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1.  Growth of hierarchical models in ecology

Expositions of HMs in have burgeoned in the ecological literature

 almost always Bayesian

 fit models of unheard-of complexity in the face of limited data
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A Bayesian hierarchical model of Antarctic fur seal foraging and pup
growth related to sea ice and prey abundance
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Abstract. We created a Bayesian hierarchical model (BHM) to investigate ecosystem
relationships between the physical ecosystem (sea ice extent), a prey measure (krill density),
predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus
gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We
collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica.
The BHM allowed us to link together predators and prey into a model that uses all the data
efficiently and accounts for major sources of uncertainty. Based on the literature, we made
hypotheses about the relationships in the model, which we compared with the model outcome
after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior
density and the 95% credible interval. Our model confirmed others’ findings that increased sea
ice was related to increased krill density. Higher krill density led to reduced dive intensity of
maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by
maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in
heavier pups at 22 d. No relationship was found between krill density and maternal mass, or
between maternal mass and foraging effort on pup growth rates between 22 and 85 days of
age. Maternal mass may have reflected environmental conditions prior to the pup provisioning
season, rather than summer prey densities. Maternal mass and foraging effort were not related
to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food
sources other than krill were being used, or differences occurred before pups reached age 22 d.

Key words: Antarctic fur seal; Arctocephalus gazella; Bayesian hierarchical model; diving; ecosystem;
ecosystem model; Euphausia superba; foraging; krill; pup growth; sea ice.

INTRODUCTION

The western Antarctic Peninsula area has been the

focus of attention in recent years, as the marine

ecosystem in the Antarctic Peninsula area is one of the

most rapidly warming regions on Earth (Clarke et al.

2007, Ducklow et al. 2007). Several large-scale ecosys-

tem analyses have been done around the Antarctic

Peninsula and South Georgia areas (e.g., Ducklow et al.

2007, Murphy et al. 2007a) in addition to studies

focusing primarily on predator response to climate

change and prey availability (Reid and Croxall 2001,

Fraser and Hofmann 2003, Reid et al. 2005, Clarke et al.

2007, Trathan et al. 2007), and physical process studies

(Murphy et al. 2007b, Stammerjohn et al. 2008). There is

an urgent need to assess the response of marine

populations to the warming trend, but relationships

between environmental measures, prey, and predators

are not always straightforward, and studies based on few

species over a short period of time may not show the

complexity of the ecosystem response (Clarke et al.

2007).

Ecosystem models aim to depict the main components

and processes of ecosystems, both to gain a better

understanding of interactions between ecosystem ele-

ments, and to predict how they change in response to

inputs to the model. Ecosystem models often address

two aspects: estimating parameters, and predicting

missing observations. An estimate of a parameter is a

mathematical construct, where the data are related

mathematically to give a value (e.g., the slope of a

regression line) that gives a better understanding of the

relationship between the data points. A prediction takes

measurable data (such as time series data) and predicts

values for years in which data were not collected.

The value of ecosystem models is in their holistic

approach to the relationships within the model. Rather

than single relationships driving an analysis, each

association in turn affects the other interactions within

the model. With the emphasis in the past 25 years on

ecosystem management (Christensen et al. 1996) rather

than management of single species, a single unified

model relating several trophic levels and predator–prey

relationships provides information both on how the

independent elements relate to one another and on

making useful predictions from the linked components

of the model. Our goal was to explore ecosystem

relationships using such a multilevel unified, but
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OF BUGS AND BIRDS: MARKOV CHAIN MONTE CARLO FOR
HIERARCHICAL MODELING IN WILDLIFE RESEARCH
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Abstract: Markov chain Monte Carlo (MCMC) is a statistical innovation methodology that allows researchers to fit
far more complex models to data than is feasible using conventional methods. Despite its widespread use in a vari-
ety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a miscon-
ception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of famil-
iarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference
using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary
mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent fac-
tors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude
with a discussion of the importance of individual heterogeneity for understanding population dynamics and
designing management plans.

JOURNAL OF WILDLIFE MANAGEMENT 66(2):277–291
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This paper is an introduction to Markov chain
Monte Carlo (MCMC), a powerful statistical tool
that is used to analyze large, complicated data sets,
especially those with complex hierarchical struc-
tures. The basic ideas of MCMC were introduced
almost 50 years ago (Metropolis et al. 1953) and
gained popularity during the 1980s in image pro-
cessing (Geman and Geman 1984). A growing
appreciation of the usefulness of MCMC has led to
an explosion of publications in the statistical litera-
ture (Gilks et al. 1996). However, relatively few
examples are found in wildlife-related applications.

We suggest several reasons why MCMC has not
been more widely used in wildlife applications.
First, MCMC has a decidedly Bayesian flavor,
which may not appeal to data analysts with a clas-
sical (Frequentist) training. However, MCMC can
be used as a tool to obtain the maximum likeli-
hood estimates used by Frequentists, even for
models with complexity that defies conventional
analysis. Markov chain Monte Carlo also can be
used in Objective Bayes analyses, the results of
which are similar to those of Frequentist analyses.
We begin with a brief review of Bayesian model-
ing, contrasting it with the Frequentist approach.
This review lays the foundation for description of
MCMC and describes Objective Bayes methods.

Another reason MCMC is not yet widely used
among wildlife biologists may be a lack of famil-
iarity. Markov chain Monte Carlo involves some
complex mathematical ideas. A need exists for a
clear accounting of what can be done with it and
how it works. We describe the need for MCMC
and its basic ideas and mechanisms. A simple and
satisfactory intuition for MCMC does not require
extraordinary mathematical sophistication. 

