’s on the
diagonal below the main. The parameters s1 and s2 are
then estimated with maximum likelihood from the

transformed data. Because the covariance matrix of J
is related to that of W by the equation Q 5 U9SU, the
covariance matrix Q is also a function of s1 and s2.
The values and that minimize the negative log-ŝ ŝ1 2

likelihood function

1 1
L(s , s z J) 5 (T 2 2)ln(2p) 1 ln( zQ z )1 2 2 2

1
211 J9Q J (11)

2

are then the REML estimates of s1 and s2. Good initial
estimates of s1 and s2 for the minimization can be
obtained by the method-of-moments, i.e., the initial
estimates of s1 and s2 are the sample variance and the
sample one-step covariance of W, respectively. The
estimate, V, of the covariance matrix, S, is obtained
by inserting and into Eq. 9.ŝ ŝ1 2

To estimate m, a generalized least squares estimator
is used. This is an extension of ordinary least squares,
i.e., a straight average of the entries in W, and takes
advantage of nonzero covariance in the data. The gen-
eralized least squares estimator of the trend is

21 21 21m̂ 5 (X9V X) X9V W. (12)

Kackar and Harville (1984) showed that generalized
least squares estimators with estimated weights are un-
biased. Inference on requires an estimate of its var-m̂
iance. If the data have no sampling error, this variance
is V 5 var(W) I(T21), where I(T21) is an (T 2 1) identity
matrix and the estimator for trend is the same as that
presented in Dennis et al. (1991). If S is known, then

5 (X9 S21X)21 X9 S21 W and the variance of ism̂ m̂
exactly F 5 var( ) 5 (X9S21X)21. Because S is un-m̂
known, the estimated covariance matrix must be used
as in Eq. 12, resulting in a biased estimator of var( ),m̂
namely,

21 21ˆvar(m̂) 5 F 5 (X9V X) . (13)

Kenward and Roger (1997) presented a technique to
remove the bias in, , but application of this techniqueF̂
is not easily implemented in SAS and simulation results
suggest that the bias in is small, at least for the largerF̂
data sets examined. Therefore, the Kenward and Roger
adjustment to was not used for this analysis.F̂

The behavior of estimators for the REML-based pro-
cedure was explored with analysis of simulated time-
series data at nine combinations of process variation
and sampling error. For each simulation, 2000 time
series of length 50 were generated by first simulating
the actual population growth with process variation and
then ‘‘observing’’ the population densities with sam-
pling error. Process variance and sampling error vari-
ance were each set at three levels: large, L 5 0.09;
medium, M 5 0.0225; and small, S 5 0.0025. For each
of the nine variation combinations, simulations with
and without a true nonzero underlying trend were an-
alyzed. The simulations with zero trend, random walks,
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FIG. 1. Comparison of the Dennis et al. (1991) model and
REML-based estimates of process variation over a range of
sampling error. There were 2000 simulations at a medium
level of process variation with 5% decline per year. The hor-
izontal dotted line represents the true process variation value.
Boxes represent the interquartile range, and error bars extend
a maximum distance of 1.5 times the interquartile range. Dots
represent extreme values.

consisted of population growth that had random fluc-
tuations due to process variation only. Simulations with
a nonzero trend had m 5 20.05, a decline in total
population density of ;5% per year.

The performance of the REML-based procedure is
compared with that of the Dennis et al. (1991) model
in the simulations just described and in example anal-
yses of data on the Whooping Crane (Grus americana),
grizzly bear (Ursus arctos horribilis) in Yellowstone
National Park, California Condor (Gymnogyps califor-
nianus), and Puerto Rican Parrot (Amazona vittata).
The Whooping Crane data are winter population counts
conducted 1938–1993 in the Aransas National Wildlife
Refuge (USFWS 1994). The grizzly bear data are year-
ly estimated numbers of adult females in the Greater
Yellowstone population for 1959–1997 (Morris and
Doak 2002). The California Condor data are the Oc-
tober Surveys conducted 1965–1980 that have been
described as problematic due to inconsistent sampling
efforts (Synder and Johnson 1985). The Puerto Rican
Parrot data are 1969–1989 censuses for an intensively
managed population in the Luquillo Forest of Puerto
Rico (Dennis et al. 1991).

