https://www.webpages.uidaho.edu/~brooksr/

Assignment number	due date	Problems
1	Friday, Sept. 2	$1.7,1.16,1.19,1.20,1.29,1.30$
2	Friday, Sept. 9	$1.43,2.4,2.5$
3	Friday, Sept. 16	$2.16,2.22,2.25,2.30,2.33,2.40$
4	Friday, Sept. 23	$3.29,3.31,3.42,3.47$
5	Friday, Sept. 30	$3.50,3.51,3.53,4.7,4.8$
6	Friday, Oct. 7	$4.21,4.22,4.28$
7	Friday, Oct. 21	$5.11,5.18,5.22$
8	Friday, Oct. 28	$5.26,5.34,6.5,6.11$
9	Friday, Nov. 4	$6.24,6.44,6.48,6.52$
10	Friday, Nov. 11	$6.59,7.2,7.8,7.23$
11	Friday, Nov. 18	$7.45,7.46,7.47$
12	Friday, Dec. 2	$8.5,8.15,8.28$

Contents

Homework grading scheme 1
Hints 2
Assignment 2 2
Assignment 5 2
Assignment 6 2
Assignment 8 2
Suggested solutions to selected problems 3
Assignment 1 3
Assignment 2 5
Assignment 3 6
Assignment 4 7
Assignment 5 9
Assignment 6 11
Assignment 8 15
Assignment 11 17

Homework grading scheme

Each problem is worth ten points. Points for a problem are assessed as follows:
points marking guide
10-9 Correct and complete solution with possibly a small mistake or oversight
8-7 Essentially a correct solution, with a bigger mistake or oversight
6-5 Correct idea for a solution, but substantially incomplete
5-0 Attempted problem, with parts of a solution

Hints

Assignment 2

1.43. If $f=\sum_{i=0}^{\infty} f_{i}, g=\sum_{i=0}^{\infty} g_{i} \in R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ then $f g=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} f_{j} g_{i-j}\right)$ (see Sharp p. 11). Hence, $f g=1$ if and only if

$$
\begin{aligned}
& 1=f_{0} g_{0}, \\
& 0=f_{0} g_{1}+f_{1} g_{0}, \\
& 0=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0},
\end{aligned}
$$

2.5 Use the binomial theorem, which is valid in any commutative ring R : If $x, y \in R$, and $n \in \mathbb{N}$, then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}, \quad\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

2.22 It may be useful to use the (total) degree function deg : $K\left[X_{1}, X_{2}\right]-0 \rightarrow \mathbb{N}$ (see p. 9 of Sharp). This function satisfies $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$ for non-zero elements p and q of $K\left[X_{1}, X_{2}\right]$.

Assignment 5

For Exercise 3.50 and Exercise 3.51 consider using Corollary 3.49. For Exercise 4.7 first read and understand Exercise 2.46. For Exercise 4.8 consider using Exercise 4.7.

Assignment 6

For Exercise 4.28, prove that the ideal $\left(X^{3}, X Y, Y^{n}\right)$ is primary by finding a maximal ideal M and $k \in \mathbb{N}$ such that

$$
M^{k} \subseteq\left(X^{3}, X Y, Y^{n}\right) \subseteq M,
$$

take radicals, and apply Proposition 4.9.

Assignment 8

For Exercise 5.34, assume that R does admit a non-zero nilpotent element x and obtain a contradiction via the following idea. Consider $I=\{r \in R: r x=0\}$. Then $I=(0: x)$, and I is thus
an ideal of R. If $I=R$, then $1 \cdot x=0$, which is a contradiction. Assume that $I \varsubsetneqq R$, so that I is a proper ideal. Since I is a proper ideal, I is included inside a maximal ideal M. Since M is a maximal ideal, M is a prime ideal. Consider R_{M} and the image $x / 1$ in R_{M} of x under the natural map. The element $x / 1$ is nilpotent. By the hypothesis of this exercise we must have $x / 1=0 / 1$. Now obtain the final contradiction.

Suggested solutions to selected problems

Assignment 1

1.16 Let R^{\prime} be a commutative ring, and let $\xi_{1}, \ldots, \xi_{n} \in R^{\prime}$ be algebraically independent over the subring R of R^{\prime}. Let T be a commutative R-algebra with structural ring homomorphism $f: R \rightarrow T$ and let $\alpha_{1}, \ldots, \alpha_{n} \in T$. Show that there is exactly one ring homomorphism

$$
g: R\left[\xi_{1}, \ldots, x_{n}\right] \longrightarrow T
$$

which extends f (that is, is such that $\left.g\right|_{R}=f$) and is such that $g\left(\xi_{i}\right)=\alpha_{i}$ for all $i=1, \ldots, n$.
Suggest solution: We begin with some notation. For $\lambda=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}$ we will write

$$
\xi^{\lambda}=\xi_{1}^{i_{1}} \cdots \xi_{n}^{i_{n}} .
$$

With this notation every element p of $R\left[\xi_{1}, \ldots, \xi_{n}\right]$ can be written uniquely in the form

$$
p=\sum_{\lambda \in \mathbb{N}_{0}^{n}} r_{\lambda} \xi^{\lambda}
$$

where $r_{\lambda} \in R$ for $\lambda \in \mathbb{N}_{0}^{n}$ and $r_{\lambda}=0$ for all but finitely many $\lambda \in \mathbb{N}_{0}^{n}$ (see 1.14). If

$$
q=\sum_{\lambda \in \mathbb{N}_{0}^{n}} s_{\lambda} \xi^{\lambda}
$$

is another element of $R\left[\xi_{1}, \ldots, \xi_{n}\right]$, then we have

$$
\begin{aligned}
p+q & =\sum_{\lambda \in \mathbb{N}_{0}^{n}}\left(r_{\lambda}+s_{\lambda}\right) \xi^{\lambda}, \\
p g & =\sum_{\lambda \in \mathbb{N}_{0}^{n}}\left(\sum_{\substack{\lambda_{1}, \lambda_{2} \in \mathbb{N}_{0}, \lambda_{1}+\lambda_{2}=\lambda}} r_{\lambda_{1}} s_{\lambda_{2}}\right) \xi^{\lambda} .
\end{aligned}
$$

We now define

$$
g: R\left[\xi_{1}, \ldots, x_{n}\right] \longrightarrow T
$$

by

$$
g(p)=\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(r_{\lambda}\right) \alpha^{\lambda}
$$

for p as above; here, for $\lambda=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}$ we define $\alpha^{\lambda}=\alpha_{1}^{\lambda_{1}} \cdots \alpha_{n}^{\lambda_{n}}$. With p and q as above, and using that f is a ring homomorphism, we have:

$$
\begin{aligned}
g(p+q) & =g\left(\sum_{\lambda \in \mathbb{N}_{0}^{n}}\left(r_{\lambda}+s_{\lambda}\right) \xi^{\lambda}\right) \\
& =\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(r_{\lambda}+s_{\lambda}\right) \alpha^{\lambda} \\
& =\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(r_{\lambda}\right) \alpha^{\lambda}+\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(s_{\lambda}\right) \alpha^{\lambda} \\
& =g(p)+g(q) .
\end{aligned}
$$