We illustrate the usefulness of MCMC by ana-
lyzing the association between latent factors gov-
erning individual heterogeneity in breeding and
survival rates of kittiwakes. The data set consists
of survival and breeding records for 845 birds,
collected over 13 years. The question of interest
was whether there are trade-offs between compo-
nents of fitness. For example, is it true that better
breeders tend to have lower survival rates? The
models we fit to these data are quite complex—
impossible to fit using conventional methods—
but are satisfactorily estimated using MCMC. We
illustrate the application of MCMC to these data,
using software BUGS (Spiegelhalter et al. 1995),
available for free download (http://www.mrc-
bsu.cam.ac.uk/bugs/). 

FREQUENTIST, BAYES, AND
OBJECTIVE BAYES MODELS

The primary distinction between Bayesian and
Frequentist analyses is in the interpretation of mo-
del parameters. In both types of analysis, data (Y )
are regarded as sampled from a sampling distrib-

1 E-mail: william_link@usgs.gov
2 Present address: Laboratoire de Biologie, Université

de Bretagne Occidentale, 29285 Brest Cedex, France.
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Together, graphical models and the Bayesian paradigm
provide powerful new tools that promise to change the
way that environmental science is done. The capacity to
merge theory with mechanistic understanding and
empirical evidence, to assimilate diverse sources of
information and to accommodate complexity will trans-
form the collection and interpretation of data. As we
discuss here, we specifically expect a shift from a focus
on simple experiments with inflexible design and
selection among models that embrace parts of pro-
cesses to a synthesis of integrated process models. With
this potential come new challenges, including some that
are specific and technical and others that are general and
will involve reexamination of the role of inference and
prediction.

Introduction
Be it climate change, exotic invasions, extinction risk, or
emerging diseases, the contrast between the simple
models and experiments used to learn about ecosystems
versus actual ecosystem behavior has never been more
apparent. With a growing appreciation of ecosystem
complexity has come scrutiny and criticism of traditional
models, appeals for synthesis, and frustration with
statistical methods used to understand and predict nature
[1–3]. Ecosystems are increasingly seen as the product of
huge numbers of interacting forces [4,5], food webs being
among the few examples where ecologists have attempted
to enumerate the complex interactions. Even here, efforts
to define a seemingly obvious relationship (whether a
species eats another) have been viewed as highly
subjective [6]. Influences vary with setting and scale,
nonlinearities abound and ecosystem properties emerge
from interacting local and global influences.

For many pressing environmental challenges, ecolo-
gists do not feel qualified to anticipate ecosystem change
[7] and extrapolation from small-scale experiments to
relevant settings can be an act of faith. The challenges
faced can be expressed in several ways: How do we
combine observations that derive frommany sources? Can
we join what is learnt about parts of a process in isolation
(e.g. controlled experiments) in ways that integrate their
interactions in nature? How do we connect observations
that are specific to location, time and setting with

understanding that comes from a diverse body of
nonspecific theory? Can we accommodate the uncountable
interactions among unseen forces that collectively
determine ecosystem behavior? Given that learning
requires models, and modeling demands simplification,
how is simplicity achieved from such overwhelming
complexity?

The long-standing dichotomy of ‘statistical’ or
‘empirical’ models versus ‘theoretical’ or ‘mechanistic’
models contributes to the challenge of synthesis [8].
‘Statistical modeling’ is applied to experiments for
purposes of inference. Few ecologists make predictions
from such models, appreciating the specific settings and
scales from which they derive [1,9] and their ‘non-
mechanistic’ nature. Rather, experimental results are
extrapolated to nature in informal ways, as demonstrated
by the many examples included in debates on
carbon cycling and increasing atmospheric CO2

concentrations [10].
‘Theoretical’ or ‘mechanistic’ modeling is used for

understanding and prediction. Simple models with few
parameters are analyzed to discover general features of
model behavior. Complex models with many parameters
are explored with simulation. Parameter values, rather
than data, are the inputs, which might be scavenged from
the literature, as they are rarely available for the specific
contexts in which the models are applied. For example,
ecological and conservation journals include lively debate
on topics such as predicted time to extinction for
endangered species, based on models and/or parameter
values that might not apply to the future or to the specific
setting [11,12].

The divide between statistical versus theoretical
models is partly a reaction to the complexity challenge.
Classical statistical practice demands simplicity in terms
of strict experimental design and control. Efforts to
shoehorn relevant observations into a rigid framework
have contributed to debates on classical hypothesis testing
[13,14], the importance of controlled experiments [15],
pseudoreplication [16] and the expanding application of
Bayesian inference [17]. Uncertainty comes with obser-
vations [18–20], model parameters [11,21,22], the specifi-
cation of processes [23,24] and scenarios developed for the
exploration of possible futures [7,25]. An abiding con-
sensus cutting across the debates is that proper statistical
practice must be the objective arbiter of evidence. But
synthesis of general theory, mechanistic understanding
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Abstract. Analyses of ecological data should account for the uncertainty in the process(es)
that generated the data. However, accounting for these uncertainties is a difficult task, since
ecology is known for its complexity. Measurement and/or process errors are often the only
sources of uncertainty modeled when addressing complex ecological problems, yet analyses
should also account for uncertainty in sampling design, in model specification, in parameters
governing the specified model, and in initial and boundary conditions. Only then can we be
confident in the scientific inferences and forecasts made from an analysis. Probability and
statistics provide a framework that accounts for multiple sources of uncertainty. Given the
complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This
approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian)
in the literature illustrating the benefits of this approach. In this article, we provide a baseline for
concepts, notation, and methods, from which discussion on hierarchical statistical modeling in
ecology can proceed. We have also planted some seeds for discussion and tried to show where
the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way
of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties,
even if practical issues sometimes require pragmatic compromises.