As an example of the behavior of extinction metrics
using estimators from the Dennis et al. (1991) and
REML-based methods, predictions of the probability
of reaching a threshold of 75% of the current popu-
lation size (so-called quasi-extinction) are compared
for simulated data with a slight positive trend. For these
simulations, the true underlying trend is a 2% per year
increase in population size, with the process variation
and sampling variance taking on the same nine com-
binations as in the previously mentioned simulations.

RESULTS

In simulations, the REML-based method provided
an unbiased estimator of trend and only a slight bias
in estimators for variance components. Performance of
the REML-based method was similar for simulations
with and without a nonzero trend. Increases in sampling
error or process variation resulted in more variable es-
timates of sampling error. The level of sampling error
affected the distribution of process variation estimates
similarly for the three levels of process variation ex-
amined and for simulations with and without a nonzero
trend. The distributions of process variation estimates
for the REML-based method and the model of Dennis
et al. (1991) are compared in Fig. 1 over the range of
sampling error for simulations with medium-level pro-
cess variation and ;5% per year decline. In addition
to decreasing the bias in process variation estimates,
the REML-based method has less variability in process
variation estimates. In data sets with large sampling
error, however, estimates of process variation occa-
sionally are extremely high with the REML-based
method. These high estimates are typically higher than
the total variation observed in the time series, but occur
,1% of the time in the simulated data. The sampling

error estimates are zero or very close to zero for the
time series with high process variation estimates. In
practice, a near-zero sampling error estimate accom-
panied by a process variation estimate that is larger
than the variance in the time series (specifically the
variance of the W vector) should warn the user of un-
reliable variance component estimates. In such cases,
we would recommend using the Dennis et al. (1991)
model process variation estimator while acknowledg-
ing that it is likely to be biased high.

Bias and variance in predictions of quasi-extinction
depend on the true probability of reaching quasi-ex-
tinction and the level of sampling error in the data. For
high process variation, when quasi-extinction was
highly likely, the higher variance of predictions for the
REML-based method made it a poorer choice than the
Dennis et al. method despite its bias. When the true
probability of quasi-extinction was near zero (when
process variation was small), the REML-based method
was better due to the large bias in the method of Dennis
et al. (1991) attributable to sampling error in the data.
The distributions of predictions for both estimation
methods over the nine variation combinations are
shown in Fig. 2.

Parameter estimates and the probability of quasi-ex-
tinction for the example data analyses are given in Ta-
ble 1. The trend estimates for the grizzly bear and
Whooping Crane are similar for the Dennis et al. (1991)
and REML-based approaches, but the REML-based
model gives a smaller standard error for the trend es-
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FIG. 2. Predicted probability of reaching a quasi-extinc-
tion level of 75% of the current population size using the
Dennis et al. (1991) model (D) and the REML-based model
(R). Population growth is ;2% increase per year. SS, SM,
SL, . . . , LL represent, respectively, the level of process var-
iance and sampling error variance: S, small; M, medium; L,
large). The true probability of quasi-extinction is given by
the horizontal dotted line. Boxes, error bars, and dots are as
defined in Fig. 1.

TABLE 1. Parameter estimates and risk metric comparisons
for Dennis et al. (1991) and REML-based methods for four
species.