And:

$$
\begin{aligned}
g(p q) & =g\left(\sum_{\lambda \in \mathbb{N}_{0}^{n}}\left(\sum_{\substack{\lambda_{1}, \lambda_{2} \in \mathbb{N}_{0}, \lambda_{1}+\lambda_{2}=\lambda}} r_{\lambda_{1} s_{\lambda_{2}}}\right) \xi^{\lambda}\right) \\
& =\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(\sum_{\substack{\lambda_{1}, \lambda_{2} \in \mathbb{N}_{0}, \lambda_{1}+\lambda_{2}=\lambda}} r_{\lambda_{1}} s_{\lambda_{2}}\right) \alpha^{\lambda} \\
& =\left(\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(r_{\lambda}\right) \alpha^{\lambda}\right)\left(\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(s_{\lambda}\right) \alpha^{\lambda}\right) \\
& =g(p) g(q) .
\end{aligned}
$$

It is clear that $g(1)=1$. It follows that g is a ring homomorphism. It is also clear that g extends f. Finally, to prove that g has the required uniqueness property, assume that $h: R\left[\xi_{1}, \ldots, \xi_{n}\right] \rightarrow T$ is another right homomorphism such that $\left.h\right|_{R}=f$ and $h\left(\xi_{i}\right)=\alpha_{i}$ for all $i=1, \ldots, n$. Let p be as above. We then have

$$
\begin{aligned}
h(p) & =h\left(\sum_{\lambda \in \mathbb{N}_{0}^{n}} r_{\lambda} \xi^{\lambda}\right) \\
& =\sum_{\lambda \in \mathbb{N}_{0}^{n}} h\left(r_{\lambda}\right) h\left(\xi^{\lambda}\right) \\
& =\sum_{\lambda \in \mathbb{N}_{0}^{n}} f\left(r_{\lambda}\right) \alpha^{\lambda} \\
& =g(p) .
\end{aligned}
$$

It follows that $h=g$.
1.19 Let K be an infinite field, let Λ be a finite subset of K, and let $f \in K\left[X_{1}, \ldots, X_{n}\right]$, the ring of polynomials over K in the indeterminates X_{1}, \ldots, X_{n}. Suppose that $f \neq 0$. Show that there exist infinitely many choices of

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(K-\Lambda)^{n}
$$

for which $f\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$.
Suggest solution: We prove this by induction on n. The case $n=1$ is clear because a non-zero polynomial in one variable over K has finitely many distinct roots and $K-\Lambda$ is infinite. Assume that $n>1$ and that the statement holds for $n-1$; we will prove that it holds for n. There exists a non-negative integer N such that

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{k=0}^{N} f_{k}\left(X_{1}, \ldots, X_{n-1}\right) X_{n}^{k}
$$

where $f_{k}\left(X_{1}, \ldots, X_{n-1}\right) \in K\left[X_{1}, \ldots, X_{n-1}\right]$ for $k=1, \ldots, N$, and $f_{N}\left(X_{1}, \ldots, X_{n-1}\right)$ is non-zero. By the induction hypothesis, there exists $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in(K-\Lambda)^{n-1}$ such that $f_{N}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \neq$ 0 . Consider the polynomial

$$
g\left(X_{n}\right)=f\left(\alpha_{1}, \ldots, \alpha_{n-1}, X_{n}\right)=\sum_{k=0}^{N} f_{k}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) X_{n}^{k}
$$

in the variable X_{n}. This polynomial is non-zero because $f_{N}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \neq 0$. By the case $n=1$, there exist infinitely many $\alpha_{n} \in K-\Lambda$ such that $g\left(\alpha_{n}\right) \neq 0$, i.e., $f\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$; moreover, for any such α_{n} we have $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(K-\Lambda)^{n}$. This proves the statement for n.

Assignment 2

1.43 Let R be a commutative ring, and consider the ring $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ of formal power series over R in indeterminates $X_{1}, \ldots X_{n}$. Let

$$
f=\sum_{i=0}^{\infty} f_{i} \in R\left[\left[X_{1}, \ldots, X_{n}\right]\right]
$$

where f_{i} is either zero or a homogeneous polynomial of degree i in $R\left[X_{1}, \ldots, X_{n}\right]$ (for each $i \in \mathbb{N}_{0}$). Prove that f is a unit of $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ if and only if f_{0} is a unit of R.
Suggest solution: Assume that f is a unit. Let $g \in R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be such that $f g=1$. Let $g=\sum_{i=0}^{\infty} g_{i}$ be the standard representation of g. Now

$$
f g=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} f_{j} g_{i-j}\right)
$$

and this expression is the standard representation of $f g$ in $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Since $f g=1$ we must therefore have

$$
1=f_{0} g_{0} \quad \text { and } \quad 0=\sum_{j=0}^{i} f_{j} g_{i-j} \quad \text { for } i>0
$$

In particular, we see that $f_{0} g_{0}=1$, i.e., f_{0} is a unit. Now assume that f_{0} is a unit. We inductively define a sequence $\left(g_{i}\right)_{i \in \mathbb{N}_{0}}$ by setting $g_{0}=f_{0}^{-1}$, and for $i>0$,

$$
g_{i}=-f_{0}^{-1}\left(\sum_{j=1}^{i} f_{i} g_{i-j}\right) .
$$

Evidently, each g_{i} is either zero or a homogeneous polynomial of degree i in $R\left[X_{1}, \ldots, X_{n}\right]$. Also, we have $f_{0} g_{0}=1$ and for $i>0$,

$$
0=\sum_{j=0}^{i} f_{j} g_{i-j} .
$$

Now define

$$
g=\sum_{i=0}^{\infty} g_{i} .
$$

Then g is in $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, and this is the standard representation of g. Using the above formula for $f g$ we see that $f g=1$.

Assignment 3

2.22 Let K be a field. Show that the ideal $\left(X_{1}, X_{2}\right)$ of the commutative ring $K\left[X_{1}, X_{2}\right]$ (of polynomials over K in indeterminates X_{1}, X_{2}) is not principal.
Suggest solution: Assume that $\left(X_{1}, X_{2}\right)=(f)$ for some $f \in K\left[X_{1}, X_{2}\right]$; we will obtain a contradiction. Since $X_{1}, X_{2} \in(f)$, there exist $g_{1}, g_{2} \in K\left[X_{1}, X_{2}\right]$ such that

$$
X_{1}=g_{1} f, \quad X_{2}=g_{2} f
$$

Applying the degree function to the first equation we obtain

$$
\begin{aligned}
\operatorname{deg}\left(X_{1}\right) & =\operatorname{deg}\left(g_{1} f\right) \\
1 & =\operatorname{deg}\left(g_{1}\right)+\operatorname{deg}(f) .
\end{aligned}
$$