Key words: Bayesian modeling; data model; design; empirical Bayes; harbor seals; MCMC; prior;
process model; spatial process; spatiotemporal process.

INTRODUCTION

The field of ecology is becoming increasingly aware of

the importance of accurately accounting for multiple

sources of uncertainty when modeling ecological phe-

nomena and making inferences. This development is

motivated in part by the desire to provide an accurate

picture of the state of knowledge of ecosystems and to be

able to assess the quality of predictions of local and

global change (Hilborn and Mangel 1997, Daszak et al.

2000, Clark et al. 2001, Beckage and Platt 2003, Clark

2005, Ibáñez et al. 2006, Sacks et al. 2007). However,

accounting for various sources of uncertainty is by no

means a simple task.

Ecological data are almost always observed incom-

pletely with large and unknown amounts of measure-

ment error or data uncertainty, and often the expense of

data collection prohibits collecting as much data as

might be desirable. How much and where to sample are

important design questions (e.g., Stevens and Olsen

2004). In addition, most ecological phenomena of

interest can only be studied by combining various

sources of data; aligning these data properly presents

interesting statistical challenges. While data play a large

role in most ecological analyses, incorporating scientific

knowledge through substantive modeling of ecological

processes is essential. Often such process modeling is

based on competing scientific theories and simplifica-

tions of reality. This results in an additional source of

uncertainty, termed model or process uncertainty.

Furthermore, substantive models should acknowledge

parameter uncertainty. Parameter uncertainty can be

handled either by estimating the unknown parameters

(empirical-Bayesian analysis) or by expressing that

uncertainty via a prior probability distribution (Baye-

sian analysis); see, for example, Ver Hoef (1996), Carlin

and Louis (2000), and Gelman and Hill (2006), where

the two approaches are presented. An empirical-

Bayesian analysis looks for plug-in estimates and may

avoid more realistic and flexible specifications that can

include variation over space and time. The Bayesian

analysis can use such variation to help with the choice of

the prior distribution.

Manuscript received 4 May 2007; revised 14 September 2007;
accepted 1 November 2007; final version received 5 December
2007. Corresponding Editor: J. A. Powell. For reprints of this
Forum, see footnote 1, p. 551.
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2.  Bayesian and frequentist inference

Frequentist inference

 based on  (hypothetical repeated sampling)sample space probability

   data,    parameter(s),    model or likelihood functionB 0 B l) ) 
 ex.   is mean beak length in a population of birds, population (of beak.
   lengths is represented by a normal ,  distribution, data (random . 5#

   sample) , , ...,  are collected, likelihood isB œ B B B " # 8

  , exp0 B l œ #  B       . 5 15 .# # 8Î# "
#

3œ"

8

3
#

5#

 inferences

  point estimation of   (ML, etc)    ex.  , ) . 5s œ B œ =s# 8"
8

#

  interval estimation of   (CIs))



  statistical hypothesis testing (Neyman-Pearson, Fisher/goodness of fit)

  information-based model selection (AIC, etc)

  prediction



Bayesian inference

 based on  (personal beliefs about the possibleparameter space probability
   values of ))

   data,    parameter(s),    model or likelihood functionB 0 B l) ) 
   prior distribution (distribution on parameter space reflecting1 )
   beliefs about  before the advent of data))

 inferences about  are based on the posterior distribution (distribution of)
   beliefs modified by data)

1 l B œ G0 B l 1     ) ) )

G œ 0 B l 1 ."     ) ) )



 ex.  product normal likelihood,  pdf of a normal ,  distribution, then1   . 9 7#

    becomes the pdf of a normal distribution with mean given by1 l B .

    . 9B œ  B    5 7
5 7 5 7

# #

# # # #

Î
Î 8 Î 8

8

  point estimation (mean of the posterior, ex. ).B

  interval estimation (HPR of the posterior, etc)

  statistical hypothesis testing (posterior probabilities of  values))

  model selection (multiple posterior probabilities)

  prediction (using posterior to find distribution of future data given )B



example:  Dugong length-age data (Ratkowsky 1983, Carlin and Gelfand 1991)       

     

0 5 10 15 20 25 30

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

age

le
ng

th



Data:   , , ...,  agesB B B" # 8

            , , ...,  lengthsC C C" # 8

Model:  length        growth curveœ " α "# age

   normal , ] µ " 3
B #  α "# 53

 Likelihood function , , , ,  is a product of normal pdfs0 C l B α " # 5#

Frequentist estimation:

 ML estimates of , ,  minimize sum of squared departures of  fromα " # C3
       (nonlinear regression)α "# "  B3



Bayesian estimation:

 specify prior distributions , , , 1 1 1 1" # $ %
#       α " # 5

  (actually must specify , , , )1 α " # 5#

 calculate , , , , , , ,1 l C œ G0 C l B 1 1 1 1           α " # 5 α " # 5 α " # 5# # #
" # $ %

 technical problem up until around 1990:  could not calculate the posteriors
   for any but the simplest models (whereas numerical maximization of
   likelihood was feasible)



3.  What is an hierarchical model

Hierarchical model:  physical  (usually unrecorded) in one or moreheterogeneity
elements of  modeled by a probability distribution, ) )2 
 the distribution typically has its own unknown parameters, 2 œ 2 l   ) ) <

 random effects (ex. plant yield  varies from field to field).

 missing data (ex.  are observed population sizes, ,  where  isB œ @ @) ) "
   vector of actual population sizes or unrecorded covariates)

 heterogeneity/overdispersion/aggregation (capture probabilities, population
   densities, vary)

     likekihood  is  integrated over all possible values of  0 B l 0 B l 2 l .h     < ) ) < ) )

