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Homework grading scheme

Each problem is worth ten points. Points for a problem are assessed as follows:
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points marking guide

10-9 Correct and complete solution with possibly a small mistake or oversight

8-7 Essentially a correct solution, with a bigger mistake or oversight

6-5 Correct idea for a solution, but substantially incomplete

5-0 Attempted problem, with parts of a solution

Hints

Assignment 2

1.43. If f =
∑∞

i=0 fi, g =
∑∞

i=0 gi ∈ R[[X1, . . . , Xn]] then fg =
∑∞

i=0(
∑i

j=0 fjgi−j) (see Sharp

p. 11). Hence, fg = 1 if and only if

1 = f0g0,

0 = f0g1 + f1g0,

0 = f0g2 + f1g1 + f2g0,

· · ·

2.5 Use the binomial theorem, which is valid in any commutative ring R: If x, y ∈ R, and n ∈ N,

then

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k,

(
n

k

)
=

n!

k!(n− k)!
.

2.22 It may be useful to use the (total) degree function deg : K[X1, X2]−0→ N (see p. 9 of Sharp).

This function satisfies deg(pq) = deg(p) + deg(q) for non-zero elements p and q of K[X1, X2].

Assignment 5

For Exercise 3.50 and Exercise 3.51 consider using Corollary 3.49. For Exercise 4.7 first read and

understand Exercise 2.46. For Exercise 4.8 consider using Exercise 4.7.

Assignment 6

For Exercise 4.28, prove that the ideal (X3, XY, Y n) is primary by finding a maximal ideal M and

k ∈ N such that

Mk ⊆ (X3, XY, Y n) ⊆M,

take radicals, and apply Proposition 4.9.

Assignment 8

For Exercise 5.34, assume that R does admit a non-zero nilpotent element x and obtain a contra-

diction via the following idea. Consider I = {r ∈ R : rx = 0}. Then I = (0 : x), and I is thus
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an ideal of R. If I = R, then 1 · x = 0, which is a contradiction. Assume that I $ R, so that I

is a proper ideal. Since I is a proper ideal, I is included inside a maximal ideal M . Since M is a

maximal ideal, M is a prime ideal. Consider RM and the image x/1 in RM of x under the natural

map. The element x/1 is nilpotent. By the hypothesis of this exercise we must have x/1 = 0/1.

Now obtain the final contradiction.

Suggested solutions to selected problems

Assignment 1

1.16 Let R′ be a commutative ring, and let ξ1, . . . , ξn ∈ R′ be algebraically independent over the

subring R of R′. Let T be a commutative R-algebra with structural ring homomorphism f : R→ T

and let α1, . . . , αn ∈ T . Show that there is exactly one ring homomorphism

g : R[ξ1, . . . , xn] −→ T

which extends f (that is, is such that g|R = f) and is such that g(ξi) = αi for all i = 1, . . . , n.

Suggest solution: We begin with some notation. For λ = (i1, . . . , in) ∈ N0 we will write

ξλ = ξi11 · · · ξ
in
n .

With this notation every element p of R[ξ1, . . . , ξn] can be written uniquely in the form

p =
∑
λ∈Nn

0

rλξ
λ

where rλ ∈ R for λ ∈ Nn0 and rλ = 0 for all but finitely many λ ∈ Nn0 (see 1.14). If

q =
∑
λ∈Nn

0

sλξ
λ

is another element of R[ξ1, . . . , ξn], then we have

p+ q =
∑
λ∈Nn

0

(rλ + sλ)ξλ,

pg =
∑
λ∈Nn

0

 ∑
λ1,λ2∈N0,
λ1+λ2=λ

rλ1sλ2

 ξλ.

We now define

g : R[ξ1, . . . , xn] −→ T
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by

g(p) =
∑
λ∈Nn

0

f(rλ)αλ

for p as above; here, for λ = (i1, . . . , in) ∈ N0 we define αλ = αλ11 · · ·αλnn . With p and q as above,

and using that f is a ring homomorphism, we have:

g(p+ q) = g

∑
λ∈Nn

0

(rλ + sλ)ξλ


=
∑
λ∈Nn

0

f(rλ + sλ)αλ

=
∑
λ∈Nn

0

f(rλ)αλ +
∑
λ∈Nn

0

f(sλ)αλ

= g(p) + g(q).

