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Wildlife mortality from infrastructure collisions:
statistical modeling of count data from carcass surveys
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Abstract. Anthropogenic infrastructure is a mortality source for many vertebrate species.
Mortality is often measured using periodic counts of carcasses or remains at infrastructure
segments, and bias from carcass removal is estimated via field experiments with wildlife
carcasses. We describe a model for combining removal experiment and carcass count data to
estimate underlying process parameters using joint likelihood. In the model, the instantaneous
number of carcasses present is a stochastic birth–death process with Poisson arrivals (carcass
addition) and proportional deaths (removal of carcasses). The approach accommodates
modeling heterogeneity in the addition and removal processes using generalized regression.
Results of fitting the model to a Greater Sage-Grouse (Centrocercus urophasianus) fence
collision data set show that order of magnitude differences in expected carcass counts can be a
function of spatial differences in removal and suggest caution for interpretation of many
published studies. While the model assumption of negligible detection error may be tenable for
some systems, the modeling framework provides a starting point for future state-space
versions incorporating detection error.
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INTRODUCTION

Anthropogenic infrastructure causes substantial mor-

tality for a variety of terrestrial vertebrate species

(Forman and Alexander 1998). Ground level infrastruc-

ture such as roads and elevated structures such as wind

turbines, power lines, fences, and communication towers

kill ungulates (Groot Bruinderink and Hazebroek 1996),

mesocarnivores (Grilo et al. 2009), amphibians (Langen

et al. 2009), and birds and bats (Bevanger 1994, Kunz et

al. 2007, Gehring et al. 2009). Forman and Alexander

(1998) suggested automobiles alone may kill one million

vertebrates per day on roads in the United States via

automobile collision. Elevated infrastructure primarily

kills flying vertebrates via mid-air collision (Bevanger

1994, Kunz et al. 2007, Kuvlesky et al. 2007). Localized

effects of infrastructure mortality on wildlife demogra-

phy can be severe, particularly for threatened and

endangered species (Mumme et al. 2000, Haines et al.

2005). Moreover, the problem is exacerbated by the

ubiquitous nature of existing infrastructure (e.g., roads

and power lines; Bevanger 1994, Riitters and Wickham

2003) and the ongoing development of new structures

(e.g., wind turbines; Kuvlesky et al. 2007).

Wildlife collision mortality is often measured using

carcass surveys at infrastructure units, but carcass

counts are biased low because of imperfect detection

and removal of evidence prior to sampling (Smallwood

2007, Santos et al. 2011, Stevens et al. 2011). We define

evidence removal bias as the removal of carcasses during

the intervals between infrastructure collision surveys,

and refer to the failure of field observers to locate

carcasses conditional on their presence during sampling

as detection error. Magnitude of errors caused by failed

detection and removal of evidence are estimated via field

experiments using randomly placed carcasses coupled

with detection trials and persistence monitoring (Small-

wood 2007, Santos et al. 2011, Stevens et al. 2011).

Although field experimentation to estimate biases is

common, the way this information is used to make

inferences on collision risk varies (Arnett et al. 2008,

Huso 2011). Much recent work has focused on the

development of point estimation techniques for total

fatality at a given site over time (Smallwood 2007, Huso

2011, Korner-Nievergelt et al. 2011). However, these

estimators assume constant collision mortality across

space and time and do not address methods to model

heterogeneity in collision risk. Subsequently, many

studies used uncorrected carcass counts to evaluate

hypotheses regarding collision risk, assuming the raw

counts adequately represent the collision mortality

process (e.g., Gehring et al. 2009, Barrientos et al. 2011).

Determining what factors contribute to infrastructure

mortality is a research and conservation need, and valid

statistical methods are a prerequisite of this work (Kunz
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et al. 2007, Kuvlesky et al. 2007). Thus, a framework to

model infrastructure mortality and bias parameters

directly as a function of covariates is warranted. Existing

methods for combining removal experiment data with

carcass counts from infrastructure surveys focus on

estimating total fatality. Although some methods permit

modeling heterogeneity in removal processes (e.g., Huso

2011), existing methods do not incorporate heterogene-

ity in carcass addition processes (i.e., collision mortality)

adequately. Therefore, our objective was to develop a

modeling framework to combine data from removal

experiments with carcass counts that accommodates

covariates on addition and removal rate parameters. We

present likelihood-based models for the carcass count

and removal experiment data sets and a joint-likelihood

model to combine data sets and model heterogeneity in

process parameters using generalized regression, under

the assumption of perfect detection during sampling.

The model under perfect detection, albeit unrealistic for

many field studies, provides a theoretical process model

and starting point for more complicated state-space

models including detection error.