Note:  nothing Bayesian yet



ex.  The famous Yule model of accident-proneness (& statistical ecology model
of aggregation)

 Poisson\ l µ >3 3- - 
 gamma , A α "µ  
 negative binomial , \ µ3

>
>  α 3

3"



4.  Inference for hierarchical models

Frequentist estimation:  in principle can simply maximize  for 0 B l sh < <

 technical problem up until mid-2000s:  could not calculate the likelihood
    for any but the simplest models (normal, beta-binomial, etc)0 B lh <
 therefore, frequentist inferences for hierarchical models was mostly not
   feasible

Bayesian estimation:  priors on all unknown parameters;  calculate posterior

 1 l B œ G0 B l 2 l 1       < ) ) < <

Until 1990, Bayesian estimation for HMs was mostly not feasible as well



In approx 1990, a huge breakthrough occurred.  It was discovered that the
MCMC algorithms for random variable generation (especially Gibbs sampling)
could be used to simulate observations from the posterior distribution for an HM,
without having to calculate the constant  (or do any numerical integrations)G

Furthermore, any number of hierarchies could be thrown into the Bayesian
MCMC calculations, opening the way for a vast leap in complexity of models that
could be fitted:

  1 l B œ <

G0 B l 2 l 2 l â2 l 1 1 â1             ) < ) ) < ) ) < ) < < < <" " " " # # # # $ $ 7 7 7 " " # # 7 7, , , 

Frequentist inference was left stranded at the side of the road
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By 2007, frequentist estimation was back on the road and almost caught up

Various algorithms had been devised to calculate ML estimates for HMs

One, called data cloning, is easy to use:

1.  Set up a Bayesian MCMC simulation for the HM and get it to run.

2.  Perform the calculations for 2 copies (clones) of the data.  Calculate the
sample mean (vector) of the posterior.  Perform the calculations for 4 clones of
the data.  Calculate the mean of the posterior.  Continue the process for, say, 2,
4, 8, 16, 32, ... clones of the data, say, until the posterior means converge to the
same value(s).

3.  The mean (vector) of the posterior distribution is then the ML estimate(s)

4.  If  is the number of data clones used, and V  is the variance-covarianceO B
matrix of the posterior distribution, then V  is the estimated variance-O ‚ B
covariance matrix for the ML estimates.



5.  The problem of estimability

Incorporating heterogeneity in the form of a probability distribution for one or
more parameters adds variability to parameter estimates, sometimes quite
substantial (estimation for negative binomial, beta-binomial, etc)

Sometimes, parameters in HMs become entangled:  likelihoods become ridge-
shaped, and/or multimodal

The entanglement can be structural (built-in) or by accident of a bad data draw.

ex.  normal ,\ l µ3 3 3
#) ) 5 

  normal , @ . 73
#µ  

  normal ,\ µ 3
# # . 5 7

no amount of data , , ...,  can estimate  and  separately (if you are aB B B" # 8
# #5 7

frequentist)
  



"From a Bayesian perspective, as long as proper prior distributions are assigned
to all model parameters, all of them are technically identifiable."
     (Cressie et al. 2009)



The example, of course, is extreme.  No one in their right mind would try to
estimate  and  separately in a Bayesian MCMC (we hope).5 7# #

However, in the big, complex HMs being built, it is not at all clear whether the
parameters being estimated are in fact estimable (i.e. data are contributing
meaningfully to their estimation)

Problem is widely acknowledged in the Bayesian HM literature.

Bayesian diagnostics concerning estimability (or lack thereof) are currently
neither adequate nor convincing

 ex.  compare priors to posteriors:  usually done only with univariate
   distributions, risks being mislead by marginalization paradox



ML estimation with data cloning provides a simple diagnostic tool for estimability:

As the number of clones  becomes larger, the posterior distribution shouldO
converge to a degenerate distribution if everything is ok

For each value of , calculate the largest eigenvalue  of the posteriorO -O

variance-covariance matrix VO

Plot the ratios  as a function of .  The ratios should decrease at a rate- -O "Î O
"ÎO



6.  Examples

Dugong length-age data & growth model

   normal , ] µ " 3
B #  α "# 53

        C B3 3

1.80  1.0    2.50  10.0
1.85  1.5    2.32  12.0
1.87  1.5    2.32  12.0
1.77  1.5    2.43  13.0
2.02  2.5    2.47  13.0
2.27  4.0    2.56  14.5
2.15  5.0    2.65  15.5
2.26  5.0    2.47  15.5
2.47  7.0    2.64  16.5
2.19  8.0    2.56  17.0
2.26  8.5    2.70  22.5
2.40  9.0    2.72  29.0
2.39  9.5    2.57  31.5
2.41  9.5



WinBUGS code

model {
   for( i in 1 : N ) {
      y[i] ~ dnorm(mu[i], tau)
      mu[i] <- alpha - beta * pow(gamma,x[i])
   }
   alpha ~ dnorm(0.0, 1.0E-6)
   beta ~ dnorm(0.0, 1.0E-6)
   gamma ~ dunif(0.0, 1.0)
   tau ~ dgamma(0.01, 0.01)
}

DATA

list(N=27)
y[] x[]
1.80 1.0
1.85 1.5
1.87 1.5
1.77 1.5
2.02 2.5
2.27 4.0



2.15 5.0
2.26 5.0
2.47 7.0
2.19 8.0
2.26 8.5
2.40 9.0
2.39 9.5
2.41 9.5
2.50 10.0
2.32 12.0
2.32 12.0
2.43 13.0
2.47 13.0
2.56 14.5
2.65 15.5
2.47 15.5
2.64 16.5
2.56 17.0
2.70 22.5
2.72 29.0
2.57 31.5
END