And:

g(pq) = g

∑
λ∈Nn

0

 ∑
λ1,λ2∈N0,
λ1+λ2=λ

rλ1sλ2

 ξλ



=
∑
λ∈Nn

0

f

 ∑
λ1,λ2∈N0,
λ1+λ2=λ

rλ1sλ2

αλ

=

∑
λ∈Nn

0

f(rλ)αλ

∑
λ∈Nn

0

f(sλ)αλ


= g(p)g(q).

It is clear that g(1) = 1. It follows that g is a ring homomorphism. It is also clear that g extends

f . Finally, to prove that g has the required uniqueness property, assume that h : R[ξ1, . . . , ξn]→ T

is another right homomorphism such that h|R = f and h(ξi) = αi for all i = 1, . . . , n. Let p be as

above. We then have

h(p) = h

∑
λ∈Nn

0

rλξ
λ


=
∑
λ∈Nn

0

h(rλ)h(ξλ)

=
∑
λ∈Nn

0

f(rλ)αλ

= g(p).
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It follows that h = g.

1.19 Let K be an infinite field, let Λ be a finite subset of K, and let f ∈ K[X1, . . . , Xn], the ring of

polynomials over K in the indeterminates X1, . . . , Xn. Suppose that f 6= 0. Show that there exist

infinitely many choices of

(α1, . . . , αn) ∈ (K − Λ)n

for which f(α1, . . . , αn) 6= 0.

Suggest solution: We prove this by induction on n. The case n = 1 is clear because a non-zero

polynomial in one variable over K has finitely many distinct roots and K − Λ is infinite. Assume

that n > 1 and that the statement holds for n− 1; we will prove that it holds for n. There exists

a non-negative integer N such that

f(X1, . . . , Xn) =

N∑
k=0

fk(X1, . . . , Xn−1)X
k
n

where fk(X1, . . . , Xn−1) ∈ K[X1, . . . , Xn−1] for k = 1, . . . , N , and fN (X1, . . . , Xn−1) is non-zero.

By the induction hypothesis, there exists (α1, . . . , αn−1) ∈ (K−Λ)n−1 such that fN (α1, . . . , αn−1) 6=
0. Consider the polynomial

g(Xn) = f(α1, . . . , αn−1, Xn) =
N∑
k=0

fk(α1, . . . , αn−1)X
k
n

in the variable Xn. This polynomial is non-zero because fN (α1, . . . , αn−1) 6= 0. By the case n = 1,

there exist infinitely many αn ∈ K − Λ such that g(αn) 6= 0, i.e., f(α1, . . . , αn) 6= 0; moreover, for

any such αn we have (α1, . . . , αn) ∈ (K − Λ)n. This proves the statement for n.

Assignment 2

1.43 Let R be a commutative ring, and consider the ring R[[X1, . . . , Xn]] of formal power series

over R in indeterminates X1, . . . Xn. Let

f =

∞∑
i=0

fi ∈ R[[X1, . . . , Xn]],

where fi is either zero or a homogeneous polynomial of degree i in R[X1, . . . , Xn] (for each i ∈ N0).

Prove that f is a unit of R[[X1, . . . , Xn]] if and only if f0 is a unit of R.

Suggest solution: Assume that f is a unit. Let g ∈ R[[X1, . . . , Xn]] be such that fg = 1. Let

g =
∑∞

i=0 gi be the standard representation of g. Now

fg =

∞∑
i=0

 i∑
j=0

fjgi−j
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and this expression is the standard representation of fg in R[[X1, . . . , Xn]]. Since fg = 1 we must

therefore have

1 = f0g0 and 0 =

i∑
j=0

fjgi−j for i > 0.

In particular, we see that f0g0 = 1, i.e., f0 is a unit. Now assume that f0 is a unit. We inductively

define a sequence (gi)i∈N0 by setting g0 = f−10 , and for i > 0,

gi = −f−10

 i∑
j=1

figi−j

 .

