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Model:

R œ 1ÐR> >", ))

where  is population abundance at time R >>

) is a vector of parameters

Data:

 American Redstart     BBS # 02012 3336 08545
        # 02014 3328 08636
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1.  OVERVIEW:  CONNECTING
ECOLOGICAL MODELS WITH TIME SERIES
DATA

Approach:  convert deterministic population models
into stochastic time series models (explicitly model
fluctuations)

A.  Process noise

Types:  demographic, environmental, catastrophic,
etc.
ex.  environmental

R œ 1ÐR> >", ) (deterministic))

ln ln , ) (stochastic)R œ 1ÐR  I> >" >)

where  is a random noise process;  typicalI>

assumption is that normal( , ) and , ,I µ ! I I> " #
#5

I$, ... are uncorrelated.

Notes:
 •  , , , ... are R R R! " # dependent

 •  conditional distribution of  ln  given R R> >"

  is normal( ln , ), )œ 8 1Ð8>" >"
#) 5



Observations:  , , , ..., 8 8 8 8! " # ;

Likelihood:

P œ 0 8 8 0 8 8 â0 8 8ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰¸ ¸ ¸) 5, #
" ! # " ; ;"
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ML estimates of parameters in  minimize:)

CSS ln ln ,œ 8  1 8c d
>œ"

;
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conditional sum of squares



B.  Observation (sampling) error

R œ 1ÐR> >", ))

] œ R  J> > >

where normal( , ) and , , , ... areJ µ ! J J J> ! " #
#7

uncorrelated.

Notes:
 •  , ) is deterministic solutionR œ 2Ð>> )
     trajectory
 •  Initial pop. size  is an unknownR œ 8! !

     model parameter
 •  , , ...,  are ] ] ]! " ; independent



Observations:  , , , ..., C C C C! " # ;

Likelihood:

P 8 œ 0 C 0 C â0 Cˆ ‰) 7, ,# ! ! " ;

where
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ML estimates of parameters in  minimize:)
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;

>
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trajectory sum of squares



C.  Combining process noise and observation
error

ln ln ,R œ 1ÐR Ñ  I> >" >)

] œ R  J> > >

“state space model”
Notes:
 •  Observations , , ...,  are not just] ] ]! " ;

     , they are also dependent not Markov
 •  Usually, likelihood function (a repeated
     integral) cannot be written in simple form
 •  Various approaches:  likelihood via numerical
     simulation, Bayesian, etc (reviews by de
     Valpine 2002 ,Bulletin of Marine Science
     and Clark and Bjørnstad 2004 )Ecology
 •  Parameter estimates (especially of  and )5 7# #

     tend to be  and biased confounded



2.  THE MODEL

A.  The process model

Population abundance is assumed to change
according to a discrete-time, stochastic Gompertz
model.  The Gompertz growth process takes the
density dependence term to be proportional to
ln :R>"

R œ R +  , R  I> >" >" >exp ln .

Here  and  are constants, and  has a normal+ , I>

distribution with mean  and variance , written! 5#

I µ ! I I> " #
#normal , .  Also, , , ... are assumed to5

be uncorrelated.

Let ln .  On the logarithmic scale,\ œ R> >

\ œ +  -\  I> >" > .

Here .  Note:  is a first-order- œ Ð,  "Ñ \>

autoregressive process (AR(1) process).



B.  Properties of the process model

•  If , then the probability distribution for -  " \>

approaches a  as  becomesstationary distribution >
large:

\ µ
+

"  - "  -
∞

#

#
normal , .Œ 5

The stationary distribution for exp  is aR œ \∞ ∞

lognormal distribution.

•  If , then the model for  is a discrete-time- œ " \>

version of Brownian motion with drift.  The
corresponding model for  is a discrete-time,R>

stochastic model of exponential population growth
(or decline).  This is the density-independent
population growth model studied by Dennis et al.
(1991 ).Ecological Monographs



C.  Model with process noise and sampling error

Let  denote the   population]> estimated logarithmic
abundance (estimated value of ).  The error is\>

assumed to be normally distributed.  Thus the full
model is:

\ œ +  -\  I> >" > ,

] œ \  J> > > .

Here I µ ! J µ !> >
# #normal , , normal , , and5 7

the random errors/noises are assumed free of auto- or
cross-correlations.  The model implies that the
sampling error inherent in estimating  isR>

lognormal state-space model.  The model is a  with an
underlying, unobserved process  and an observed\>

process .  The parameter  is the variance of the]>
#7

log-scale estimation error.