Similarly,

$$
1=\operatorname{deg}\left(g_{2}\right)+\operatorname{deg}(f)
$$

Since $\operatorname{deg}(f), \operatorname{deg}\left(g_{1}\right)$, and $\operatorname{deg}(f)$ are in \mathbb{N}_{0}, we must have $\operatorname{deg}(f)=0$ or $\operatorname{deg}(f)=1$. Assume first that $\operatorname{deg}(f)=0$. Then $f \in K$. Moreover, since $f \neq 0$ (otherwise $X_{1}=0$ and $X_{2}=0$, which is impossible), f is a unit in K and hence a unit in $K\left[X_{1}, X_{2}\right]$. Now $f \in\left(X_{1}, X_{2}\right)$. Hence, there exist
$h_{1}, h_{2} \in K\left[X_{1}, X_{2}\right]$ such that

$$
f=h_{1} X_{1}+h_{2} X_{2} .
$$

Evaluating both sides at $X_{1}=0$ and $X_{2}=0$, we obtain $f=0$, a contradiction (recall that we just showed that f is a non-zero constant). Hence, $\operatorname{deg}(f)=1$. It follows that $\operatorname{deg}\left(g_{1}\right)=\operatorname{deg}\left(g_{2}\right)=0$, so that $g_{1}, g_{2} \in K$. Again, we see that g_{1} and g_{2} are non-zero and are hence units in K and hence units in $K\left[X_{1}, X_{2}\right]$. Now

$$
X_{1}=g_{1} f=g_{1} g_{2}^{-1} g_{2} f=g_{1} g_{2}^{-1} X_{2}
$$

That is,

$$
X_{1}=\left(g_{1} g_{2}^{-1}\right) X_{2}
$$

Evaluating both sides at $X_{1}=1$ and $X_{2}=0$, we obtain $1=0$, a contradiction.
$\mathbf{2 . 3 0}$ Let I, J be ideals of the commutative ring R. Show that

$$
\sqrt{I J}=\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}
$$

Let $r \in \sqrt{I J}$. Then there exists $n \in \mathbb{N}$ such that $r^{n} \in I J$. Since $I J \subseteq I \cap J$ we have $r^{n} \in I \cap J$. Hence, $r \in \sqrt{I \cap J}$. It follows that

$$
\sqrt{I J} \subseteq \sqrt{I \cap J}
$$

Let $r \in \sqrt{I \cap J}$. Then there exists $n \in \mathbb{N}$ such that $r^{n} \in I \cap J$. Since $I \cap J \subseteq I$ and $I \cap J \subseteq J$ we have $r \in \sqrt{I}$ and $r \in \sqrt{J}$. Thus, $r \in \sqrt{I} \cap \sqrt{J}$. It follows that

$$
\sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J}
$$

Let $r \in \sqrt{I} \cap \sqrt{J}$. Then there exist $m, n \in \mathbb{N}$ such that $r^{m} \in I$ and $r^{n} \in J$. Hence, $r^{m n}=r^{m} r^{n} \in I J$ so that $r \in \sqrt{I J}$. It follows that

$$
\sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I J}
$$

We have proven that

$$
\sqrt{I J} \subseteq \sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I J}
$$

This implies that

$$
\sqrt{I J}=\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}
$$

Assignment 4

3.29 Determine the prime ideals of the ring $\mathbb{Z} / 60 \mathbb{Z}$ of residue classes of integrs modulo 60 .

Suggest solution: By 3.28 , every prime ideal of $\mathbb{Z} / 60 \mathbb{Z}$ is of the form $P / 60 \mathbb{Z}$ where P is a prime ideal of \mathbb{Z} such that $60 \mathbb{Z} \subseteq P$. By 3.34, every prime ideal P of \mathbb{Z} such that $60 \mathbb{Z} \subseteq P$ is of the form $P=p \mathbb{Z}$, where p is a prime of \mathbb{Z} such that $60 \mathbb{Z} \subset p \mathbb{Z}$, i.e., $p \mid 60$. It follows that the prime ideals of $\mathbb{Z} / 60 \mathbb{Z}$ are $2 \mathbb{Z} / 60 \mathbb{Z}, 3 \mathbb{Z} / 60 \mathbb{Z}$, and $5 \mathbb{Z} / 60 \mathbb{Z}$.
3.31 Let R be an integral domain. Recall that for $a_{1}, \ldots, a_{n} \in R$, where $n \in \mathbb{N}$, a greatest common divisor (GCD for short) or highest common factor of a_{1}, \ldots, a_{n} is an element d of R such that
(i) $d \mid a_{i}$ for all $i=1, \ldots, n$, and
(ii) whenever $c \in R$ is such that $c \mid a_{i}$ for all $i=1, \ldots, n$, then $c \mid d$.

Show that every non-empty finite set of elements in a PID has a GCD.
Suggest solution: Assume that R is a PID, and let $a_{1}, \ldots, a_{n} \in R$. Consider the ideal (a_{1}, \ldots, a_{n}). Since R is a PID, there exists $d \in R$ such that $\left(a_{1}, \ldots, a_{n}\right)=(d)$. We claim that d is a GCD of a_{1}, \ldots, a_{n}. Since $a_{1}, \ldots, a_{n} \in\left(a_{1}, \ldots, a_{n}\right)=(d)$, we see that $d \mid a_{i}$ for $i=1, \ldots, n$. Assume that $c \in R$ is such that $c \mid a_{i}$ for $i=1, \ldots, n$. Let $r_{i} \in R$ be such that $a_{i}=r_{i} c$ for $i=1, \ldots, n$. Also, let x_{1}, \ldots, x_{n} be such that $x_{1} a_{1}+\cdots+x_{n} a_{n}=d$; note that x_{1}, \ldots, x_{n} exist because $d \in\left(a_{1}, \ldots, a_{n}\right)$. Then

$$
d=x_{1} a_{1}+\cdots+x_{n} a_{n}=x_{1} r_{1} c+\cdots x_{n} r_{n} c=\left(x_{1} r_{1}+\cdots x_{n} r_{n}\right) c .
$$

Thus, $c \mid d$.
3.42 Show that an irreducible element in a unique factorization domain R generates a prime ideal of R.

Suggest solution: Let $r \in R$ be irreducible. Then by definition r is non-zero and not a unit. Since r is not a unit we have $(r) \varsubsetneqq R$ (otherwise, $1 \in(r)$ so that r is a unit). Let $a, b \in R$ be such that $a b \in(r)$; to prove that (r) is a prime ideal it will suffice to prove that $a \in(r)$ or $b \in(r)$. If $a=0$ or $b=0$, then clearly $a \in(r)$ or $b \in(r)$; we may thus assume that $a \neq 0$ and $b \neq 0$. If a or b is a unit, then also $a \in(r)$ or $b \in(r)$; we may thus also assume that a and b are non-units. Since $a b \in(r)$, there exists $s \in R$ such that $a b=r s$. Since R is an integral domain we have $r s=a b \neq 0$; also, $r s$ is not a unit (otherwise (r) contains a unit, contradicting $(r) \varsubsetneqq R$). As R is a UFD, there exist irreducible elements $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{\ell}, y_{1}, \ldots, y_{n}$ in R such that

$$
a=p_{1} \cdots p_{k}, \quad b=q_{1} \cdots q_{\ell}, \quad r s=y_{1} \cdots y_{n}
$$

Since r is irreducible, we may assume that $y_{1}=v r$ for some unit v in R. Since $a b=r s$ we have

$$
p_{1} \cdots p_{k} q_{1} \cdots q_{\ell}=v r y_{2} \cdots y_{n} .
$$

Since r is irreducible and R is a UFD, there exists a unit u in R such that $r=u p_{i}$ for some $i \in\{1, \ldots, k\}$ or $r=u q_{j}$ for some $j \in\{1, \ldots, \ell\}$. Hence, $p_{i} \in(r)$ for some $i \in\{1, \ldots, k\}$ or $q_{j} \in(r)$ for some $j \in\{1, \ldots, \ell\}$ (recall that u is a unit, so that $p_{i}=u^{-1} r$ or $q_{j}=u^{-1} r$). This implies that $a \in(r)$ or $b \in(r)$, as desired.
3.47 Let P be a prime ideal of the commutative ring R. Show that $\sqrt{P^{n}}=P$ for all $n \in \mathbb{N}$.