METHODS

Modeling count data and population change

using a stochastic birth–death process

Let X(t) denote the number of carcasses present and

available for detection at time t. We treat X(t) as a

population of carcasses that changes in size according to

a stochastic birth–death process. In this context, births

and deaths are more appropriately thought of as

additions and removals, where a mortality event for an

individual animal represents a birth or addition to the

population of carcasses. Similarly, removal of a carcass

via scavenging or other factors represents a death or loss

from the carcass population. Additions to the carcass

population (i.e., births) are analogous to adding

individuals to a population via immigration because

they are independent of the current number of carcasses

present (Huso 2011). Therefore, we modeled change in

X(t) as a stochastic linear immigration–death process

(hereafter SLID), with rates for addition and removal of

carcasses constituting the immigration and death rates

(Bailey 1964, Matis and Kiffe 2000).

A deterministic version of the model is represented by

the following differential equation:

dX

dt
¼ h� wX ð1Þ

where h is the addition rate, wX is the state-dependent

removal rate (proportional to the number of carcasses

present), and w is the per carcass removal rate. Eq. 1 has

the following solution:

XðtÞ ¼ X0e�wt þ ð1� e�wtÞ h
w

ð2Þ

where X0 is the initial number of carcasses present at

time zero (i.e., X(0) ¼ X0). A deterministic differential

equation similar to Eq. 1 underlies the modified point

estimator of total fatality evaluated by Huso (2011);

however, the estimator is limited by the assumption of

constant addition rate (h).
Addition and removal of carcasses to the population

are stochastic processes that depend on a number of

factors (e.g., target species and scavenger movement

patterns, local weather). Therefore, we modeled carcass

population size using a stochastic version of Eq. 1, with

the assumption that only process error is present. The

SLID model assumes population size X(t) is a contin-

uous-time, homogenous Markov process, with birth rate

h and state-dependent death rate wx, where x is any

given nonnegative integer state of X(t). Thus, the length

of time until the next addition or removal, given X(t)¼
x, has an exponential distribution with a mean of 1/(hþ
wx) (for instance, Allen 2003). The model assumes

adding carcasses to the population is a Poisson process,

whereas lifetimes of individual carcasses in the popula-

tion have an exponential distribution (i.e., constant

hazard rate). Under the Markov property, the proba-

bility distribution of future carcass population size

depends only on the current number of carcasses and

model parameters h and w (Matis and Kiffe 2000). Let

p(x, t jX0) be the so-called transition probability density

function for X(t); that, is the probability x carcasses are

present after time t given the initial population size of

X0. Fitting the model to data requires stochasticity to

describe departure of data from the model, and the

transition probability density function is the key to

connecting the model with data to estimate process

parameters.

To develop likelihoods for this model we assumed

that carcass count surveys occur at J infrastructure units

on K occasions over a relevant time period, and all

remains (e.g., carcasses, feathers) are removed at each

occasion by investigators. Perfect detection and removal

of remains implies the population of carcasses grows

from zero after each sampling occasion. For the SLID

model where X0¼ 0, X(t) has a Poisson distribution with

time-dependent mean function k(t) (written X(t) ;

Poisson (k(t)); Cox and Miller 1965, Matis and Kiffe

2000), with

kðtÞ ¼ ð1� e�wtÞ h
w
: ð3Þ

Thus, each sampling-interval time provides a unique

Poisson distribution for the observed number of

carcasses. Because carcasses are removed, the transition

probability for future population size becomes condi-

tional on the population size of zero instead of the

population size observed on the current sampling

occasion (i.e., after X(t) is set to 0), and the conditional

probabilities for X(tþ s) equal the marginal probabilities

associated with a starting population size of zero (i.e.,

p(x, t þ s jX(t) ¼ 0) ¼ p(x, s jX0 ¼ 0)). This effectively

changes the time series of carcass count observations at

each sample unit from a Markov chain to a series of
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independent counts. If carcass counts for sample unit j

are denoted x1, x2, . . . , xK, the likelihood for this data is

a product of Poisson transition density functions

Lðx1; . . . ; xK j a1; . . . ; aK ; hÞ ¼
YK
k¼1

ðhakÞxk e�hak

xk!
ð4Þ

where ak ¼ (1/w)(1 � e�wtk ) and t1, t2, . . . , tK are the

lengths of time since the previous sampling event (i.e.,

the length of time of carcass accumulation). Carcass

population size X(t) has a unique stationary distribution

as t!‘ that assumes X(t) has reached stochastic

equilibrium (hereafter stationarity). Equilibrium popu-

lation size (X*) has a unique stationary Poisson

distribution

X�; Poisson
h
w

� �
: ð5Þ

The stationary distribution of X* is independent of the

initial population size (X0) and the length of time

carcasses have been accumulating (t), and the length of

time required to reach stationarity for this model

depends on the ratio h/w (Fig. 1; Bailey 1964, Matis

and Kiffe 2000). Therefore, if time intervals between

count observations at a given sample unit are long

enough for the SLID process to approach equilibrium,

Eq. 5 could be a useful model for all count observations.

A challenging reality exists with real carcass count

data where the length of time for carcass accumulation is

unknown at the first sampling event (i.e., t1 is unknown).