FIRST INITIAL VALUES
list(alpha=1,beta=1,tau=1,gamma=0.9)

SECOND INITIAL VALUES ARE RANDOMLY DRAWN FROM
THE PRIOR DISTRIBUTIONS



  alpha  beta  gamma tau (=1/sigma^2) 
ML:  2.658  0.9635  0.8715  124.0 
K = 40  2.658  0.9636  0.8713  123.4 

    

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of clones (K)

va
lu

es



Pump data with Poisson-gamma model

\ 3 >3 3 is number of failures of pump  in time 

Pump     > B3 3  
1  94.5 5
2  15.7 1
3  62.9 5 
4  126  14
5  5.24 3
6  31.4 19 
7  1.05 1
8  1.05 1
9  2.1  4
10  10.5 22

\ l µ > µ3 3 3 3 3) ) @ α "Poisson   gamma ,    
 negative binomial , \ µ3

>
>  α 3

3"



WinBUGS code

model {
   for (i in 1 : N) {
      theta[i] ~ dgamma(alpha, beta)
      lambda[i] <- theta[i] * t[i]
      x[i] ~ dpois(lambda[i])
   }
   alpha ~ dexp(1)
   beta ~ dgamma(0.1, 1.0)
}

DATA

list(N=10)
t[] x[]
94.3 5
15.7 1
62.9 5
126 14
5.24 3
31.4 19
1.05 1



1.05 1
2.1 4
10.5 22
END

INITS
list(alpha = 1, beta = 1)



  alpha  beta 
ML:  0.8230  1.262 
K = 160: 0.8222  1.259 
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State space model of population growth

    ( :  log-population abundance)\ œ +  -\  I \> >" > >

      ( :  observed or estimated value of )] œ \  J ] \> > > > >

  normal , , normal , I µ ! J µ !> >
# #   5 7

data:  time series , , , ..., C C C C! " # ;

parameters:  , , , + - 5 7# #

It is known that likelihoods for this model can sometimes be ridge-shaped and/or
  multimodal
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Abstract

We introduce a new statistical computing method, called data cloning, to calculate

maximum likelihood estimates and their standard errors for complex ecological models.

Although the method uses the Bayesian framework and exploits the computational

simplicity of the Markov chain Monte Carlo (MCMC) algorithms, it provides valid

frequentist inferences such as the maximum likelihood estimates and their standard

errors. The inferences are completely invariant to the choice of the prior distributions

and therefore avoid the inherent subjectivity of the Bayesian approach. The data cloning

method is easily implemented using standard MCMC software. Data cloning is

particularly useful for analysing ecological situations in which hierarchical statistical

models, such as state-space models and mixed effects models, are appropriate. We

illustrate the method by fitting two nonlinear population dynamics models to data in the

presence of process and observation noise.

Keywords

Bayesian statistics, density dependence, Fisher information, frequentist statistics,

generalized linear mixed models, hierarchical models, Markov chain Monte Carlo,

state-space models, stochastic population models.

Ecology Letters (2007) 10: 551–563

I N T R O D U C T I O N

A sea-change in the scale and complexity of ecological data

analysis occurred with the development in statistics of

practical inference methods for hierarchical models. Hier-

archical models are statistical models containing random

components in addition to or instead of the usual fixed

parameter values, and take such varied forms as generalized

linear models with mixed random and fixed effects,

structured population state-space models with observational

and process variability and capture-recapture models with

randomly varying capture probabilities. Applications of

hierarchical models in ecology are expanding rapidly, due to

the wealth of realistic model structures for describing

ecological processes (Table 1).

The most commonly used approach for fitting hierarchi-

cal models to data is based on the Bayesian paradigm (Link

et al. 2002; Clark 2005; Clark & Gelfand 2006). The prior

distributions are chosen to be informative, if appropriate;

otherwise non-informative priors are commonly used.

Computing the Bayesian posterior distribution for hierar-

chical models became feasible with the advent of the

Markov chain Monte Carlo (MCMC) algorithms. These

algorithms are a collection of probabilistic simulation

methods for generating observations from designated

statistical distributions (Gelfand & Smith 1990; Casella &

George 1992; Gilks et al. 1996; Robert & Casella 2004). Free

software programs such as WINBUGS (Spiegelhalter et al.

2004) have made their application in ecology reasonably easy

and straightforward. MCMC algorithms are especially useful

when the target statistical distribution, such as the posterior

distribution in the Bayesian formulation, contains a high-

dimensional integral that cannot be simplified.

Although the Bayesian inferences are computationally

feasible, their interpretation is problematic. First, the

inferences depend on the choice of the prior distributions.

Second, even among statisticians, there is a debate as to how

one defines a non-informative or an objective prior (Press

2003, Chapter 5; Barnett 1999, Chapter 10). Third, the

credible intervals produced in Bayesian inference have no

meaning in terms of the replication of inferences by other

studies, but rather represent the beliefs the analyst attaches

Ecology Letters, (2007) 10: 551–563 doi: 10.1111/j.1461-0248.2007.01047.x

� 2007 Blackwell Publishing Ltd/CNRS
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2Montana State University, Department of Ecology, 301 Lewis Hall, Bozeman, Montana 59717-3460 USA
3Department of Fish and Wildlife Resources and Department of Statistics, University of Idaho, Moscow, Idaho 83844-1136 USA

4Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G2G1 Canada

Abstract. Hierarchical statistical models are increasingly being used to describe complex
ecological processes. The data cloning (DC) method is a new general technique that uses
Markov chain Monte Carlo (MCMC) algorithms to compute maximum likelihood (ML)
estimates along with their asymptotic variance estimates for hierarchical models. Despite its
generality, the method has two inferential limitations. First, it only provides Wald-type
confidence intervals, known to be inaccurate in small samples. Second, it only yields ML
parameter estimates, but not the maximized likelihood values used for profile likelihood
intervals, likelihood ratio hypothesis tests, and information-theoretic model selection. Here we
describe how to overcome these inferential limitations with a computationally efficient method
for calculating likelihood ratios via data cloning. The ability to calculate likelihood ratios
allows one to do hypothesis tests, construct accurate confidence intervals and undertake
information-based model selection with hierarchical models in a frequentist context. To
demonstrate the use of these tools with complex ecological models, we reanalyze part of
Gause’s classic Paramecium data with state–space population models containing both
environmental noise and sampling error. The analysis results include improved confidence
intervals for parameters, a hypothesis test of laboratory replication, and a comparison of the
Beverton-Holt and the Ricker growth forms based on a model selection index.