D.  Properties of the model with process noise plus
sampling error

•  If , then the probability distribution for -  " ]>

approaches a  as  becomesstationary distribution >
large:

] µ 
+

"  - "  -
∞

#

#
#normal , .Œ 5
7

•  If , then the model for  is a discrete-time- œ " ]>

version of error-corrupted Brownian motion with
drift.  The model represents a discrete-time,
stochastic model of exponential population growth
(or decline) with lognormal sampling error.  This is
the model studied by Holmes (2001 Proceedings of
the National Academy of Sciences USA) and Holmes
and Fagan (2002 ).  They proposed aEcology
variance regression method for estimating
parameters.



3.  THE LIKELIHOOD FUNCTION:  PROCESS
NOISE PLUS SAMPLING ERROR

A.  Multivariate normal likelihood

It can be shown that the observations ,]!  , , ...,] ]" #

];  have a joint multivariate normal distribution,
provided  arises from the stationary distribution,]!

with:

E ,] œ
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The likelihood function is the multivariate normal
pdf, evaluated at the data :y œ c dC C C! " ;, , ..., w

 , , , P + - 5 7# # œ

k k ” •" "

#
  

#1 Ð;"ÑÎ# "Î#

w "

V
y V yexp .. .



Interestingly, the likelihood function is identical to
that of an AOV mixed effects model with repeated
measures. SAS PROC MIXED can be “tricked” into
calculating parameter estimates!

The AOV model: one subject (fixed intercept), with
repeated measures on the subject (having AR(1)
covariance structure), and random time effect. SAS
program is appended with these notes.



B.  The Kalman filter

Like the process-noise-only case, the likelihood
P + -, , ,  for the model with process noise and5 7# #

sampling error can be decomposed into a product of
univariate normal pdfs.  However, the process  is]>

89> a Markov process:  that is, given , the] œ C>" >"

distribution of  (or any future value of the process)]>

does depend on any and all values of the process
prior to time .  The pdf for , given>  " ]>

] œ C ] œ C ] œ C>" >" ># ># ! !, , ...,  is that of a
normal distribution with mean  and variance 7 @> >

#

that are computed recursively using the history of the
observations:
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If the initial population is assumed to arise from the
stationary distribution, the recursions are initiated at
the stationary mean and variance:  ,7 œ +ÎÐ"  -Ñ!

@ œ!
# c d5 7# # #

!Î "  -  ].  The pdf for  is that of
the stationary normal distribution:

0ÐC Ñ œ @ 
C 7

@
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#

!
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ˆ ‰ – —2 exp .
2

1

The recursion expressions for  and  are7 @> >
#

contained in a set of general equations known as the
Kalman filter.  Derivation of the expressions is
straightforward;  the derivation uses repeated
applications of properties of the bivariate normal
distribution.



With the conditional normal pdfs in hand, the
likelihood function is thus

PÐ+ - Ñ œ, , , 5 7# #
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4.  REML ESTIMATION USING FIRST
DIFFERENCES ( STRICTED AXIMUMRE M
LIKELIHOOD)

A.  First differences

First differences are defined as:

[ œ ]  ]> > >"

for 1, 2, ..., .  Then , , ...,  have a joint> œ ; [ [ [" # ;

multivariate normal distribution with
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B.  Likelihood function for REML

The data are , , ...,A œ C  C A œ C  C" " ! # # "

A œ C  C -; ; ;"
#.  The unknown parameters are , ,5

7# (  is eliminated in the distribution of the+
differences).  The likelihood function is denoted
P -, , :5 7# #

w œ A A Ac d" # ;
w, , ...,

P - œ, ,5 7# #

k k Œ1 1
2

exp
21 ;Î# "Î#

"

F
F w ww



C.  ML estimate of , with the elements of V+
known (i.e fixed at REML values):

+ œ  -s 1 .
j V y
j V j

w "

w "



5.  EXAMPLES

A.  Data sets

 Breeding Bird Survey:  American Redstart (2
       locations)
 Simulation

B.  Simulated properties of parameter estimates

 ML

 REML
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.



6.  DISCUSSION POINTS

•  There  information in population time-series datais
for jointly estimating density dependence, process
noise, and observation error, and a variety of
modeling approaches (of varying computational
complexity).  Estimation is tricky and needs hands-on
attention.  Linear Gaussian model can be adapted, via
transforming to logarithmic scale, for more realistic
ecological uses.