This difficulty results in many studies discarding data

from the first sampling occasion (i.e., clean-out searches;

Korner-Nievergelt et al. 2011), and precludes the use of

Eq. 4 as the likelihood for data from the first sampling

occasion. However, data are expensive and time

consuming to collect, and our modeling framework

can accommodate observations from k¼ 1 if we assume

they follow the stationary distribution (Eq. 5), which is

time independent. Thus, the likelihood for all observa-

tions at sample unit j becomes the product of density

functions for k ¼ 1 and k . 1 as follows:

Lðx1; . . . ; xK j a2; . . . ; aK ; hÞ ¼
h
w

� �x1

e
�h

w

x1!

YK
k¼2

ðhakÞxk e�hak

xk!
:

ð6Þ

Similarly, the likelihood for all collision count observa-

tions is the product of likelihoods for each of the J

sample units

Lðx11; . . . ; xJK j a12; . . . ; aJK ; hÞ

¼
YJ

j¼1

h
w

� �xj1

e
�h

w

xj1!

YK
k¼2

ðhajkÞxjk e�hajk

xjk!

2
664

3
775: ð7Þ

If intervals between subsequent observations at a given

sample unit are long enough for X(t) to approach

stationarity, a simplified version of the count-data

likelihood is

Lðx11; . . . ; xJK j h;wÞ ¼
YJ

j¼1

YK
k¼1

h
w

� �xjk

e
�h

w

xjk!
: ð8Þ

Under this model, the length of time between observa-

FIG. 1. Plots of the transition probability density function
[p(x, t) jX0 ¼ 0] of population size at time t, x(t), approaching
its stationary distribution over time (measured in days) from the
stochastic linear immigration–death (SLID) model. X(t) ;
Poisson[k(t)], where k(t)¼ h/w 3 (1 – e�wt) for the SLID model
when the population starts growing from size zero. These plots
show the distribution of X(t) for h¼ 0.09 and (A) w¼ 0.148 or
(B) w¼ 0.021, and they illustrate the role of h/w in determining
the speed that stationarity is reached. Values of h and w used to
generate plots come from example model fitting, and plots are
smoothed versions of discrete distributions. See the Methods:
Modeling count data and population change using a stochastic
birth-death process for further clarification of variables.
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tions required to achieve independent carcass counts

depends on the average per carcass survival time (;1/w;
Cox and Miller 1965).

Combining carcass counts with auxiliary data

from removal experiments

In practice, a carcass count data set alone may or may

not be able to estimate h or w uniquely, and researchers
collect auxiliary information about w using carcass
removal experiments. Commonly used point estimators

of fatality estimate removal using field experiment data,
and often propagate the effects of removal uncertainty
on fatality estimates using bootstrapping (Huso 2011).

We developed a model and likelihood for this auxiliary
data set and combined the carcass count and removal
experiment data sets using joint-likelihood techniques. If

carcasses are placed randomly on study areas and
monitored over time (not necessarily at regular intervals
or daily), the removal experiment observations are

analogous to observing the size of a population that is
changing through time via a stochastic death process.
Bailey (1964) showed that lifetimes of individuals with a

constant hazard rate (i.e., constant removal probability
through time) follow an exponential distribution. Using
this model for the carcass removal experiment assumes

removal probability for individual carcasses is indepen-
dent of carcass age. Under these assumptions, the
number of carcasses in the population remaining after

time t follows a binomial distribution (Bailey 1964). If c
carcasses are deposited and evidence from r carcasses
remains after time t, then

pðr j c; t;wÞ ¼ c
r

� �
e�rwtð1� e�wtÞc�r ð9Þ

where per carcass survival probability for t units of time

equals e�wt. Removal experiments typically monitor for
more than one occasion (e.g., Smallwood 2007, Stevens
et al. 2011). Therefore, the likelihood for the entire

removal experiment is a product binomial, where
carcasses are monitored for M occasions after initial
placement as follows:

Lðr1; . . . ; rM j t1; . . . ; tM; c1;wÞ

¼
YM
m¼1

cm

rm

� �
e�rmwtmð1� e�wtmÞcm�rm ð10Þ

where cm is the number of carcasses remaining at the
start of each interval, rm is the number of those

carcasses remaining after time tm, and cm ¼ rm–1 for m
. 1. This model again assumes population size is a
first-order Markov process, and observations of this

process through time represent a Markov chain
resulting in the likelihood of Eq. 10 (i.e.,
P(r1 j t1, c1, w)P(r2 j r1, t2, w) . . . P(rM j rM�1, tM, w) ¼
L(r1, . . . , rM j t1, . . . , tM, c1, w)). Careful attention is
needed for proper use of Eq. 10 when carcasses are
not placed and monitored at the same time (e.g.,

staggered entries). In this case, the product binomial is

still a valid likelihood under the assumption of

independence between different sets of monitored

carcasses. Thus, each set of carcasses would result in

a separate product-binomial likelihood, and the likeli-

hood for all carcass removals would be the product of

the individual likelihoods of the form of Eq. 10. In this

case monitoring the interval lengths for each group of

carcasses separately is necessary, and M for the full

likelihood becomes the total number of monitoring

events for all sets of carcasses.