Evidently, each gi is either zero or a homogeneous polynomial of degree i in R[X1, . . . , Xn]. Also,

we have f0g0 = 1 and for i > 0,

0 =

i∑
j=0

fjgi−j .

Now define

g =
∞∑
i=0

gi.

Then g is in R[[X1, . . . , Xn]], and this is the standard representation of g. Using the above formula

for fg we see that fg = 1.

Assignment 3

2.22 Let K be a field. Show that the ideal (X1, X2) of the commutative ring K[X1, X2] (of polyno-

mials over K in indeterminates X1, X2) is not principal.

Suggest solution: Assume that (X1, X2) = (f) for some f ∈ K[X1, X2]; we will obtain a contra-

diction. Since X1, X2 ∈ (f), there exist g1, g2 ∈ K[X1, X2] such that

X1 = g1f, X2 = g2f.

Applying the degree function to the first equation we obtain

deg(X1) = deg(g1f)

1 = deg(g1) + deg(f).

Similarly,

1 = deg(g2) + deg(f).

Since deg(f), deg(g1), and deg(f) are in N0, we must have deg(f) = 0 or deg(f) = 1. Assume first

that deg(f) = 0. Then f ∈ K. Moreover, since f 6= 0 (otherwise X1 = 0 and X2 = 0, which is

impossible), f is a unit in K and hence a unit in K[X1, X2]. Now f ∈ (X1, X2). Hence, there exist

6
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h1, h2 ∈ K[X1, X2] such that

f = h1X1 + h2X2.

Evaluating both sides at X1 = 0 and X2 = 0, we obtain f = 0, a contradiction (recall that we just

showed that f is a non-zero constant). Hence, deg(f) = 1. It follows that deg(g1) = deg(g2) = 0,

so that g1, g2 ∈ K. Again, we see that g1 and g2 are non-zero and are hence units in K and hence

units in K[X1, X2]. Now

X1 = g1f = g1g
−1
2 g2f = g1g

−1
2 X2.

That is,

X1 = (g1g
−1
2 )X2.

Evaluating both sides at X1 = 1 and X2 = 0, we obtain 1 = 0, a contradiction.

2.30 Let I, J be ideals of the commutative ring R. Show that

√
IJ =

√
I ∩ J =

√
I ∩
√
J.

Let r ∈
√
IJ . Then there exists n ∈ N such that rn ∈ IJ . Since IJ j I ∩ J we have rn ∈ I ∩ J .

Hence, r ∈
√
I ∩ J . It follows that √

IJ ⊆
√
I ∩ J.

Let r ∈
√
I ∩ J . Then there exists n ∈ N such that rn ∈ I ∩ J . Since I ∩ J ⊆ I and I ∩ J ⊆ J we

have r ∈
√
I and r ∈

√
J . Thus, r ∈

√
I ∩
√
J . It follows that

√
I ∩ J ⊆

√
I ∩
√
J.

Let r ∈
√
I∩
√
J . Then there exist m,n ∈ N such that rm ∈ I and rn ∈ J . Hence, rmn = rmrn ∈ IJ

so that r ∈
√
IJ . It follows that √

I ∩
√
J ⊆
√
IJ.

We have proven that √
IJ ⊆

√
I ∩ J ⊆

√
I ∩
√
J ⊆
√
IJ.

This implies that √
IJ =

√
I ∩ J =

√
I ∩
√
J.

Assignment 4

3.29 Determine the prime ideals of the ring Z/60Z of residue classes of integrs modulo 60.

Suggest solution: By 3.28, every prime ideal of Z/60Z is of the form P/60Z where P is a prime

ideal of Z such that 60Z ⊆ P . By 3.34, every prime ideal P of Z such that 60Z ⊆ P is of the form

P = pZ, where p is a prime of Z such that 60Z ⊂ pZ, i.e., p | 60. It follows that the prime ideals

of Z/60Z are 2Z/60Z, 3Z/60Z, and 5Z/60Z.
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3.31 Let R be an integral domain. Recall that for a1, . . . , an ∈ R, where n ∈ N, a greatest common

divisor (GCD for short) or highest common factor of a1, . . . , an is an element d of R such that

(i) d | ai for all i = 1, . . . , n, and

(ii) whenever c ∈ R is such that c | ai for all i = 1, . . . , n, then c | d.