Suggest solution: Let $n \in \mathbb{N}$. Let $x \in \sqrt{P^{n}}$. Then there exits $m \in \mathbb{N}$ such that $x^{m} \in P^{n}$. Now $P^{n} \subseteq P$. Hence, $x^{m} \in P$. Since P is prime we have $x \in P$. This proves that $\sqrt{P^{n}} \subseteq P$. Let $x \in P$. Then $x^{n} \in P^{n}$. Therefore, $x \in \sqrt{P^{n}}$. This proves that $P \subseteq \sqrt{P^{n}}$. We conclude that $P=\sqrt{P^{n}}$.

Assignment 5

3.50 Let R be a commutative ring, and let N be the nilradical of R. Show that the ring R / N has zero nilradical.

Suggest solution: Let $x \in R / N$ and assume that $n \in \mathbb{N}$ is such that $x^{n}=0_{R / N}$; we need to prove that $x=0_{R / N}$. Let $a \in R$ be such that $x=a+N$. Then $0_{R / N}=x^{n}=(a+N)^{n}=a^{n}+N$. This means that $N=a^{n}+N$ so that $a^{n} \in N$. Since $a^{n} \in N$ there exists $m \in \mathbb{N}$ such that $\left(a^{n}\right)^{m}=0$, i.e., $a^{n m}=0$. Therefore, $a \in N$. We now have $x=a+N=N=0_{R / N}$, as desired.
3.51 Let R be a non-trivial commutative ring. Show that R has exactly one prime ideal if and only if each element of R is either a unit or nilpotent.
Suggest solution: Assume that R has exactly one prime ideal P. Let $x \in R$. Assume x is not a unit; we need to prove that x is nilpotent. Since x is not a unit (x) is a proper ideal, and is hence included in a maximal ideal; since every maximal ideal is prime and P is unique, $(x) \subseteq P$. Now by 3.49 we have

$$
\sqrt{0}=\bigcap_{P^{\prime} \in \operatorname{Spec}(R)} P^{\prime}=\bigcap_{P^{\prime} \in\{P\}} P^{\prime}=P
$$

Hence, $x \in(x) \subseteq P=\sqrt{0}$. This implies that x is nilpotent.
Next, assume that every element of R is either a unit or nilpotent. Since R is non-trivial, $0 \neq 1$. Hence, the ideal $0=(0)$ is a proper ideal. Since 0 is proper, the ideal 0 is included in a maximal ideal; since every maximal ideal is prime, this proves that R has at least one prime ideal. Let P be a prime ideal of R; we will prove that $P=\sqrt{0}$, which will show that P is unique. Let $r \in P$. Since P is proper the element r is not a unit. Hence, r is nilpotent so that $r \in \sqrt{0}$. This proves that $P \subseteq \sqrt{0}$. Conversely, let $r \in \sqrt{0}$. Let $n \in \mathbb{N}$ be such that $r^{n}=0$. Then $r^{n}=0 \in P$. Since P is prime we have $r \in P$. It follows that $\sqrt{0} \subseteq P$. We conclude that $P=\sqrt{0}$ so that P is unique.
3.53 Let P, I be ideals of the commutative ring R with P prime and $I \subseteq P$. Show that the non-empty set

$$
\Theta=\left\{P^{\prime} \in \operatorname{Spec}(R): I \subseteq P^{\prime} \subseteq P\right\}
$$

has a minimal member with respect to inclusion.
Suggest solution: We partially order Θ by declaring that $P_{1} \leq P_{2}$ if and only if $P_{2} \subseteq P_{1}$. The set Θ is non-empty because $P \in \Theta$. Let Y be a totally ordered non-empty subset of Θ; we need to prove that Y has an upper bound in Θ. Let Q be the intersection of all the elements of Y. We claim that $Q \in \Theta$. Evidently, Q is an ideal because Q is the intersection of ideals. Also, it is clear that $I \subseteq Q \subseteq P$; in particular, Q is proper because P is proper. Let $a, b \in R$ be such that $a b \in Q$. Assume that $a \notin Q$; to prove that Q is prime it will suffice to prove that $b \in Q$. Let $P^{\prime} \in Y$; to prove that $b \in Q$ it will suffice to prove that $b \in P^{\prime}$. Now since $a \notin Q$ there exists $P^{\prime \prime} \in Y$ such that $a \notin P^{\prime \prime}$. Consider P^{\prime} and $P^{\prime \prime}$. Since Y is totally ordered we have $P^{\prime} \subseteq P^{\prime \prime}$ or $P^{\prime \prime} \subseteq P^{\prime}$. Assume first that $P^{\prime} \subseteq P^{\prime \prime}$. Now $a b \in Q \subset P^{\prime}$. Since P^{\prime} is prime we have $a \in P^{\prime}$ or $b \in P^{\prime}$. We cannot have $a \in P^{\prime}$ for otherwise $a \in P^{\prime} \subseteq P^{\prime \prime}$, contradicting $a \notin P^{\prime \prime}$. Therefore, $b \in P^{\prime}$. Assume now that $P^{\prime \prime} \subseteq P^{\prime}$. We have $a b \in Q \subseteq P^{\prime \prime}$. Since $P^{\prime \prime}$ is prime we have $a \in P^{\prime \prime}$ or $b \in P^{\prime \prime}$. However, $a^{\prime} \notin P^{\prime \prime}$;
hence, $b \in P^{\prime \prime} \subseteq P^{\prime}$. We have proven that $b \in P^{\prime}$; thus, Q is a prime ideal of R. It follows now that $Q \in \Theta$. Clearly, Q is an upper bound in Θ for Y. By Zorn's Lemma the set Θ has a minimal member with respect to inclusion.
4.7 Let $f: R \rightarrow S$ be a surjective homomorphism of commutative rings. Us the extension and contraction notation of 2.41 and 2.45 in conjunction with f. Note that, by $2.46, \mathcal{C}_{R}=\left\{I \in \mathcal{I}_{R}\right.$: $\operatorname{ker}(f) \subseteq I\}$ and $\mathcal{E}_{S}=\mathcal{I}_{S}$. Let $I \in \mathcal{C}_{R}$. Show that
(i) I is a primary ideal of R if and only if I^{e} is a primary ideal of S.
(ii) When this is the case, $\sqrt{I}=\left(\sqrt{I^{e}}\right)^{c}$ and $\sqrt{I^{e}}=(\sqrt{I})^{e}$.