We use joint-likelihood techniques to combine data

from carcass counts and removal experiments to estimate

process parameters of the SLID model. Information

about w is provided from both the carcass counts and

removal experiment, and the joint-likelihood model is

Lðx11; . . . ; xJK ; r1; . . . ; rM j a12; . . . ; aJK ; t1; . . . ; tM; c1; h;wÞ

¼
YJ

j¼1

h
w

� �xj1

e
�h

w

xj1!

YK
k¼2

ðhajkÞxjk e�hajk

xjk!

2
664

3
775

3
YM
m¼1

cm

rm

� �
e�rmwtmð1� e�wtmÞcm�rm : ð11Þ

If we assume all counts come from the stationary

Poisson distribution, the joint likelihood reduces to

Lðx11; . . . ; xJK ; r1; . . . ; rM j t1; . . . ; tM; c1; h;wÞ

¼
YJ

j¼1

YK
k¼1

h
w

� �xjk

e
�h

w

xjk!

YM
m¼1

cm

rm

� �
e�rmwtmð1� e�wtmÞcm�rm :

ð12Þ

Maximum-likelihood estimators for h and w in Eqs. 11

and 12 must be optimized numerically. Moreover,

models fit using the transient and stationary carcass

count likelihoods can be compared with the data using

goodness-of-fit measures or model selection criteria.

Modeling heterogeneity in process parameters

and evaluating model fit

A primary advantage of a likelihood-based model is

the ability to include covariates on addition and removal

parameters using the techniques of generalized regres-

sion. Under the model the addition rate (h) is assumed a

positively valued Poisson process parameter. Thus, it is

natural to model h as a function of covariates in a

Poisson regression using the log link function:

logðhÞ ¼ b0 þ b1Y1 þ . . .þ bqYq

where bi are coefficients for the intercept and q

hypothesized covariates. The removal rate (w) is defined
as the rate parameter for the exponential model of

individual lifetimes, and is similarly bound to be

positively valued. Thus, we also modeled w as a function
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of covariates using the log link function. In practice,

researchers are often interested in the number of

additions to the system over a time period. After fitting

models of interest, maximum-likelihood estimates of the

number of additions over a relevant time period (e.g.,

total mortality per season) can be derived as a function

of the regression covariates by multiplying ĥ by the

period length. For example, if h is reduced by a

mitigation method (e.g., fence or power line marking),

one could evaluate hypotheses regarding mitigation

treatment effects and obtain maximum-likelihood esti-

mates of total mortality over a relevant season for

infrastructure with and without mitigation efforts.

Residual analyses can also be used to evaluate the

Poisson model assumption of the carcass count data.

Standard residual analyses can be performed using the

Freeman-Tukey (FT) residual for Poisson models given

by ffiffiffiffi
xi
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
xi þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k̂i þ 1

q
where xi are observed carcass counts and k̂i are model-

fitted values (Bishop et al. 1975). The FT residual is

approximately normally distributed with constant var-

iance if the data come from a Poisson model (Bishop et

al. 1975). Thus, FT residuals can be used to evaluate

model assumptions using quantile comparison and

residual-by-fitted-value plots (Fox 2008).

Goodness-of-fit tests for the SLID model can be

constructed using the model deviance statistic. McCul-

lagh and Nelder (1989) showed the generic deviance

expression for a Poisson model reduces to

2
Xn

i¼1

½xi lnðxi=k̂iÞ� � ðxi � k̂iÞ
n o

ð13Þ

for n counts, whereas deviance for the binomial model

reduces to

2
XM

m¼1

½rm lnðrm=d̂mÞ� þ ðcm � rmÞln½ðcm � rmÞ=ðcm � d̂mÞ�
n o

ð14Þ

where d̂m are model fitted values (i.e., d̂m¼ cme�wtm ), and

M is the number of binomial trials, each with rm
successes and cm trials. Thus, deviance for our joint-

likelihood model is twice the sum of deviance for

collision counts and the carcass removal experiment

D ¼ 2
Xn

i¼1

xi ln
xi

k̂i

� �� �
� ðxi � k̂iÞ

� �"

þ
XM

m¼1

½rm lnðrm=d̂mÞ�
n

þ ðcm � rmÞln½
	

cm � rmÞ=ðcm � d̂m



�
o#
:

ð15Þ

For the null hypothesis that the model fits the data, D

has an asymptotic v2 distribution, and the saturated

model has n þM parameters (Wilks 1938).