Show that every non-empty finite set of elements in a PID has a GCD.

Suggest solution: Assume that R is a PID, and let a1, . . . , an ∈ R. Consider the ideal (a1, . . . , an).

Since R is a PID, there exists d ∈ R such that (a1, . . . , an) = (d). We claim that d is a GCD of

a1, . . . , an. Since a1, . . . , an ∈ (a1, . . . , an) = (d), we see that d | ai for i = 1, . . . , n. Assume that

c ∈ R is such that c | ai for i = 1, . . . , n. Let ri ∈ R be such that ai = ric for i = 1, . . . , n. Also, let

x1, . . . , xn be such that x1a1 + · · ·+ xnan = d; note that x1, . . . , xn exist because d ∈ (a1, . . . , an).

Then

d = x1a1 + · · ·+ xnan = x1r1c+ · · ·xnrnc = (x1r1 + · · ·xnrn)c.

Thus, c | d.

3.42 Show that an irreducible element in a unique factorization domain R generates a prime ideal

of R.

Suggest solution: Let r ∈ R be irreducible. Then by definition r is non-zero and not a unit.

Since r is not a unit we have (r) $ R (otherwise, 1 ∈ (r) so that r is a unit). Let a, b ∈ R be such

that ab ∈ (r); to prove that (r) is a prime ideal it will suffice to prove that a ∈ (r) or b ∈ (r). If

a = 0 or b = 0, then clearly a ∈ (r) or b ∈ (r); we may thus assume that a 6= 0 and b 6= 0. If a or b

is a unit, then also a ∈ (r) or b ∈ (r); we may thus also assume that a and b are non-units. Since

ab ∈ (r), there exists s ∈ R such that ab = rs. Since R is an integral domain we have rs = ab 6= 0;

also, rs is not a unit (otherwise (r) contains a unit, contradicting (r) $ R). As R is a UFD, there

exist irreducible elements p1, . . . , pk, q1, . . . , q`, y1, . . . , yn in R such that

a = p1 · · · pk, b = q1 · · · q`, rs = y1 · · · yn;

Since r is irreducible, we may assume that y1 = vr for some unit v in R. Since ab = rs we have

p1 · · · pkq1 · · · q` = vry2 · · · yn.

Since r is irreducible and R is a UFD, there exists a unit u in R such that r = upi for some

i ∈ {1, . . . , k} or r = uqj for some j ∈ {1, . . . , `}. Hence, pi ∈ (r) for some i ∈ {1, . . . , k} or qj ∈ (r)

for some j ∈ {1, . . . , `} (recall that u is a unit, so that pi = u−1r or qj = u−1r). This implies that

a ∈ (r) or b ∈ (r), as desired.

3.47 Let P be a prime ideal of the commutative ring R. Show that
√
Pn = P for all n ∈ N.

Suggest solution: Let n ∈ N. Let x ∈
√
Pn. Then there exits m ∈ N such that xm ∈ Pn. Now

Pn ⊆ P . Hence, xm ∈ P . Since P is prime we have x ∈ P . This proves that
√
Pn ⊆ P . Let x ∈ P .

Then xn ∈ Pn. Therefore, x ∈
√
Pn. This proves that P ⊆

√
Pn. We conclude that P =

√
Pn.

8
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Assignment 5

3.50 Let R be a commutative ring, and let N be the nilradical of R. Show that the ring R/N has

zero nilradical.

Suggest solution: Let x ∈ R/N and assume that n ∈ N is such that xn = 0R/N ; we need to prove

that x = 0R/N . Let a ∈ R be such that x = a+N . Then 0R/N = xn = (a+N)n = an +N . This

means that N = an + N so that an ∈ N . Since an ∈ N there exists m ∈ N such that (an)m = 0,

i.e., anm = 0. Therefore, a ∈ N . We now have x = a+N = N = 0R/N , as desired.

3.51 Let R be a non-trivial commutative ring. Show that R has exactly one prime ideal if and only

if each element of R is either a unit or nilpotent.