Suggest solution: We first note that by 2.46 we have $J^{e}=f(J)$ for $J \in \mathcal{C}_{R}$, and also the maps

$$
\mathcal{C}_{R} \xrightarrow{\text { extension }} \mathcal{I}_{S} \quad \text { and } \quad \mathcal{C}_{R} \stackrel{\text { contraction }}{\longleftarrow} \mathcal{I}_{S}
$$

are inverses of each other.
(i) Define $g: R \rightarrow S / I^{e}=S / f(I)$ by $g(r)=f(r)+f(I)$. It is straightforward to verify that g is a ring homomorphism. Since f is surjective, g is also surjective. Also, for $r \in R$ we have

$$
\begin{aligned}
g(r)=0 & \Longleftrightarrow f(r)+f(I)=f(I) \\
& \Longleftrightarrow \text { there exists } x \in I \text { such that } f(r)=f(x) \\
& \Longleftrightarrow \text { there exists } x \in I \text { such that } f(r-x)=0 \\
& \Longleftrightarrow \text { there exists } x \in I \text { such that } r-x \in \operatorname{ker}(f) \\
& \Longleftrightarrow r \in I \quad \text { (because } \operatorname{ker}(f) \subseteq I)
\end{aligned}
$$

Thus, $\operatorname{ker}(g)=I$. By the Isomorphism Theorem, g induces an isomorphism of rings

$$
R / I \xrightarrow{\sim} S / f(I)
$$

Since R / I and $S / f(I)$ are isomorphic the ideal I is primary if and only if $f(I)$ is primary (see 4.3). (ii) We first prove that $\sqrt{I^{e}}=(\sqrt{I})^{e}$. Since $I^{e}=f(I)$ and $(\sqrt{I})^{e}=f(\sqrt{I})$, we need to prove that $\sqrt{f(I)}=f(\sqrt{I})$. Let $s \in \sqrt{f(I)}$. Let $r \in R$ be such that $f(r)=s$. Since $s \in \sqrt{f(I)}$, there exists $n \in \mathbb{N}$ such that $s^{n} \in f(I)$. Let $a \in I$ be such that $s^{n}=f(a)$. We now have $f\left(r^{n}-a\right)=0$. Since $\operatorname{ker}(f) \subseteq I$, this implies that $r^{n} \in I$. That is, $r \in \sqrt{I}$. Applying f, we obtain $s=f(r) \in f(\sqrt{I})$. We have proven that $\sqrt{f(I)} \subseteq f(\sqrt{I})$. Next, let $s \in f(\sqrt{I})$. Let $r \in \sqrt{I}$ be such that $f(r)=s$. Since $r \in \sqrt{I}$ there exists $n \in \mathbb{N}$ such that $r^{n} \in I$. Therefore, $s^{n}=f\left(r^{n}\right) \in f(I)$. This implies that $s \in \sqrt{f(I)}$, so that $f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Hence, $\sqrt{f(I)}=f(\sqrt{I})$.
Now

$$
\begin{aligned}
\left(\sqrt{I^{e}}\right)^{c} & =(\sqrt{f(I)})^{c} \quad\left(\text { because } I^{e}=f(I)\right) \\
& =(f(\sqrt{I}))^{c} \quad(\text { by } \sqrt{f(I)}=f(\sqrt{I})) \\
& =\sqrt{I} \quad(\text { by } \mathbf{2 . 4 6} ; \text { see the above summary }) .
\end{aligned}
$$

4.8 Let I be a proper ideal of the commutative ring R, and let P and Q be ideals of R which contain
I. Prove that Q is a P-primary ideal of R if and only if Q / I is a P / I-primary ideal of of R / I.
Suggest solution: It will suffice to prove that Q is primary if and only if Q / I is primary and that $\sqrt{Q} / I=\sqrt{Q / I}$. Let $f: R \rightarrow R / I$ be the natural map. Then f is a surjective ring homomorphism. By 4.7 (i), we have Q is primary if and only if $f(Q)=Q / I$ is primary. It remains to prove that $\sqrt{Q} / I=\sqrt{Q / I}$. Now

$$
\begin{aligned}
\sqrt{Q / I} & =\sqrt{f(Q)} \\
& =f(\sqrt{Q}) \quad(\text { by } 4.7(\mathrm{ii})) \\
& =\sqrt{Q} / I .
\end{aligned}
$$

Assignment 6

4.21 Let $f: R \rightarrow S$ be a homomorphism of commutative rings, and use the contraction notation of 2.41 in conjunction with f. let I be a decomposable ideal of S.
(i) Let

$$
I=Q_{1} \cap \cdots \cap Q_{n} \quad \text { with } \quad \sqrt{Q_{i}}=P_{i} \quad \text { for } \quad i=1, \ldots, n
$$

be a primary decomposition of I. Show that

$$
I^{c}=Q_{1}^{c} \cap \cdots \cap Q_{n}^{c} \quad \text { with } \quad \sqrt{Q_{i}^{c}}=P_{i}^{c} \quad \text { for } \quad i=1, \ldots, n
$$

is a primary decomposition of I. Deduced that I^{c} is a decomposable ideal of R and that

$$
\operatorname{ass}_{R}\left(I^{c}\right) \subseteq\left\{P^{c}: P \in \operatorname{ass}_{R}(I)\right\} .
$$

(ii) Now assume that f is surjective. Show that, if the first primary decomposition in (i) is minimal, then so too is the second, and deduce that in these circumstances,

$$
\operatorname{ass}_{R}\left(I^{c}\right)=\left\{P^{c}: P \in \operatorname{ass}_{R}(I)\right\} .
$$

Suggest solution: (i) We have

$$
\begin{aligned}
I^{c} & =f^{-1}(I) \\
& =f^{-1}\left(Q_{1} \cap \cdots \cap Q_{n}\right) \\
& =f^{-1}\left(Q_{1}\right) \cap \cdots \cap f^{-1}\left(Q_{n}\right) \\
& =Q_{1}^{c} \cap \cdots \cap Q_{n}^{c} .
\end{aligned}
$$

Also, for $i \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\sqrt{Q_{i}^{c}}=\left(\sqrt{Q_{i}}\right)^{c} \tag{iv}
\end{equation*}
$$

$$
=P_{i}^{c}
$$

Next we prove that Q_{i}^{c} is primary for $i \in\{1, \ldots, n\}$. Let $i \in\{1, \ldots, n\}$. The ideal Q_{i}^{c} is proper (otherwise, $1 \in Q_{i}^{c}$ so that $1=f(1) \in Q_{i}$, a contradiction). Let $a, b \in R$ and assume that $a b \in Q_{i}^{c}$ and $a \notin Q_{i}^{c}$; we need to prove that $b \in \sqrt{Q_{i}^{c}}$. Since $a b \in Q_{i}^{c}=f^{-1}\left(Q_{i}\right)$ we have $f(a b)=f(a) f(b) \in$ Q_{i}. Since Q_{i} is primary, we have $f(a) \in Q_{i}$ or $f(b) \in \sqrt{Q_{i}}$. If $f(a) \in Q_{i}$, then $a \in f^{-1}\left(Q_{i}\right)=Q_{i}^{c}$, a contradiction. Hence, $f(b) \in \sqrt{Q_{i}}$. This means that $b \in f^{-1}\left(\sqrt{Q_{i}}\right)=\left(\sqrt{Q_{i}}\right)^{c}=\sqrt{Q_{i}^{c}}$. Hence, Q_{i}^{c} is primary. This completes the proof that the above is a primary decomposition of I^{c} and thus I^{c} is decomposable. We have $\operatorname{ass}_{R}\left(I^{c}\right) \subseteq\left\{P^{c}: P \in \operatorname{ass}_{R}(I)\right\}$ because the above primary decomposition can be refined to a minimal primary decomposition (see 4.16 or the lecture notes).
(ii) Assume that f is surjective. Assume that the first primary decomposition in (i) is minimal; we need to prove that second primary decomposition is also minimal. First we verify that $P_{1}^{c}, \ldots, P_{n}^{c}$ are pairwise unequal. Assume that $P_{i}^{c}=P_{j}^{c}$ for some $i, j \in\{1, \ldots, n\}$. Then $f^{-1}\left(P_{i}\right)=f^{-1}\left(P_{j}\right)$. Applying f and using that f is surjective, we find that $P_{i}=P_{j}$. As the first primary decomposition is minimal, we must have $i=j$. This implies that $P_{1}^{c}, \ldots, P_{n}^{c}$ are pairwise unequal. Finally, assume that $i \in\{1, \ldots, n\}$ is such that