Species
and

analysis
method Trend (1 SE)

Process
variance

Sampling
variance

P (lower
thresh-
old)†

Grizzly bear, GB (39 years of data)
Dennis
REML

0.0213 (0.0185)
0.0211 (0.0148)

0.0131
0.0082 0.0023

0.40
0.24

Whooping Crane, WC (56 years of data)
Dennis
REML

0.0377 (0.0187)
0.0372 (0.0159)

0.0194
0.0137 0.0028

0.32
0.21

California Condor, CC (16 years of data)
Dennis
REML

20.0768 (0.0885)
20.0948 (0.0131)

0.1176
0‡ 0.0579

1.00
1.00

Puerto Rican Parrot, PP (21 years of data)
Dennis
REML

0.0273 (.0275)
0.0273 (.0275)

0.0151
0.0151 0‡

0.33
0.33

† Probability of population size reaching a lower threshold
equal to 0.75 of the last population size.

‡ Estimates at boundary.

timate in both cases. For both analysis methods, the
estimates of trend, standard error of the trend estimate,
and the estimated process variation are the same for
the Puerto Rican Parrot data because the estimated sam-
pling error is less than zero. In contrast, the California
Condor data analysis resulted in an infinite likelihood
in the SAS analysis (code available as a Supplement
in Ecological Archives) due to the estimate of process
variation being less than zero (see Discussion). There-
fore the results given for the California Condor were
calculated with the MATLAB code available in Eco-
logical Archives.

DISCUSSION

The REML-based method may be performed in stan-
dard statistical packages such as SAS PROC MIXED.
Because SAS places no boundaries on variance com-
ponent estimates, there are occasional instances when
the sampling error estimate is negative or the procedure
fails to converge on a solution. The former is due to
SAS allowing to be larger than zero (recall that theŝ2

sampling error is the negative of ). In this case, weŝ2

recommend setting the sampling error estimate to the
boundary value of zero, thereby recovering the Dennis
et al. (1991) method; see the following discussion of
the Puerto Rican Parrot. The latter occurs when the
likelihood function is infinite in the unbounded opti-
mization. An ad hoc solution is to set the process var-
iation estimate to the minimum boundary value of zero;
see the following discussion of the California Condor.

The MATLAB code provided in Ecological Archives
automatically makes these adjustments.

A t-test for significant trend may be performed in
SAS if non-boundary parameter estimates exist, i.e., a
minimum is found for the likelihood function and the
sampling error estimate is greater than zero. Correct
degrees of freedom for the test, however, are not clear
for all circumstances. We suggest using the Kenward
and Roger (1997) adjustment option in PROC MIXED
for the degrees of freedom. However, this test is prob-
lematic if the estimated degrees of freedom are less
than four (D. F. Staples and M. L. Taper, personal ob-
servation). In such cases, we recommend using the
same degrees of freedom as the Dennis et al. (1991)
method minus one for the additional parameter being
estimated (T 2 4), while being aware this is likely to
be a liberal test (D. F. Staples, unpublished data). Im-
proved inferential techniques will be presented in a
subsequent paper (M. L. Taper, D. F. Staples, R. Boik,
M. Ferrari, and B. Dennis, unpublished manuscript).

Assumptions and diagnostics

The unbiased estimator of process variation rectifies
a significant liability when using the Dennis et al.
(1991) model for PVA, i.e., the vulnerability of con-
clusions to sampling error in the data. It does, however,
retain other assumptions for PVA from the Dennis et
al. model. Both methods assume that there are no large
environmental events such as catastrophes or bonanzas
that dramatically change the population size. Dennis et
al. (1991) presented model diagnostic procedures that
can be used to detect extreme events in the data. We
would like to note that the detection of outliers does
not mean that the point should be dropped for the
REML-based method, because the ‘‘extreme’’ event
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may be due to sampling error. If it is due to sampling
error, the REML-based method can use the information
for better estimates of process variation, thereby avoid-
ing the inflation of the process variation estimate by
the extreme event.