•  ML estimation for the linear Gaussian model
( Kalman filter) requires care but works reasonablyœ
well (simulations).  Likelihood is  ridge-routinely
shaped & multimodal.  The proper solution of the
likelihood equation (giving statistically consistent
estimates) frequently is  the  likelihoodnot global
maximum.  Published ML simulations for other
models which did not accomodate multimodality are
suspect.

•  REML works reasonably well (preliminary
simulations);  seems to fix the some of the ML bias
problems.



•  Lognormal sampling model is a realistic model of
ecological sampling under heterogeneous conditions:
Poisson “mixture” models typically have constant
coefficients of variation (as a function of size of
population being sampled).

•  Gompertz process model has held its own in
comparative density dependence model-fitting
studies (usually fits as well as logistic/Ricker/Bev-
Holt).

•  SAS program!



 
Supplement:  SAS program for calculating parameter estimates for the 
Gompertz state space model. 
 
Dennis et al.:  Estimating density dependence, process noise, and observation error. 
Ecology. 
 
/*--------------------------------------------------------------------------*/ 
/*       PARAMETER ESTIMATES FOR THE GOMPERTZ STATE SPACE MODEL             */ 
/*  SAS program to calculate parameter estimates for the Gompertz state-    */ 
/*  space model, using time series population abundance estimates.  The     */ 
/*  GSS model is given by                                                   */ 
/*        X(t) = a + cX(t-1) + E(t)                                         */ 
/*        Y(t) = X(t) + F(t)                                                */ 
/*  where X(t) is the natural logarithm of population abundance N(t)        */ 
/*  (assumed unknown), Y(t) is the observed value of X(t), E(t) has a       */ 
/*  normal distribution with mean 0 and variance sigmasquared, F(t) has     */ 
/*  a normal distribution with mean 0 and variance tausquared (with no      */ 
/*  auto- or cross-correlations in E(t) and F(t)), and t is time.  Unknown  */ 
/*  model parameters are a, c, sigmasquared, tausquared.  Data to be        */ 
/*  input into the program consist of observed or estimated population      */ 
/*  abundances O(0), O(1), O(2), .., O(q) (estimates of N(0), N(1), etc.),  */ 
/*  along with the values of t.  The program currently does not accomodate  */ 
/*  missing observations.                                                   */ 
/*                                                                          */ 
/*  Program transforms data to logarithmic scale:  Y(t) = ln[O(t)].  The    */ 
/*  program recasts the model as a linear mixed model with:  (1)  repeated  */ 
/*  measures on one subject having an AR(1) covariance structure, and (2)   */ 
/*  a random effect due to time (considered as a categorical variable).     */ 
/*  The random effect represents the extra variance component due to ob-    */ 
/*  servation error and produces a "nugget" (augmented main diagonal) in    */ 
/*  the var-cov matrix for the observations.                                */ 
/*                                                                          */ 
/*  The example data are from the North American Breeding Bird Survey       */ 
/*  (record # 0214332808636, American Redstart), and correspond to Table 1  */ 
/*  and Figure 1 of Dennis et al. (200X).                                   */ 
 
options nocenter; 
data in; 
input observed time; 
y = log(observed); 
cards;    
 18 0 
 10 1 
  9 2 
 14 3 
 17 4 
 14 5 
  5 6 
 10 7 
  9 8 
  5 9 
11 10 
11 11 
 4 12 
 5 13 



 4 14 
 8 15 
 2 16 
 3 17 
 9 18 
 2 19 
 4 20 
 7 21 
 4 22 
 1 23 
 2 24 
 4 25 
11 26 
11 27 
 9 28 
 6 29 
; 
proc mixed  method=ml alpha=.05 noitprint noinfo data = in; 
 
/*  Restricted maximum likelihood (REML) is the default estimation method  */ 
/*  in PROC MIXED (SAS System for Windows Version 9.1).  Delete "method=   */ 
/*  ml" (or substitute "method=reml") in list of options in the above      */ 
/*  "proc mixed" statement for REML estimation if desired.  Also, the      */ 
/*  value of alpha, for asymptotic 100(1-alpha)% confidence intervals for  */ 
/*  parameters, can be changed in the option list.                         */ 
 
 
class time; 
model y= ; 
random time; 
repeated / type=ar(1) subject=intercept; 
estimate 'intercept' intercept 1; 
 
run; 
quit; 
/*-------------------------------------------------------------------------*/ 
 