Key words: AIC; Bayesian statistics; data cloning; frequentist statistics; hierarchical models; likelihood
ratio; Markov chain Monte Carlo; maximum likelihood; model selection; profile likelihood; state–space
models; stochastic population models.

INTRODUCTION

Reliable understanding of complex ecological data

depends on the formulation of proper statistical models

of the underlying processes. Hierarchical statistical

models have proved highly useful for achieving such

understanding in many ecological systems (see Table 1

in Lele et al. 2007). Such models allow researchers to

incorporate variability in parameters that otherwise

might be unrealistically treated as fixed. In addition,

these models allow the incorporation of multiple layers

of process and observation uncertainty. Stochastic

population models with added observation error (De

Valpine and Hastings 2002, Clark and Bjørnstad 2004,

Staples et al. 2004, Dennis et al. 2006, Lele 2006,

Newman et al. 2006, Sæther et al. 2007), stochastic

models of species abundance distributions (Etienne and

Olff 2005), and capture–recapture models with uncertain

capture probabilities (George and Robert 1992) are just

a few examples of this broad class of random effects

models.

Until recently, computational difficulties rendered

many frequentist statistical inferences for hierarchical

models unfeasible. For all but the simplest models,

computing the likelihood function needed for such

inferences requires computing an intractable, high-

dimensional integral. Inferences using computer inten-

sive Bayesian methods side step this difficulty by

simulating observations from a posterior distribution

using one of the various Markov chain Monte Carlo

(MCMC) algorithms (Robert and Casella 2005). Al-

though other approaches are possible, the new data

cloning (DC) algorithm by Lele et al. (2007) provides

convenient tools to carry out frequentist estimation of

the parameters in general hierarchical models. An often-

repeated justification of the Bayesian approach is the

fact that as sample size increases the Bayesian solution

approaches the maximum likelihood solution (Walker

1969). The trick in data cloning is to apply a Bayesian

methodology to a data set constructed by duplicating

the original data set enough times that the Walker

theorems apply.

Manuscript received 23 May 2008; revised 6 October 2008;
accepted 21 October 2008. Corresponding Editor: A. M. de
Roos.
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Estimability and Likelihood Inference for Generalized
Linear Mixed Models Using Data Cloning

Subhash R. LELE, Khurram NADEEM, and Byron SCHMULAND

Maximum likelihood estimation for Generalized Linear Mixed Models (GLMM), an important class of statistical models with substantial
applications in epidemiology, medical statistics, and many other fields, poses significant computational difficulties. In this article, we use
data cloning, a simple computational method that exploits advances in Bayesian computation, in particular the Markov Chain Monte Carlo
method, to obtain maximum likelihood estimators of the parameters in these models. This method also leads to a simple estimator of the
asymptotic variance of the maximum likelihood estimators. Determining estimability of the parameters in a mixed model is, in general,
a very difficult problem. Data cloning provides a simple graphical test to not only check if the full set of parameters is estimable but
also, and perhaps more importantly, if a specified function of the parameters is estimable. One of the goals of mixed models is to predict
random effects. We suggest a frequentist method to obtain prediction intervals for random effects. We illustrate data cloning in the GLMM
context by analyzing the Logistic–Normal model for over-dispersed binary data, and the Poisson–Normal model for repeated and spatial
counts data. We consider Normal–Normal and Binary–Normal mixture models to show how data cloning can be used to study estimability
of various parameters. We contend that whenever hierarchical models are used, estimability of the parameters should be checked before
drawing scientific inferences or making management decisions. Data cloning facilitates such a check on hierarchical models.

KEY WORDS: Bayesian computation; Hierarchical models; Random effects.

1. INTRODUCTION

Linear mixed models (LMM) (Searle, Casella, and McCul-
loch 1992) and their extension to generalized linear mixed mod-
els (GLMM) (McCulloch and Searle 2001) consist of some of
the most useful models in statistics. They are widely used in
various fields, for example, longitudinal data analysis (Diggle,
Liang, and Zeger 1994), epidemiology (Clayton and Kaldor
1987) and ecology and environmental sciences (Clark and
Gelfand 2006; Royle and Dorazio 2009). For theoretical discus-
sion of LMM and GLMM, see McCulloch and Searle (2001).
Most popular approaches to analyze these models are Bayesian,
based on the Markov Chain Monte Carlo (MCMC) algorithm
and noninformative priors. (Gilks, Richardson, and Spiegelhal-
ter 1996; Spigelhalter et al. 2004). However, likelihood analysis
for these models is difficult (McCulloch 1997; McCulloch and
Searle 2001). Likelihood analysis, if used, is usually conducted
using approximate likelihood (Breslow and Clayton 1993) or
Monte Carlo estimation of the likelihood function (e.g., Mc-
Culloch 1997; deValpine 2004).