The process variation (or environmental error) is also
assumed to be temporally uncorrelated for both meth-
ods. A two-tailed Durbin-Watson test (Sen and Srivas-
tava 1990) on the residuals of the Dennis et al. (1991)
model can be used to evaluate whether errors are cor-
related. If there is a positive correlation, neither model
may be appropriate. A negative correlation supports
the assumption of the REML-based method that one-
step correlation in the observed growth rates (the W
series) is due to sampling error. Preliminary simulation
results suggest that REML-based sampling error esti-
mators are biased low and process variation estimators
are biased high in the presence of positively correlated
environmental error (D. F. Staples, unpublished data).
The magnitude of the bias depends on the magnitude
of the correlation. Development of improved tests for
correlated environmental error and methods to incor-
porate it into the REML-based method are the focus of
ongoing research.

Another assumption is a constant trend and process
variation throughout the time series. Violations of this
may occur due to demographic stochasticity resulting
from small population size or other factors that change
the growth rate of the population, e.g., density depen-
dence or the Allee effect. Demographic stochasticity
can change the variance in growth rate, especially when
population estimates vary from low to high densities.
Density dependence may be tested using methods pre-
sented in Dennis and Taper (1994) or, alternatively,
model identification techniques may be used as in Taper
and Gogan (2002).

Example data analyses

In addition to the smaller standard error in the trend
estimates, another benefit of the REML-based method
for the grizzly bear and Whooping Crane data sets is
the removal of sampling error from the observed var-
iation in the data, resulting in smaller estimates of pro-
cess variation. This decreases bias in the process var-
iation and results in a less biased analysis of the risk
to the populations. For the Puerto Rican Parrot data,
the estimate of sampling error is at the boundary value
of zero, indicating that sampling error contributes little
of the variability observed in the data. This is reason-
able, considering that the data come from a small, in-
tensively managed population and represent full pop-
ulation censuses. With the sampling error set to zero,
the REML-based method is identical to the Dennis et
al. (1991) method.

The California Condor data represent the opposite
end of the parameter spectrum compared to the Puerto
Rican Parrot. In contrast to a zero estimate of sampling
error, the REML-based method gives an estimate of

process variation that is at the boundary value of zero
for the condor data, indicating that the variation in the
data is mainly due to sampling error. This again is a
reasonable conclusion, considering that the data come
from the ‘‘October Surveys’’ that have been described
as problematic due to sampling irregularities (Wilbur
1980), and the population was undergoing a severe
crash at the time and probably had little variability in
the true negative growth rate. If the process variation
is set to zero and a significance test is performed, the
REML-based method does give a significantly negative
growth rate (P , 0.001) in contrast to a nonsignificant
trend in the Dennis et al. (1991) method (P 5 0.40).
This case is, however, an instance in which the degrees
of freedom estimate from the Kenward and Roger
(1997) method is extremely small (0.07); therefore, T
2 4 degrees of freedom was used for the test. Although
inference in this case is questionable due to uncertainty
about degrees of freedom, it is reassuring to get a sig-
nificant negative trend in a population known to have
experienced such a severe decline.

Conclusion

The restricted maximum likelihood (REML)-based
method is a useful addition to PVA techniques using
diffusion approximation (DA) methods. It allows par-
titioning out variability in the data due to sampling
error for more precise estimates of trend and less bias
in the process variation estimator. When sampling error
is small in the data, as for the Puerto Rican Parrot, the
REML-based method recovers the estimators in the
Dennis et al. (1991) model. The REML-based method
does, however, have more strict data requirements than
the Dennis et al. model at present. Data must come
from uniform sampling intervals with no missing
points and the REML-based method is likely to require
more data points because of the additional parameter
to be estimated. In cases with too few data points, an
estimate of the trend, which is relatively straightfor-
ward and unbiased, may be the best metric available
for assessing risk to the population. We caution that
these models or any other PVA models are only tools
for a manager and results must be conditional on the
validity of assumptions in the model and the nature of
the population itself.
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SUPPLEMENT

A supplement providing data files and code is available in ESA’s Electronic Data Archive: Ecological Archives E085-025-
S1.