Suggest solution: Assume that R has exactly one prime ideal P . Let x ∈ R. Assume x is not a

unit; we need to prove that x is nilpotent. Since x is not a unit (x) is a proper ideal, and is hence

included in a maximal ideal; since every maximal ideal is prime and P is unique, (x) ⊆ P . Now by

3.49 we have √
0 =

⋂
P ′∈Spec(R)

P ′ =
⋂

P ′∈{P}

P ′ = P.

Hence, x ∈ (x) ⊆ P =
√

0. This implies that x is nilpotent.

Next, assume that every element of R is either a unit or nilpotent. Since R is non-trivial, 0 6= 1.

Hence, the ideal 0 = (0) is a proper ideal. Since 0 is proper, the ideal 0 is included in a maximal

ideal; since every maximal ideal is prime, this proves that R has at least one prime ideal. Let P

be a prime ideal of R; we will prove that P =
√

0, which will show that P is unique. Let r ∈ P .

Since P is proper the element r is not a unit. Hence, r is nilpotent so that r ∈
√

0. This proves

that P ⊆
√

0. Conversely, let r ∈
√

0. Let n ∈ N be such that rn = 0. Then rn = 0 ∈ P . Since P

is prime we have r ∈ P . It follows that
√

0 ⊆ P . We conclude that P =
√

0 so that P is unique.

3.53 Let P, I be ideals of the commutative ring R with P prime and I ⊆ P . Show that the non-empty

set

Θ = {P ′ ∈ Spec(R) : I ⊆ P ′ ⊆ P}

has a minimal member with respect to inclusion.

Suggest solution: We partially order Θ by declaring that P1 ≤ P2 if and only if P2 ⊆ P1. The

set Θ is non-empty because P ∈ Θ. Let Y be a totally ordered non-empty subset of Θ; we need

to prove that Y has an upper bound in Θ. Let Q be the intersection of all the elements of Y . We

claim that Q ∈ Θ. Evidently, Q is an ideal because Q is the intersection of ideals. Also, it is clear

that I ⊆ Q ⊆ P ; in particular, Q is proper because P is proper. Let a, b ∈ R be such that ab ∈ Q.

Assume that a /∈ Q; to prove that Q is prime it will suffice to prove that b ∈ Q. Let P ′ ∈ Y ; to

prove that b ∈ Q it will suffice to prove that b ∈ P ′. Now since a /∈ Q there exists P ′′ ∈ Y such that

a /∈ P ′′. Consider P ′ and P ′′. Since Y is totally ordered we have P ′ ⊆ P ′′ or P ′′ ⊆ P ′. Assume

first that P ′ ⊆ P ′′. Now ab ∈ Q ⊂ P ′. Since P ′ is prime we have a ∈ P ′ or b ∈ P ′. We cannot

have a ∈ P ′ for otherwise a ∈ P ′ ⊆ P ′′, contradicting a /∈ P ′′. Therefore, b ∈ P ′. Assume now that

P ′′ ⊆ P ′. We have ab ∈ Q ⊆ P ′′. Since P ′′ is prime we have a ∈ P ′′ or b ∈ P ′′. However, a′ /∈ P ′′;

9
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hence, b ∈ P ′′ ⊆ P ′. We have proven that b ∈ P ′; thus, Q is a prime ideal of R. It follows now

that Q ∈ Θ. Clearly, Q is an upper bound in Θ for Y . By Zorn’s Lemma the set Θ has a minimal

member with respect to inclusion.

4.7 Let f : R → S be a surjective homomorphism of commutative rings. Us the extension and

contraction notation of 2.41 and 2.45 in conjunction with f . Note that, by 2.46, CR = {I ∈ IR :

ker(f) ⊆ I} and ES = IS. Let I ∈ CR. Show that

(i) I is a primary ideal of R if and only if Ie is a primary ideal of S.

(ii) When this is the case,
√
I = (

√
Ie)c and

√
Ie = (

√
I)e.

Suggest solution: We first note that by 2.46 we have Je = f(J) for J ∈ CR, and also the maps

CR
extension−→ IS and CR

contraction←− IS

are inverses of each other.