$$
\bigcap_{\substack{j=1 \\ j \neq i}}^{n} Q_{j}^{c} \subseteq Q_{i}^{c} .
$$

Let $y \in \bigcap_{\substack{j=1 \\ j \neq i}}^{n} Q_{j}$. Since f is surjective, there exists $x \in R$ such that $f(x)=y$. Since $y \in Q_{j}$ for $j \neq i$, we have $x \in f^{-1}\left(Q_{j}\right)=Q_{j}^{c}$ for $j \neq i$. Therefore, $x \in \bigcap_{\substack{j=1 \\ j \neq i}}^{n} Q_{j}^{c}$. By the assumed inclusion, we get $x \in Q_{i}^{c}=f^{-1}\left(Q_{i}\right)$. This implies that $y \in Q_{i}$. We have proven that

$$
\bigcap_{\substack{j=1 \\ j \neq i}}^{n} Q_{j} \subseteq Q_{i}
$$

contradicting the minimality of the first primary decomposition. That $\operatorname{ass}_{R}\left(I^{c}\right)=\left\{P^{c}: P \in\right.$ $\left.\operatorname{ass}_{R}(I)\right\}$ follows from definition of $\operatorname{ass}_{R}\left(I^{c}\right)$.
4.22 Let $f: R \rightarrow S$ be a surjective homomorphism of commutative rings; use the extension notation of 2.41 in conjunction with f. Let $I, Q_{1}, \ldots, Q_{n}, P_{1}, \ldots, P_{n}$ be ideals of R that contain $\operatorname{ker}(f)$. Show that

$$
\begin{equation*}
I=Q_{1} \cap \cdots \cap Q_{n} \quad \text { with } \quad \sqrt{Q_{i}}=P_{i} \quad \text { for } \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

is a primary decomposition of I if and only if

$$
\begin{equation*}
I^{e}=Q_{1}^{e} \cap \cdots \cap Q_{n}^{e} \quad \text { with } \quad \sqrt{Q_{i}^{e}}=P_{i}^{e} \quad \text { for } \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

is a primary decomposition of I^{e}, and that, when this is the case, the first of these is minimal if and only if the second is. Deduce that I is a decomposable ideal of R if and only if I^{e} is a decomposable
ideal of S, and when this is the case,

$$
\operatorname{ass}_{R}(I)=\left\{P^{e}: P \in \operatorname{ass}_{R}(I)\right\} .
$$

Suggest solution: We first note the following fact: if A and B are ideals of R such that $\operatorname{ker}(f) \subseteq A$ and $\operatorname{ker}(f) \subseteq B$, then $f(A \cap B)=f(A) \cap f(B)$. We leave the proof of this as an exercise. Assume that (1) is a primary decomposition. Then

$$
\begin{aligned}
I & =Q_{1} \cap \cdots \cap Q_{n} \\
f(I) & =f\left(Q_{1} \cap \cdots \cap Q_{n}\right) \\
I^{e} & =f\left(Q_{1}\right) \cap \cdots \cap f\left(Q_{n}\right) \\
I^{e} & =Q_{1}^{e} \cap \cdots \cap Q_{n}^{e} .
\end{aligned}
$$

Also, if $i \in\{1, \ldots, n\}$, then $f\left(Q_{i}\right)=Q_{i}^{e}$ is primary and $\sqrt{Q_{i}^{e}}=\sqrt{Q_{i}^{e}}=P_{i}^{e}$ by 4.7. Thus, (2) is a primary decomposition. Assume that (1) is a minimal primary decomposition; we want to prove that (2) is also a minimal primary decomposition. We first prove that $P_{1}^{e}, \ldots, P_{n}^{e}$ are pairwise unequal. Assume that $P_{i}^{e}=P_{j}^{e}$ for some $i, j \in\{1, \ldots, n\}$; we need to prove $i=j$. Now since $P_{i}^{e}=P_{j}^{e}$ we have $\left(P_{i}^{e}\right)^{c}=\left(P_{j}^{e}\right)^{c}$. Now $\left(P_{i}^{e}\right)^{c}=f^{-1}\left(f\left(P_{i}\right)\right)=P_{i}$ because f is surjective and $\operatorname{ker}(f) \subseteq P_{i} ;$ similarly, $\left(P_{j}^{e}\right)^{c}=P_{j}$. We thus get $P_{i}=P_{j}$. Since (1) is minimal we must have $i=j$. Finally, assume that $i \in\{1, \ldots, n\}$ is such that

$$
\bigcap_{\substack{j=1 \\ j \neq i}}^{n} Q_{j}^{e} \subseteq Q_{i}^{e} ;
$$

we will obtain a contradiction. Now

$$
\begin{gathered}
\bigcap_{\substack{j=1 \\
j \neq i}}^{n} Q_{j}^{e} \subseteq Q_{i}^{e} \\
f^{-1}\left(\bigcap_{\substack{j=1 \\
j \neq i}}^{n} Q_{j}^{e}\right) \subseteq f^{-1}\left(Q_{i}^{e}\right) \\
\bigcap_{\substack{j=1 \\
j \neq i}}^{n} f^{-1}\left(Q_{j}^{e}\right) \subseteq Q_{i} \\
\bigcap_{\substack{j=1 \\
j \neq i}}^{n} Q_{j} \subseteq Q_{i} .
\end{gathered}
$$

This contradicts that (1) is a minimal primary decomposition.

Next, 4.21 implies that if (2) is a primary decomposition, then (1) is a primary decomposition, and also if (2) is a minimal primary decomposition, then (1) is a minimal primary decomposition. The remaining assertion follows immediately from what we have already proven.
4.28 Let K be a field and let $R=K[X, Y]$ be the ring of polynomials over K in indeterminates X, Y. In R, let $I=\left(X^{3}, X Y\right)$.
(i) Show that, for every $n \in \mathbb{N}$, the ideal $\left(X^{3}, X Y, Y^{n}\right)$ of R is primary.
(ii) Show that $I=(X) \cap\left(X^{3}, Y\right)$ is a minimal primary decomposition of I.
(iii) Construct infinitely many different minimal primary decompositions of I.