EXAMPLE USING GREATER SAGE-GROUSE FENCE

COLLISION DATA

Data and model descriptions

We fit the SLID model to a Greater Sage-Grouse

(Centrocercus urophasianus; hereafter sage-grouse) fence
collision data set from southern Idaho, USA. Stevens et

al. (2011) showed detection bias during sage-grouse
fence collision surveys can be large; however, the data

set is useful for the purpose of illustrative model fitting.
Stevens et al. (2012) described a field experiment where

the effectiveness of reflective markers at reducing sage-
grouse fence collision was tested, and our example used

this data set. In this study, the fate of all collision victims
was not ascertained (some collisions recorded were just

feathers and tissue on the fences), thus, h is interpreted
as a collision rate, not a true mortality rate (Stevens et
al. 2012). The field experiment consisted of 48 500-m

fence segments spread across breeding areas of southern
Idaho, where 24 fence segments were randomly marked

and 24 were unmarked controls (Stevens et al. 2012).
Study locations for fence marking were selected using

pilot surveys of fences across southern Idaho (Stevens et
al. 2012). Specifically, areas were included in this study

where .2 collisions/km of fence were recorded during
pilot surveys. Thus, study fence segments were selected

independent of site-specific sage-grouse space-use data.
The fence-marking treatment consisted of reflective vinyl

markers attached to the top fence strand at 1-m
intervals, whereas unmarked controls were simply

unmodified barbed-wire fence segments (Stevens et al.
2012). Each 500-m segment was sampled on five

occasions during the 2010 breeding season at approxi-
mate two-week intervals (range¼ 11–16 days), resulting
in 240 collision count observations. Sage-grouse exhibit

a lek mating strategy, where traditional display leks are
often used for many years (Dalke et al. 1963). Although

study fences were selected independent of lek location
and local abundance data, we hypothesized a priori

these factors would contribute to sage-grouse collision
risk. Thus, covariates used to model h included fence-

marking treatment (binary indicator variable), distance
from the midpoint of each 500-m segment to the nearest

sage-grouse lek (range ¼ 104–4650 m), and number of
sage-grouse displaying at the nearest lek (range¼ 1–127

birds; Stevens et al. 2012). Moreover, we did not
hypothesize additional regional effects on sage-grouse

fence collision risk, and assumed spatial variation in
collision rate would be described by lek location and

local abundance covariates.
Stevens et al. (2011) conducted a carcass removal

experiment to estimate removal bias in sagebrush–
steppe habitats. This study placed 100 pen-raised hen
Ring-necked Pheasant (Phasianus colchicus) carcasses

(surrogates for sage-grouse) randomly along fences and
monitored their persistence every 1–3 d for a maximum
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of 31 days (Stevens et al. 2011). Survival of collision

remains was defined as presence of carcasses, scavenged

remains, or �5 feathers at the location of carcass

placement. Sage-grouse are a species of conservation

concern across Idaho and many parts of the Inter-

mountain West; thus, it was not feasible to obtain sage-

grouse carcasses for removal experiments. Hen pheas-

ants used in this study were the most similar available in

size and cryptic plumage to sage-grouse, which should

have minimized error caused by using a nontarget

species to estimate carcass removal (Osborn et al. 2000,

Smallwood 2007). Moreover, carcasses were placed

along .54 km of discontinuous fence spread over

.15 000 ha of sagebrush steppe across two study

regions (Stevens et al. 2011). Thus, predator swamping

effects of carcass placement should be minimal. Stevens

et al. (2011) provided evidence for regional variation of

removal; thus, we modeled w as a function of a binary

variable indicating region (1 ¼ southeast Idaho, 0 ¼
Magic Valley region), and combined removal and

collision count data sets to estimate SLID model

parameters. For the purposes of region-specific removal

rates, fences west of Craters of the Moon National

Monument were considered in the Magic Valley region,

whereas fences east of this location were located in

southeast Idaho. This resulted in 12 500-m segments in

the Magic Valley (six marked and six unmarked) and 36

500-m segments in southeast Idaho (18 marked and 18

unmarked).

We fit six models to the sage-grouse data sets and

compared them using Akaike’s Information Criterion

(hereafter AIC; Akaike 1973). We fit models with three

different covariate combinations: (1) constant h and w,
(2) covariates on h but constant w, and (3) covariates on

h and w. We fit each of these models using the transition

(Eq. 11) and stationary (Eq. 12) distribution joint

likelihoods. For models with constant h and w, we used
analytical maximum-likelihood estimators (Appendix

A) as starting h values for numerical optimization.

Starting w values were generated by fitting the carcass

removal likelihood (Eq. 10) to the carcass experiment

data. We generated starting h values with Poisson

regression for all models with covariates. Initial model

fitting and evaluation suggested multimodal likelihood

surfaces for models with covariates, thus, all optimiza-

tions were conducted using a two-stage process in

attempt to locate global optima. First, we fit models

using 100 000 (covariates on h) or 250 000 (covariates on

h and w) iterations of a simulated annealing stochastic

search algorithm (Belisle 1992). Next, we used param-

eter estimates from simulated annealing as starting

values for optimization using the Nelder-Mead simplex

method (Nelder and Mead 1965). We generated profile

likelihood confidence intervals for model parameters

and conducted goodness-of-fit testing for the most

supported model. We used R version 2.15.1 for all

model fitting (i.e., numerical likelihood maximization)

and analyses (R Core Development Team 2012), and

code is provided (Supplements 1 and 2).