 
 
/*-------------------------------------------------------------------------*/ 
/*           ANNOTATED OUTPUT OF THE GSS ESTIMATION PROGRAM                */ 
/*                                                                         */ 
/*  The following output was generated using SAS/STAT software, Version    */ 
/*  9.1 of the SAS System for Windows. Copyright (c) 2002-2003 SAS         */ 
/*  Institute Inc.  SAS and all other SAS Institute Inc. product or        */ 
/*  service names are registered trademarks or trademarks of SAS Institute */ 
/*  Inc., Cary, NC, USA.                                                   */ 
 
The SAS System 
 
The Mixed Procedure 
 
             Class Level Information 
 
Class    Levels    Values 
 
time         30    0 1 2 3 4 5 6 7 8 9 10 11 12 



                   13 14 15 16 17 18 19 20 21 22 
                   23 24 25 26 27 28 29 
 
 
                   Covariance Parameter Estimates 
 
Cov Parm     Subject      Estimate     Alpha       Lower       Upper 
 
time                        0.2315      0.05     0.08439      1.7944 
AR(1)        Intercept      0.7934      0.05      0.1859      1.4010 
Residual                    0.2625      0.05     0.08314      3.9119 
 
/*  In the "Estimate" column, the value listed for "time" is the estimate  */ 
/*  of tausquared, for "AR(1)" is c, and for "residual" is                 */ 
/*  sigmasquared/(1 - c*c) (the stationary variance of X(t)).  "Lower"     */ 
/*  and "Upper" columns give boundaries of asymptotic 95% confidence       */ 
/*  intervals for the parameters, based on inversion of the information    */ 
/*  matrix (Hessian of the log-likelihood).  The CIs have unknown coverage */ 
/*  properties for small- and moderate-lengthed time series.  The CI for   */ 
/*  c, along with the large value of the stationary variance upper bound,  */ 
/*  might suggest that the density independent model (c=1) is a viable     */ 
/*  model for the data.  A SAS program to fit the density independent      */ 
/*  state space model was provided as a supplement to Staples et al.       */ 
/*  (2004).                                                                */ 
 
 
           Fit Statistics 
 
-2 Log Likelihood                57.0 
AIC (smaller is better)          65.0 
AICC (smaller is better)         66.6 
BIC (smaller is better)          70.6 
 
/*  These "fit statistics" can be used for model selection, in comparison  */ 
/*  to other models fitted to the data.                                    */ 
 
                           Estimates 
 
                         Standard 
Label        Estimate       Error      DF    t Value    Pr > |t| 
 
intercept      1.9021      0.2645      29       7.19      <.0001 
 
/*  The estimate listed for "intercept" is the estimate of a/(1-c), the    */ 
/*  stationary mean of X(t).  The "Standard Error" is an asymptotic        */ 
/*  estimate based on the information matrix.  The t-test for the null     */ 
/*  hypothesis that a/(1-c)=0 is nonsensical in the context of the model.  */ 
/*                                                                         */ 
/*  Thus for the example BBS data, the ML parameter estimates are:         */ 
/*                                                                         */ 
/*             tausquared = 0.2315                                         */ 
/*             c = 0.7934                                                  */ 
/*             sigmasquared = 0.2625*(1 - c*c) = 0.09726                   */ 
/*             a = 1.9021*(1-c) = 0.3930                                   */ 
/*                                                                         */ 
/*  Compare with ML estimates, Table 1, Dennis et al. (200X).  Small       */ 
/*  numerical differences are due to roundoff error in SAS.                */ 



/*-------------------------------------------------------------------------*/ 
 
 
/*-------------------------------------------------------------------------*/ 
/*                           REFERENCES                                    */ 
/*                                                                         */ 
/*  Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F.         */ 
/*    Staples.  200X.  Estimating density dependence, process noise, and   */ 
/*    observation error.  Ecology XX:XXX-XXX, with supplement in           */ 
/*    Ecological Archives XXXX-XXX-XX.                                     */ 
/*                                                                         */ 
/*                                                                         */ 
/*  Staples, D. F., M. L. Taper, and B. Dennis.  2004.  Estimating         */ 
/*    population trend and process variation for PVA in the presence of    */ 
/*    sampling error.  Ecology 85:923-929, with supplement in Ecological   */ 
/*    Archives E085-025-S1.                                                */ 
/*                                                                         */ 
/*-------------------------------------------------------------------------*/ 
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