Suggest solution: (i) Let $M=(X, Y)$. For $n \in \mathbb{N}$ let $I_{n}=\left(X^{3}, X Y, Y^{n}\right)$. We have

$$
\begin{aligned}
& M^{3}=\left(X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right) \subseteq I_{1}=\left(X^{3}, X Y, Y\right) \subseteq M=(X, Y) \\
& M^{3}=\left(X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right) \subseteq I_{2}=\left(X^{3}, X Y, Y^{2}\right) \subseteq M=(X, Y)
\end{aligned}
$$

and if $n \geq 3$,

$$
M^{n}=\left(X^{n}, X^{n-1} Y, \ldots, X Y^{n-1}, Y^{n}\right) \subseteq I_{n}=\left(X^{3}, X Y, Y^{n}\right) \subseteq M=(X, Y)
$$

Taking radicals, we obtain

$$
\begin{aligned}
& \sqrt{M^{3}}=M \subseteq \sqrt{I_{1}} \subseteq \sqrt{M}=M \\
& \sqrt{M^{3}}=M \subseteq \sqrt{I_{2}} \subseteq \sqrt{M}
\end{aligned}
$$

and if $n \geq 3$,

$$
\sqrt{M^{n}}=M \subseteq \sqrt{I_{n}} \subseteq \sqrt{M}=M
$$

It follows that $\sqrt{I_{n}}=M$ for all $n \in \mathbb{N}$. By Proposition 4.9 the ideal I_{n} is primary for all $n \in \mathbb{N}$.
(ii) First we prove that $I=(X) \cap\left(X^{3}, Y\right)$. It is clear that $I \subseteq(X) \cap\left(X^{3}, Y\right)$. Let $g \in(X) \cap\left(X^{3}, Y\right)$. Then there exist $a, b, c \in R$ such that $g=a X$ and $g=b X^{3}+c Y$. Now $a X=b X^{3}+c Y$. Substituting $X=0$ we obtain $0=c(0, Y) Y^{3}$. This implies that there exists $d \in R$ such that $c=d X$. We now have $g=b X^{3}+d X Y$. Hence, $g \in I$ so that $(X) \cap\left(X^{3}, Y\right) \subseteq I$. It follows that $I=(X) \cap\left(X^{3}, Y\right)$. Next, we note that (X) is a prime ideal of $R($ since $R /(X) \cong K[Y]$, which is an integral domain). Also, we have

$$
(X, Y)^{3}=\left(X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right) \subseteq\left(X^{3}, Y\right) \subseteq(X, Y)
$$

Taking radicals, we obtain

$$
(X, Y) \subseteq \sqrt{\left(X^{3}, Y\right)} \subseteq(X, Y)
$$

Hence, $(X, Y)=\sqrt{\left(X^{3}, Y\right)}$, which implies by Proposition 4.9 that $\left(X^{3}, Y\right)$ is primary (since (X, Y) is maximal). It is clear that the primary decomposition $I=(X) \cap\left(X^{3}, Y\right)$ is minimal.
(iii) Using the method of (ii) we find that

$$
I=\left(X^{3}, X Y\right)=(X) \cap\left(X^{3}, X Y, Y^{n}\right)
$$

for $n \in \mathbb{N}$. The ideal (X) is prime and primary, and $\left(X^{3}, X Y, Y^{n}\right)$ is primary with radical (X, Y) for $n \in \mathbb{N}$ by (i). Hence, this is a primary decomposition of I. It is straightforward to verify that this primary decomposition is minimal. The primary decompositions $I=(X) \cap\left(X^{3}, X Y, Y^{n}\right)$ are all different because $\left(X^{3}, X Y, Y^{n}\right) \neq\left(X^{3}, X Y, Y^{m}\right)$ for $m, n \in \mathbb{N}$ with $m \neq n$.

Assignment 8

5.26. Let the situation be as in 5.23. Show that if the ring R is Noetherian, then so too is the ring $S^{-1} R$.

Suggest solution: Assume that R is Noetherian. Let

$$
J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \cdots
$$

be a sequence of ideals in $S^{-1} R$. Then

$$
\left(J_{1}\right)^{c} \subseteq\left(J_{2}\right)^{c} \subseteq\left(J_{3}\right)^{c} \subseteq \cdots
$$

is a sequence of ideals in R. Since R is Noetherian, there exists $n \in \mathbb{N}$ such that for $k \in \mathbb{N}$ with $k \geq n$ we have $\left(J_{n+k}\right)^{c}=\left(J_{n}\right)^{c}$. Therefore, $\left(\left(J_{n+k}\right)^{c}\right)^{e}=\left(\left(J_{n}\right)^{c}\right)^{e}$ for $k \geq n$. By 5.24 we have $\left(\left(J_{n}\right)^{c}\right)^{e}$ and $\left(\left(J_{n+k}\right)^{c}\right)^{e}=J_{n+k}$ for $k \geq n$. Hence, $J_{n+k}=J_{n}$ for $k \geq n$. It follows that $S^{-1} R$ is Noetherian.
Suggest solution: Alternatively, we can argue as follows. Assume that R is Noetherian. Assume that J is an ideal of $S^{-1} R$; to prove that $S^{-1} R$ is Noetherian, it will suffice to prove that J is finitely generated. Then J^{c} is an ideal of R. Since R is Noetherian, J^{c} is finitely generated by, say, $r_{1}, \ldots, r_{t}: J^{c}=\left(r_{1}, \ldots, r_{t}\right)$. We claim that $\left(J^{c}\right)^{e}$ is generated by $r_{1} / 1, \ldots, r_{t} / 1$. It is clear that $r_{1} / 1, \ldots, r_{t} / 1$ are contained in $\left(J^{c}\right)^{e}$. Let $x \in\left(J^{c}\right)^{e}$. By 5.25 there exist $a \in J^{c}$ and $s \in S$ such that $x=a / s$. Since $a \in J^{c}$ there exist $c_{1}, \ldots, c_{t} \in R$ such that $a=c_{1} r_{1}+\cdots+c_{t} r_{t}$. This implies that

$$
\begin{aligned}
x & =a / s \\
& =\left(c_{1} r_{1}+\cdots+c_{t} r_{t}\right) / s \\
& =c_{1} r_{1} / s+\cdots+c_{t} r_{t} / s \\
& =\left(c_{1} / s\right)\left(r_{1} / 1\right)+\cdots+\left(c_{t} / s\right)\left(r_{t} / 1\right) .
\end{aligned}
$$

Thus, $x \in\left(r_{1} / 1, \ldots, r_{t} / 1\right)$. We have proven that $\left(J^{c}\right)^{e}=\left(r_{1} / 1, \ldots, r_{t} / 1\right)$, so that $\left(J^{c}\right)^{e}$ is finitely generated. Since $J=\left(J^{c}\right)^{e}$ by $5.24, J$ is finitely generated. This implies that $S^{-1} R$ is Noetherian.
5.34. Let R be a non-trivial commutative ring, and assume that, for each $P \in \operatorname{Spec}(R)$, the localization R_{P} has no non-zero nilpotent element. Show that R has no non-zero nilpotent element.

Suggest solution: Assume that $x \in R$ is such that $x \neq 0$ and x is nilpotent; we will obtain a contradiction. Let $I=\{s \in R: s x=0\}$. Then $I=(0: x)$, and I is an ideal of R. Assume that $I=R$. Then $1 \in I$; this implies that $1 \cdot x=0$, i.e., $x=0$; this is a contradiction. Hence, $I \varsubsetneqq R$.