Results

Modeling identified fence marking, lek size, and

distance to lek effects on collision rates, and regional

differences in removal of collision evidence (DAIC ¼ 0;

Table 1). The stationary process model was most

supported by the data, whereas the transient version of

the top model received weaker support (DAIC¼ 9.844),

as did all models without covariates on w or assuming

constant h and w (DAIC . 84). Confidence interval

coverage was similar for Wald and profile-likelihood

intervals (Appendix B), and all covariates in the top

model were significant at the a¼ 0.05 level (i.e., no 95%
confidence intervals overlapped zero). Expected num-

bers of collisions evidenced per 500 m at equilibrium (h/
w) from the top model were .1 order of magnitude

higher in southeast Idaho because of reduced removal

rates (for Magic Valley, w¼ 0.145; for southeast Idaho,

w ¼ 0.014). Expected numbers of carcasses at equilib-

rium (h/w) were 0.004 (marked fences) and 0.021

(unmarked fences) in the Magic Valley and 0.037

(marked fences) and 0.216 (unmarked fences) in

southeast Idaho, holding lek size and distance to lek at

TABLE 1. Model rankings for stochastic linear immigration–death (SLID) model fit to the Greater
Sage-Grouse (Centrocercus urophasianus) fence collision data set from southern Idaho, USA.

Model� Likelihood� K§ DAIC AIC

h(trt þ lsize þ distance), w(region) SD 6 0 356.534
h(trt þ lsize þ distance), w(region) TD 6 9.844 366.378
h(trt þ lsize þ distance), w(.) TD 5 84.291 440.825
h(trt þ lsize þ distance), w(.) SD 5 86.557 443.091
h(.), w(.) TD 2 168.176 524.710
h(.), w(.) SD 2 170.168 526.702

Note: Covariates were fence-marking treatment (trt), size of nearest lek (lsize), distance to
nearest lek (distance), and intercept only (.).

� The model form is log(h)¼b0þb1Y1þ ...þbkYk and log(w)¼ c0þ c1Y1þ ...þ ckYk, where h is
the daily collision rate and w is the per carcass daily removal rate.

� SD is the joint likelihood assuming all collision counts are from stationary Poisson distribution
(Eq. 12). TD is the joint likelihood using the transition probability distribution for collision counts
for observations after the first sampling occasion (Eq. 11).

§ Number of model parameters.

BRYAN S. STEVENS AND BRIAN DENNIS2092 Ecology, Vol. 94, No. 9



their mean values (for lek size, x̄ ¼ 47.1 birds; for

distance, x̄¼ 1364.4 m). Estimated number of collisions

per km of fence over the 78-day lekking season increased

with lek size and decreased with increasing distance from

lek (Appendix B). Goodness-of-fit testing failed to reject

the hypothesis that the top model fit the data (P¼ 0.92,

D264 ¼ 232.52); however, analysis of FT residuals

provided some evidence for non-normality, likely caused

by the large number of zero observations (n ¼ 207;

Appendix C). The second best model predicted equilib-

rium number of collisions was reached after approxi-

mately three weeks in the Magic Valley (w ¼ 0.148),

whereas equilibrium was not reached in southeast Idaho

until ;150 days because of reduced removal rates (w ¼
0.021; Appendix B).

DISCUSSION

We developed a likelihood-based approach for

modeling heterogeneity in count data from wildlife–

infrastructure collision mortality surveys. The method

combines data from removal experiments with carcass

counts using joint likelihood, and facilitates modeling

heterogeneity in process parameters by allowing both

categorical and continuous covariates. This approach

shifts the emphasis from point estimation of fatality to

understanding heterogeneity in the underlying data-

generating processes, and provides a framework for

evaluating hypotheses regarding wildlife–infrastructure

collision risk. Our example using sage-grouse collision

data found evidence for heterogeneity in both collision

and removal processes, and suggested the top model fit

the data adequately despite known detection error

(Stevens et al. 2011).

Previous authors have discussed similarities of esti-

mating total mortality from carcass surveys with

estimating the size of an animal population (Hels and

Buchwald 2001, Huso 2011). However, modeling carcass

counts is complicated by the temporally changing

number of carcasses, violating closure assumptions of

many estimation techniques. Our approach is based on

observations of the state process through time and is not

limited by a closure assumption. Huso (2011) suggested

that the addition of carcasses to the system may be

analogous to stochastic immigration, but that investi-

gators are interested in the total number of additions

over a time interval, not the instantaneous population

sizes. We provide a model whereby instantaneous

population sizes provide information for maximum-

likelihood estimation of addition and removal rate

parameters. Moreover, this approach facilitates maxi-

mum-likelihood estimation of total additions to the

population over time at desired values of hypothesized

covariates.