Recently, Lele, Dennis, and Lutscher (2007) reviewed the
difficulties associated with Bayesian and likelihood based ap-
proaches and proposed an alternative approach, called data
cloning, to compute maximum likelihood estimates and their
standard errors for general hierarchical models. See also Dou-
cet, Godsill, and Robert (2002), Kuk (2003), and Jacquier, Jo-
hannes, and Polson (2007) for methods similar to data cloning.
This approach is based on Bayesian ideas, uses well-known
MCMC methodology and can be easily implemented in stan-
dard software such as WinBUGS. Data cloning is applicable
in most situations where the problem can be formulated as a
Bayesian problem and where MCMC can be used to obtain
random variates from the posterior distribution. Similar to the

Subhash R. Lele (E-mail: slele@ualberta.ca) and Byron Schmuland are Pro-
fessors of Statistics, and Khurram Nadeem is Graduate Student, Department of
Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB
T6G 2G1, Canada. This work was supported in part by funding from NSERC,
Canada. The comments by those involved in the editorial process improved the
article substantially and are greatly appreciated.

Bayesian methodology, data cloning avoids high-dimensional
numerical integration and requires neither maximization nor
differentiation of a function. It is based only on the computa-
tion of the means and the variances. Although data cloning uses
a Bayesian formulation and computational techniques, the in-
ferences are based on the classical frequentist paradigm. Unlike
the Bayesian inference, these inferences do not depend on the
choice of the prior distributions used in the implementation of
the MCMC algorithm. The goals of this article are: (1) to use
data cloning to analyze GLMM; (2) to provide a simple graphi-
cal procedure to determine an adequate number of clones; (3) to
provide an algorithm to obtain prediction intervals for random
effects; and, most importantly, (4) to provide a simple graphical
procedure to determine estimability of the parameters in hierar-
chical models.

2. NOTATION AND STATISTICAL SET–UP

Let y(n) = (y1, y2, . . . , yn) be the data vector where n denotes
the sample size. We consider the following general hierarchical
model set-up:

Hierarchy 1: y(n)|X = x ∼ h(y(n);X = x, θ1).
Hierarchy 2: X ∼ g(x; θ2).

We observe y(n) whereas x are unobserved. The parameters of
interest are θ = (θ1, θ2).

The goal of the analysis is to estimate the parameters θ and
predict the unobserved states x. The likelihood function for this
hierarchical model set-up is L(θ;y(n)) = ∫

h(y(n)|x; θ1)g(x;
θ2)dx. The difficulties associated with using this function for
statistical inference are mainly computational: (1) calculation
of the likelihood function generally involves high-dimensional
integration; (2) obtaining the location of the maximum using
numerical search procedures is difficult because of the stochas-
tic nature of the estimated likelihood; and (3) computing stan-
dard errors of the resultant estimators involves further difficul-
ties in numerical computation of the second derivatives of the

© 2010 American Statistical Association
Journal of the American Statistical Association

December 2010, Vol. 105, No. 492, Theory and Methods
DOI: 10.1198/jasa.2010.tm09757
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Abstract Hierarchical models include random effects or

latent state variables. This class of models includes state–

space models for population dynamics, which incorporate

process and sampling variation, and models with random

individual or year effects in capture–mark–recapture

models, for example. This paper reviews methods for

frequentist analysis of hierarchical models and gives an

example of a non-Gaussian, potentially nonlinear analysis

of Lapwing data using the Monte Carlo kernel likelihood

(MCKL) method for maximum-likelihood estimation and

bridge sampling for calculation of likelihood values given

estimated parameters. The Lapwing example uses the

state–space model as part of an integrated population

model, which combines survey data with ring-recovery

demographic data. The methods reviewed include filtering

methods, such as the Kalman filter and sequential Monte

Carlo (or particle filtering) methods, Monte Carlo expec-

tation maximization, data cloning, and MCKL. The latter

methods estimate the maximum-likelihood parameters but

omit a normalizing constant from the likelihood that is

needed for model comparisons, such as the Akaike infor-

mation criterion and likelihood ratio tests. The methods

reviewed for normalizing constant calculation include

filtering, importance sampling, likelihood ratios from

importance sampling, and bridge sampling. For the Lap-

wing example, a novel combination of MCKL parameter

estimation, bridge sampling likelihood calculation, and

profile likelihood confidence intervals for an integrated

population model is presented to illustrate the feasibility of

these methods. A complementary view of Bayesian and

frequentist analysis is taken.

Keywords Bridge sampling � Data cloning �
Integrated population model � Monte Carlo expectation

maximization � Monte Carlo kernel likelihood �
Normalizing constant � Particle filter � State-space model �
Vanellus vanellus

Introduction

Many types of ecological data can be statistically modeled

by recognizing multiple sources of variation in the pro-

cesses that led to the data, including both ecological and

data-sampling variation (Clark 2007; Royle and Dorazio

2008; Cressie et al. 2009; King et al. 2009). For example, a

state–space model for a time-series of abundance data

includes unknown true abundances, stochastic relationships

between true abundances at one time and the next, and

stochastic relationships between true abundances and the

data (Schnute 1994; de Valpine and Hastings 2002).

Another example is random effects models for capture–

mark–recapture (CMR), ring-recovery, or related data, in

which year effects, between-individual variation, or other

sources of variation may be modeled as following some

distribution (Burnham and White 2002; Cam et al. 2002;

Link et al. 2002; Royle and Link 2002; Barry et al. 2003;

Gimenez and Choquet 2010).

What these models have in common is that they include

statistical relationships between data and unknown quan-

tities, such as true abundances in a state–space model or

random effects values in a CMR model, that in turn have

statistical relationships to model parameters. Indeed, a
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DCLONE: DATA CLONING IN R

dclone: Data Cloning in R
by Péter Sólymos

Abstract The dclone R package contains low
level functions for implementing maximum like-
lihood estimating procedures for complex mod-
els using data cloning and Bayesian Markov
chain Monte Carlo methods with support for
JAGS, WinBUGS and OpenBUGS.