Since I is a proper ideal, I is included in a maximal ideal M. Since M is a maximal ideal, M is prime. Consider R_{M} and the image $x / 1$ of x in R_{M} under the natural map $R \rightarrow R_{M}$. Since x is nilpotent so is $x / 1$. By hypothesis, R_{M} does not contain a non-zero nilpotent element. Therefore, $x / 1=0_{R_{M}}=0 / 1$. This implies that there exists an element $s \in S=R-M$ such that $s x=0$. By the definition of I we have $s \in I \subseteq M$. We now have $s \in M \cap(R-M)$; this is a contradiction.
6.11. Let M be a module over a commutative ring R, and let $J \subseteq M$; let G be the submodule of M generated by J.
(i) Show that, if $J=\emptyset$, then $G=0$.
(ii) Show that, if $J \neq \emptyset$, then

$$
G=\left\{\sum_{i=1}^{n} r_{i} j_{i}: n \in \mathbb{N}, r_{1}, \ldots, r_{n} \in R, j_{1}, \ldots, j_{n} \in J\right\} .
$$

(iii) Show that, if $\emptyset \neq J=\left\{l_{1}, \ldots, l_{t}\right\}$, then

$$
G=\left\{\sum_{i=1}^{t} r_{i} l_{i}: r_{1}, \ldots, r_{t} \in R\right\} .
$$

Suggest solution: (i) Assume that $J=\emptyset$. Since G is a submodule of M we have $0 \subseteq G$. Also, 0 is a submodule of M such that $\emptyset \subseteq 0$. This implies that

$$
G=\bigcap_{\substack{N \text { subodule of } M \\ \text { such that } J \subseteq N}} N \subseteq 0 \text {. }
$$

Hence, $G=0$.
(ii) Define

$$
W=\left\{\sum_{i=1}^{n} r_{i} j_{i}: n \in \mathbb{N}, r_{1}, \ldots, r_{n} \in R, j_{1}, \ldots, j_{n} \in J\right\} .
$$

We need to prove that $G=W$. Using the submodule criterion, it is straightforward to verify that W is a submodule of M that contains J. Hence,

$$
G=\bigcap_{\substack{N \text { submodule of } M \\ \text { such that } J \subseteq N}} N \subseteq W .
$$

Since G contains J, G also contains all R-linear combinations of elements of J. Thus, $W \subseteq G$. We conclude that $G=W$.
(iii) Let W be as above, and let

$$
U=\left\{\sum_{i=1}^{t} r_{i} l_{i}: r_{1}, \ldots, r_{t} \in R\right\}
$$

Evidently, $U \subseteq W$. Conversely, let $x=\sum_{i=1}^{n} r_{i} j_{i} \in W$. Recalling that $J=\left\{l_{1}, \ldots, l_{t}\right\}$, we have:

$$
\begin{aligned}
x & =\sum_{i=1}^{n} r_{i} j_{i} \\
& =\left(\sum_{\substack{i=1 \\
j_{i}=l_{1}}}^{n} r_{i} j_{i}\right)+\cdots+\left(\sum_{\substack{i=1 \\
j_{i}=l_{t}}}^{n} r_{i} j_{i}\right) \\
& =\left(\sum_{\substack{i=1 \\
j_{i}=l_{1}}}^{n} r_{i} l_{1}\right)+\cdots+\left(\sum_{\substack{i=1 \\
j_{i}=l_{t}}}^{n} r_{i} l_{t}\right) \\
& =\left(\sum_{\substack{i=1 \\
j_{i}=l_{1}}}^{n} r_{i}\right) l_{1}+\cdots+\left(\sum_{\substack{i=1 \\
j_{i}=l_{t}}}^{n} r_{i}\right) l_{t} \\
& \in U .
\end{aligned}
$$

Thus, $W \subseteq U$. It follows that $W=U$.

Assignment 11

7.45 Let G be a module over a non-trivial commutative Noetherian ring R. Show that G has finite length if and only if G is finitely generated and there exist $n \in \mathbb{N}$ and maximal ideals M_{1}, \ldots, M_{n} of R (not necessarily distinct) such that

$$
M_{1} \cdots M_{n} G=0
$$

Suggest solution: Assume that G has finite length. By 7.36 the R-module G is Noetherian. By 7.13, G is finitely generated. Let

$$
0=G_{0} \varsubsetneqq G_{1} \varsubsetneqq \cdots \varsubsetneqq G_{n-1} \varsubsetneqq G_{n}=G
$$

be a composition series. By definition, G_{i} / G_{i-1} is simple for $i=1, \ldots, n$. By 7.32 , for each $i \in\{1, \ldots, n\}$ there exists a maximal ideal M_{i} of R such that $G_{i} / G_{i-1} \cong R / M_{i}$ as R-modules. Now let $g \in G$, and let $m_{i} \in M_{i}$ for $i \in\{1, \ldots, n\}$. Since $G_{n} / G_{n-1} \cong R / M_{n}$, we have $r\left(x+G_{n-1}\right)=0$ for $r \in M_{n}$ and $x \in G_{n}$. This implies that $m_{n} g \in G_{n-1}$. Similarly, $m_{n-1} m_{n} g \in G_{n-2}$, and continuing, we find that $m_{1} \cdots m_{n} g \in G_{0}=0$. This proves that $M_{1} \cdots M_{n} G=0$.
Now assume that G is finitely generated and and there exist $n \in \mathbb{N}$ and maximal ideals M_{1}, \ldots, M_{n} of R (not necessarily distinct) such that

$$
M_{1} \cdots M_{n} G=0
$$

Since R is a Noetherian ring (by assumption), and since G is finitely generated, G is Noetherian by 7.22 . By $7.30, G$ is also Artinian (this uses the hypothesis $M_{1} \cdots M_{n} G=0$). By $7.36, G$ has finite length.
7.46 Let R be a principal ideal domain which is not a field. Let G be an R-module. Show that G has finite length if and only if G is finitely generated and there exists $r \in R$ with $r \neq 0$ such that $r G=0$.

Assume that G has finite length. By 7.45, G is finitely generated, and there exist $n \in \mathbb{N}$ and maximal ideals M_{1}, \ldots, M_{n} of R (not necessarily distinct) such that

$$
M_{1} \cdots M_{n} G=0
$$

Since R is not a field, 0 is not a maximal ideal of R. This implies that M_{1}, \ldots, M_{n} are all non-zero. Since R is a PID, we may write $M_{i}=\left(r_{i}\right)$ for some $r_{i} \in R$ for $i \in\{1, \ldots, n\}$. Since $M_{1} \cdots M_{n} G=0$ we have $r G=0$ with $r=r_{1} \cdots r_{n}$; note that $r \neq 0$ as $r_{1} \neq 0, \ldots, r_{n} \neq 0$, and R is an integral domain.
Now suppose that G is finitely generated and there exists $r \in R$ with $r \neq 0$ and $r G=0$. If r is a unit, then $G=0$, and G has finite length. Assume that r is not a unit. Since R is a PID, R is a UFD by 3.39. Therefore, there exist $n \in \mathbb{N}$ and irreducible elements $p_{1}, \ldots, p_{n} \in R$ such that $r=p_{1} \cdots p_{n}$. Let $M_{i}=\left(p_{i}\right)$ for $i \in\{1, \ldots, n\}$. By $3.34, M_{i}$ is a maximal ideal of R for $i \in\{1, \ldots, n\}$. Since $r G=0$ we have $M_{1} \cdots M_{n} G=0$. By 7.45 we now conclude that G has finite length.