(i) Define g : R→ S/Ie = S/f(I) by g(r) = f(r) + f(I). It is straightforward to verify that g is a

ring homomorphism. Since f is surjective, g is also surjective. Also, for r ∈ R we have

g(r) = 0 ⇐⇒ f(r) + f(I) = f(I)

⇐⇒ there exists x ∈ I such that f(r) = f(x)

⇐⇒ there exists x ∈ I such that f(r − x) = 0

⇐⇒ there exists x ∈ I such that r − x ∈ ker(f)

⇐⇒ r ∈ I (because ker(f) ⊆ I).

Thus, ker(g) = I. By the Isomorphism Theorem, g induces an isomorphism of rings

R/I
∼−→ S/f(I).

Since R/I and S/f(I) are isomorphic the ideal I is primary if and only if f(I) is primary (see 4.3).

(ii) We first prove that
√
Ie = (

√
I)e. Since Ie = f(I) and (

√
I)e = f(

√
I), we need to prove that√

f(I) = f(
√
I). Let s ∈

√
f(I). Let r ∈ R be such that f(r) = s. Since s ∈

√
f(I), there exists

n ∈ N such that sn ∈ f(I). Let a ∈ I be such that sn = f(a). We now have f(rn − a) = 0. Since

ker(f) ⊆ I, this implies that rn ∈ I. That is, r ∈
√
I. Applying f , we obtain s = f(r) ∈ f(

√
I).

We have proven that
√
f(I) ⊆ f(

√
I). Next, let s ∈ f(

√
I). Let r ∈

√
I be such that f(r) = s.

Since r ∈
√
I there exists n ∈ N such that rn ∈ I. Therefore, sn = f(rn) ∈ f(I). This implies that

s ∈
√
f(I), so that f(

√
I) ⊆

√
f(I). Hence,

√
f(I) = f(

√
I).

Now

(
√
Ie)c = (

√
f(I))c (because Ie = f(I))

= (f(
√
I))c (by

√
f(I) = f(

√
I))

=
√
I (by 2.46; see the above summary).

10
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4.8 Let I be a proper ideal of the commutative ring R, and let P and Q be ideals of R which contain

I. Prove that Q is a P -primary ideal of R if and only if Q/I is a P/I-primary ideal of of R/I.

Suggest solution: It will suffice to prove that Q is primary if and only if Q/I is primary and that
√
Q/I =

√
Q/I. Let f : R→ R/I be the natural map. Then f is a surjective ring homomorphism.

By 4.7 (i), we have Q is primary if and only if f(Q) = Q/I is primary. It remains to prove that
√
Q/I =

√
Q/I. Now √

Q/I =
√
f(Q)

= f(
√
Q) (by 4.7 (ii))

=
√
Q/I.

Assignment 6

4.21 Let f : R→ S be a homomorphism of commutative rings, and use the contraction notation of

2.41 in conjunction with f . let I be a decomposable ideal of S.

(i) Let

I = Q1 ∩ · · · ∩Qn with
√
Qi = Pi for i = 1, . . . , n

be a primary decomposition of I. Show that

Ic = Qc1 ∩ · · · ∩Qcn with
√
Qci = P ci for i = 1, . . . , n

is a primary decomposition of I. Deduced that Ic is a decomposable ideal of R and that

assR(Ic) ⊆ {P c : P ∈ assR(I)}.

(ii) Now assume that f is surjective. Show that, if the first primary decomposition in (i) is

minimal, then so too is the second, and deduce that in these circumstances,

assR(Ic) = {P c : P ∈ assR(I)}.

Suggest solution: (i) We have

Ic = f−1(I)

= f−1(Q1 ∩ · · · ∩Qn)

= f−1(Q1) ∩ · · · ∩ f−1(Qn)

= Qc1 ∩ · · · ∩Qcn.

Also, for i ∈ {1, . . . , n},

√
Qci = (

√
Qi)

c (2.43(iv))

11
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= P ci .