Introduction

Hierarchical models, including generalized linear
models with mixed random and fixed effects, are
increasingly popular. The rapid expansion of ap-
plications is largely due to the advancement of the
Markov chain Monte Carlo (MCMC) algorithms and
related software (Gelman et al., 2003; Gilks et al.,
1996; Lunn et al., 2009). Data cloning is a statistical
computing method introduced by Lele et al. (2007). It
exploits the computational simplicity of the MCMC
algorithms used in the Bayesian statistical frame-
work, but it provides the maximum likelihood point
estimates and their standard errors for complex hi-
erarchical models. The use of the data cloning al-
gorithm is especially valuable for complex models,
where the number of unknowns increases with sam-
ple size (i.e. with latent variables), because inference
and prediction procedures are often hard to imple-
ment in such situations.

The dclone R package (Sólymos, 2010) provides
infrastructure for data cloning. Users who are famil-
iar with the Bayesian methodology can instantly use
the package for maximum likelihood inference and
prediction. Developers of R packages can build on
the low level functionality provided by the package
to implement more specific higher level estimation
procedures for users who are not familiar with the
Bayesian methodology. This paper demonstrates the
implementation of the data cloning algorithm, and
presents a case study on how to write high level func-
tions for specific modeling problems.

Theory of data cloning

Imagine a hypothetical situation where an experi-
ment is repeated by k different observers, and all k
experiments happen to result in exactly the same set
of observations, y(k) = (y,y, . . . ,y). The likelihood
function based on the combination of the data from
these k experiments is L(θ,y(k)) = [L(θ,y)]k. The lo-
cation of the maximum of L(θ,y(k)) is exactly equals
the location of the maximum of the function L(θ,y),
and the Fisher information matrix based on this like-
lihood is k times the Fisher information matrix based
on L(θ,y).

One can use MCMC methods to calculate the pos-
terior distribution of the model parameters (θ) condi-
tional on the data. Under regularity conditions, if k
is large, the posterior distribution corresponding to k
clones of the observations is approximately Normal
with mean θ̂ and variance 1/k times the inverse of
the Fisher information matrix. When k is large, the
mean of this posterior distribution is the maximum
likelihood estimate and k times the posterior vari-
ance is the corresponding asymptotic variance of the
maximum likelihood estimate if the parameter space
is continuous. When some of the parameters are on
the boundaries of their feasible space (Stram and Lee,
1994), point estimates can be correct, but currently
the Fisher information cannot be estimated correctly
by using data cloning. This is an area for further re-
search, but such situations challenge other comput-
ing techniques as well.

Data cloning is a computational algorithm to
compute maximum likelihood estimates and the in-
verse of the Fisher information matrix, and is related
to simulated annealing (Brooks and Morgan, 1995).
By using data cloning, the statistical accuracy of the
estimator remains a function of the sample size and
not of the number of cloned copies. Data cloning
does not improve the statistical accuracy of the esti-
mator by artificially increasing the sample size. The
data cloning procedure avoids the analytical or nu-
merical evaluation of high dimensional integral, nu-
merical optimization of the likelihood function, and
numerical computation of the curvature of the like-
lihood function. Interested readers should consult
Lele et al. (2007, 2010) for more details and mathe-
matical proofs for the data cloning algorithm.

The data cloning algorithm

Let us consider the following Poisson generalized
linear mixed model (GLMM) with a random inter-
cept for i.i.d. observations of Yi counts from i =
1,2, . . . ,n localities:

αi ∼ Normal(0,σ2)

λi = exp(αi + XT
i β)

(Yi | λi) ∼ Poisson(λi).

The corresponding code for the simulation looks like
(β = (1.8,−0.9), σ = 0.2, xi ∼ U(0,1)):

> library(dclone)
> set.seed(1234)
> n <- 50
> beta <- c(1.8, -0.9)
> sigma <- 0.2
> x <- runif(n, min = 0, max = 1)
> X <- model.matrix(~ x)
> alpha <- rnorm(n, mean = 0, sd = sigma)
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Abstract.—

The success of model-based methods in phylogenetics has motivated much research

aimed at generating new, biologically informative models. This new computer-intensive

approach to phylogenetics demands validation studies and sound measures of performance.

To date there has been little practical guidance available as to when and why the

parameters in a particular model can be identified reliably. Here, we illustrate how Data

Cloning (DC), a recently developed methodology to compute the Maximum Likelihood

estimates along with their asymptotic variance, can be used to diagnose structural

parameter non-identifiability (NI) and distinguish it from other parameter estimability

problems, including when parameters are structurally identifiable, but are not estimable in

a given data set (INE), and when parameters are identifiable, and estimable, but only

weakly so (WE).The application of the DC theorem uses well-known and widely used
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7.  Concluding remarks

Hierarchical models offer a quantum leap in the complexity of statistical modeling

Statistical inferences (fitting the models to data, model selection, etc) for HMs
can be Bayesian or frequentist

 Bayesian inference uses the probability of personal beliefs as summarized
   through prior and posterior distributions on parameter spaces.  Prior
   personal beliefs are mixed with the data to produce the inferences.

 Frequentist inference uses the long-run probability of data outcomes
   (probability on sample spaces).

Both Bayesian and frequentist inferences for HMs can be calculated with the
MCMC intensive simulation algorithms

Frequentist ML estimation with the method of data cloning provides a simple tool
for diagnosing problems with parameter estimability



 

 

 

 

Hierarchical models are not Bayesian 
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