Several fatality estimation procedures are commonly

used to estimate wildlife mortality from carcass survey

data (e.g., Flint et al. 1999, Ford 2006, Huso 2011,

Korner-Nievergelt et al. 2011). These estimators operate

under various assumptions concerning search intervals

(e.g., regular intervals), carcass removal distributions

(e.g., exponential lifetimes), and collision mortality rate.

However, variable assumption violation through space

and time makes comparability of results across studies

difficult (Huso 2011). Simulation studies suggested

precision and bias of commonly used fatality estimators

can vary with sampling strategies, form of carcass

removal distributions, and number of zero count

observations, and that an estimator optimal under all

sampling scenarios may not exist (Huso 2011, Korner-

Nievergelt et al. 2011). These metrics all estimate total

fatality as an algebraic function of the number of

observed carcasses, the estimated removal and detection

probabilities, and an underlying mortality rate that is

assumed constant (Flint et al. 1999, Ford 2006, Huso

2011, Korner-Nievergelt et al. 2011). In essence, these

estimators are attempting to census all of the additions

to the carcass population through time at each sample

unit as a function of the number observed carcasses and

their assumptions.

Our model-based approach uses observed count data

and specific assumptions regarding addition and remov-

al processes, but the framework is fundamentally

different than common point estimation procedures.

We shift the objective from point estimation of fatality

to estimating parameters of a theoretical parametric

model of the biological and data generating processes.

This model was derived from the theory of stochastic

population models and stochastic processes, and shifts

the focus to understanding process heterogeneity instead

of estimating the outcome. In reality, carcass counts are

indices to the number of carcasses added to the

population; relationships to the true number of addi-

tions likely vary with a number of factors (e.g., relative

rates of carcass removal and addition). The number of

carcasses present at any point in time is a random

variable that depends on stochastic addition and

removal processes, not the result of a deterministic

population process. Our models treat it as such, and do

not attempt to census carcass additions over time at each

sample unit. Rather, counts are observations of the

stochastic process and are used to estimate the

underlying parameters of the model. We did not

simulate data to evaluate bias of model parameter

estimates; however, previous studies have suggested that

estimates may be influenced by the combination of

sampling strategy and relative rates of carcass addition

and removal through the number of zero count

observations (Korner-Nievergelt et al. 2011). Regard-

less, treating counts as observations from a stochastic

model provides a natural likelihood-based framework

for modeling heterogeneity in both addition and

removal processes using tools from generalized regres-

sion.

Many previous studies have used uncorrected carcass

count data for hypothesis testing, regression modeling,

or spatial analyses. Use of uncorrected carcass count

data to evaluate hypotheses regarding aggregated-
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infrastructure mortality (e.g., Grilo et al. 2009, Langen

et al. 2009) or mitigation effectiveness (e.g., Gehring et

al. 2009, Barrientos et al. 2011) is ubiquitous in the

applied-ecology literature. However, spatiotemporal

variation in removal obfuscates interpretation and could

lead to misleading results (Huso 2011, Santos et al.

2011). We found differences greater than one order of

magnitude for expected sage-grouse collision counts that

were based on removal variation between regions. Thus,

models constructed with uncorrected data from different

regions or time frames lack comparability and are

difficult to interpret at best, and could result in

erroneous inferences and conservation decisions (Huso

2011, Korner-Nievergelt et al. 2011).

Inferences from carcass count surveys can also be

affected by length of time intervals between samples

(Kuvlesky et al. 2007, Santos et al. 2011). Appropriate

search intervals likely depend on the target species, and

total-fatality estimators can be less susceptible to

removal induced bias when sampling intervals are short

(Huso 2011, Korner-Nievergelt et al. 2011). Removal

can be so great that some have suggested daily carcass

searches are necessary, particularly for small species

(Santos et al. 2011). However, the underlying assump-

tion of this recommendation is that a complete census of

victims is necessary to understand the addition process

or estimate total mortality through time. While our

model does not attempt to census collision events

through time, the longer sampling intervals used in our

carcass surveys (range 11–16 days) likely increased

reliance on distributional assumptions of the model,

particularly with respect to the carcass removal rate.

Yet, the auxiliary removal experiment data with short

observation periods (1–3 days) allowed precise estima-

tion and separability of model parameters. A critical

assumption with all removal studies is that the removal

experiments accurately capture true removal of wildlife

carcasses. Careful consideration of removal experiment

design is warranted to guard against bias when carcass

count sampling intervals are long and removal experi-

ments are relied on heavily for estimating model

parameters. However, when the field experiment accu-

rately captures the removal process long sampling

intervals should not be problematic for estimating

parameters of the SLID model. In fact, allowing more

time between searches allows the carcass population to

approach equilibrium and simplifies the likelihood. This

of course assumes the underlying process model itself is

correctly specified, and thus, a unique stationary

distribution exists. If the process model is mis-specified

stationarity may not exist, and biased parameter

estimates could result from empirical model fitting

under the assumed model (Light 2010). However, the

stationary version of our model was more supported by

the data than the model using the transient Poisson

distribution for collision counts, likely due to our long

sampling intervals relative to h/w. Daily carcass surveys

are unrealistic under common logistical and financial

constraints, and previously collected field or pilot data

could be used to determine approximate sampling

interval lengths necessary for the carcass population to

reach equilibrium. Moreover, there is a trade-off

between temporal frequency and spatial extent of

sampling (Ford 2006). It remains unclear if a greater

sampling frequency is worth its cost in spatial replica-

tion, or vice versa, and more research is necessary to

evaluate these trade-offs.