Next we prove that Qci is primary for i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}. The ideal Qci is proper

(otherwise, 1 ∈ Qci so that 1 = f(1) ∈ Qi, a contradiction). Let a, b ∈ R and assume that ab ∈ Qci
and a /∈ Qci ; we need to prove that b ∈

√
Qci . Since ab ∈ Qci = f−1(Qi) we have f(ab) = f(a)f(b) ∈

Qi. Since Qi is primary, we have f(a) ∈ Qi or f(b) ∈
√
Qi. If f(a) ∈ Qi, then a ∈ f−1(Qi) = Qci , a

contradiction. Hence, f(b) ∈
√
Qi. This means that b ∈ f−1(

√
Qi) = (

√
Qi)

c =
√
Qci . Hence, Qci is

primary. This completes the proof that the above is a primary decomposition of Ic and thus Ic is

decomposable. We have assR(Ic) ⊆ {P c : P ∈ assR(I)} because the above primary decomposition

can be refined to a minimal primary decomposition (see 4.16 or the lecture notes).

(ii) Assume that f is surjective. Assume that the first primary decomposition in (i) is minimal; we

need to prove that second primary decomposition is also minimal. First we verify that P c1 , . . . , P
c
n

are pairwise unequal. Assume that P ci = P cj for some i, j ∈ {1, . . . , n}. Then f−1(Pi) = f−1(Pj).

Applying f and using that f is surjective, we find that Pi = Pj . As the first primary decomposition

is minimal, we must have i = j. This implies that P c1 , . . . , P
c
n are pairwise unequal. Finally, assume

that i ∈ {1, . . . , n} is such that
n⋂
j=1
j 6=i

Qcj ⊆ Qci .

Let y ∈
⋂n
j=1
j 6=i

Qj . Since f is surjective, there exists x ∈ R such that f(x) = y. Since y ∈ Qj for

j 6= i, we have x ∈ f−1(Qj) = Qcj for j 6= i. Therefore, x ∈
⋂n
j=1
j 6=i

Qcj . By the assumed inclusion, we

get x ∈ Qci = f−1(Qi). This implies that y ∈ Qi. We have proven that

n⋂
j=1
j 6=i

Qj ⊆ Qi,

contradicting the minimality of the first primary decomposition. That assR(Ic) = {P c : P ∈
assR(I)} follows from definition of assR(Ic).

4.22 Let f : R → S be a surjective homomorphism of commutative rings; use the extension

notation of 2.41 in conjunction with f . Let I,Q1, . . . , Qn, P1, . . . , Pn be ideals of R that contain

ker(f). Show that

I = Q1 ∩ · · · ∩Qn with
√
Qi = Pi for i = 1, . . . , n (1)

is a primary decomposition of I if and only if

Ie = Qe1 ∩ · · · ∩Qen with
√
Qei = P ei for i = 1, . . . , n (2)

is a primary decomposition of Ie, and that, when this is the case, the first of these is minimal if and

only if the second is. Deduce that I is a decomposable ideal of R if and only if Ie is a decomposable

12
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ideal of S, and when this is the case,

assR(I) = {P e : P ∈ assR(I)}.

Suggest solution: We first note the following fact: if A and B are ideals of R such that ker(f) ⊆ A
and ker(f) ⊆ B, then f(A ∩B) = f(A) ∩ f(B). We leave the proof of this as an exercise.

Assume that (1) is a primary decomposition. Then

I = Q1 ∩ · · · ∩Qn
f(I) = f(Q1 ∩ · · · ∩Qn)

Ie = f(Q1) ∩ · · · ∩ f(Qn)

Ie = Qe1 ∩ · · · ∩Qen.

Also, if i ∈ {1, . . . , n}, then f(Qi) = Qei is primary and
√
Qei =

√
Q
e
i = P ei by 4.7. Thus, (2) is a

primary decomposition. Assume that (1) is a minimal primary decomposition; we want to prove

that (2) is also a minimal primary decomposition. We first prove that P e1 , . . . , P
e
n are pairwise

unequal. Assume that P ei = P ej for some i, j ∈ {1, . . . , n}; we need to prove i = j. Now since

P ei = P ej we have (P ei )c = (P ej )c. Now (P ei )c = f−1(f(Pi)) = Pi because f is surjective and

ker(f) ⊆ Pi; similarly, (P ej )c = Pj . We thus get Pi = Pj . Since (1) is minimal we must have i = j.