The stochastic population model used to model

carcass population change is a time-homogenous

Markov process, which may be unrealistic for many

applications. Time homogeneity implies constant h and

w throughout the study, an assumption that could be

violated frequently with real collision data. For example,

the true collision rate may vary as a linear or quadratic

function across a breeding or migration period due to

the behavior or movement patterns of target species.

Field studies sampling infrastructure over multiple

seasons or field experiments testing mitigation methods

using a before–after/control–impact design may wish to

test the hypothesis that collision varies categorically

through time. Similarly, assuming constant removal rate

and exponentially distributed lifetimes for individual

carcasses may not always represent the true removal

processes (Bispo et al. 2012), and removal could vary

with carcass age (e.g., stale carcasses with reduced

removal probability). Bispo et al. (2012) suggested the

Weibull distribution (decreasing risk with age), as well as

the log-normal and log-logistic distributions (initial

increase followed by decreasing risk with age) as

alternative survival models for carcass lifetimes. Unfor-

tunately, generalizing our stochastic birth–death process

to accommodate other survival distributions would

likely result in un-tractable likelihood functions. How-

ever, one solution for evaluating models with temporally

changing h and w comes through use of time-varying

covariates in the regression functions. For example, a

continuous covariate representing time since the begin-

ning of the study or a season of interest could be

included to model either linear or quadratic time trends

in h and w. Moreover, categorical indicator covariates

representing different seasons or before–after treatments

could be used to model categorical changes in h.
Although less desirable than explicit likelihoods for

models with time-varying h and w, this approach is

commonly used to model time trends in applied mark–

recapture and survival analyses (e.g., Dinsmore et al.

2002).

Assuming perfect detection during infrastructure

surveys is an unrealistic limitation of the model under

many sampling conditions. Detection error during

carcass surveys can be large, and likely varies with the

local vegetation conditions and size of target species

(Smallwood 2007, Stevens et al. 2011). This model is

directly applicable where detection bias is not a strong

component of sampling (e.g., large animals, sparse

vegetation), and our example using sage-grouse fence
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collisions showed a reasonable model fit despite known

detection error. Despite the reasonable model fit, our

parameter estimates could be biased by ignoring the

realities of imperfect detection. However, we provide a

starting point for further development incorporating

detection error. Hierarchical statistical models provide a

framework for explicitly modeling ecological and

observation processes (Royle and Dorazio 2008), and

hierarchical SLID models treating X(t) as a partially

observed state process should be a research objective to

increase the realism of wildlife–infrastructure collision

modeling.

Conclusions

Infrastructure surveys to count wildlife remains are

used for purposes ranging from basic research to

environmental impact and mitigation assessment. A

large degree of uncertainty remains concerning quanti-

tative estimates of mortality and interpretation of

modeling results because of variable methods for

correcting biases and analyzing data (Kunz et al. 2007,

Kuvlesky et al. 2007, Smallwood 2007, Arnett et al.

2008, Huso 2011). A number of hypotheses exist

regarding factors related to infrastructure mortality

(e.g., Bevanger 1994, Cryan and Barclay 2009), and

statistically rigorous methods are necessary to confront

these hypotheses with data (Kuvlesky et al. 2007, Arnett

et al. 2008). Our stochastic process model formally

combines carcass counts with removal experiment data,

accommodates covariates on addition and removal

parameters, and provides a likelihood-based framework

for evaluating collision risk hypotheses using carcass

counts from infrastructure surveys.
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SUPPLEMENTAL MATERIAL

Appendix A

Analytical maximum-likelihood estimators of h from Eqs. 7 and 8 (Ecological Archives E094-190-A1).

Appendix B

Parameter estimates, confidence intervals, and figure results from fitting the stochastic linear immigration–death model to
example sage-grouse fence collision data set (Ecological Archives E094-190-A2).

Appendix C

Profile-likelihood plots for regression coefficients and model-evaluation plots for the top stochastic linear immigration–death
model fit to example sage-grouse fence collision data set (Ecological Archives E094-190-A3).

Supplement 1

R code for fitting the stochastic linear immigration–death model to example sage-grouse fence collision data (Ecological Archives
E094-190-S1).

Supplement 2

R code for constructing profile likelihood confidence intervals and evaluating fit of the stochastic linear immigration–death
model fit to example sage-grouse fence collision data (Ecological Archives E094-190-S2).
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