Finally, assume that i ∈ {1, . . . , n} is such that

n⋂
j=1
j 6=i

Qej ⊆ Qei ;

we will obtain a contradiction. Now

n⋂
j=1
j 6=i

Qej ⊆ Qei

f−1
( n⋂
j=1
j 6=i

Qej
)
⊆ f−1(Qei )

n⋂
j=1
j 6=i

f−1(Qej) ⊆ Qi

n⋂
j=1
j 6=i

Qj ⊆ Qi.

This contradicts that (1) is a minimal primary decomposition.

13
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Next, 4.21 implies that if (2) is a primary decomposition, then (1) is a primary decomposition, and

also if (2) is a minimal primary decomposition, then (1) is a minimal primary decomposition.

The remaining assertion follows immediately from what we have already proven.

4.28 Let K be a field and let R = K[X,Y ] be the ring of polynomials over K in indeterminates

X,Y . In R, let I = (X3, XY ).

(i) Show that, for every n ∈ N, the ideal (X3, XY, Y n) of R is primary.

(ii) Show that I = (X) ∩ (X3, Y ) is a minimal primary decomposition of I.

(iii) Construct infinitely many different minimal primary decompositions of I.

Suggest solution: (i) Let M = (X,Y ). For n ∈ N let In = (X3, XY, Y n). We have

M3 = (X3, X2Y,XY 2, Y 3) ⊆ I1 = (X3, XY, Y ) ⊆M = (X,Y ),

M3 = (X3, X2Y,XY 2, Y 3) ⊆ I2 = (X3, XY, Y 2) ⊆M = (X,Y )

and if n ≥ 3,

Mn = (Xn, Xn−1Y, . . . ,XY n−1, Y n) ⊆ In = (X3, XY, Y n) ⊆M = (X,Y ).

Taking radicals, we obtain

√
M3 = M ⊆

√
I1 ⊆

√
M = M,

√
M3 = M ⊆

√
I2 ⊆

√
M,

and if n ≥ 3, √
Mn = M ⊆

√
In ⊆

√
M = M.

It follows that
√
In = M for all n ∈ N. By Proposition 4.9 the ideal In is primary for all n ∈ N.

(ii) First we prove that I = (X)∩(X3, Y ). It is clear that I ⊆ (X)∩(X3, Y ). Let g ∈ (X)∩(X3, Y ).

Then there exist a, b, c ∈ R such that g = aX and g = bX3+cY . Now aX = bX3+cY . Substituting

X = 0 we obtain 0 = c(0, Y )Y 3. This implies that there exists d ∈ R such that c = dX. We now

have g = bX3 + dXY . Hence, g ∈ I so that (X) ∩ (X3, Y ) ⊆ I. It follows that I = (X) ∩ (X3, Y ).

Next, we note that (X) is a prime ideal of R (since R/(X) ∼= K[Y ], which is an integral domain).

Also, we have

(X,Y )3 = (X3, X2Y,XY 2, Y 3) ⊆ (X3, Y ) ⊆ (X,Y ).

Taking radicals, we obtain

(X,Y ) ⊆
√

(X3, Y ) ⊆ (X,Y ).

Hence, (X,Y ) =
√

(X3, Y ), which implies by Proposition 4.9 that (X3, Y ) is primary (since (X,Y )

is maximal). It is clear that the primary decomposition I = (X) ∩ (X3, Y ) is minimal.

(iii) Using the method of (ii) we find that

I = (X3, XY ) = (X) ∩ (X3, XY, Y n)

14
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for n ∈ N. The ideal (X) is prime and primary, and (X3, XY, Y n) is primary with radical (X,Y )

for n ∈ N by (i). Hence, this is a primary decomposition of I. It is straightforward to verify that

this primary decomposition is minimal. The primary decompositions I = (X) ∩ (X3, XY, Y n) are

all different because (X3, XY, Y n) 6= (X3, XY, Y m) for m,n ∈ N with m 6= n.

Assignment 8

5.26. Let the situation be as in 5.23. Show that if the ring R is Noetherian, then so too is the ring

S−1R.

Suggest solution: Assume that R is Noetherian. Let

J1 ⊆ J2 ⊆ J3 ⊆ · · ·

be a sequence of ideals in S−1R. Then

(J1)
c ⊆ (J2)

c ⊆ (J3)
c ⊆ · · ·

is a sequence of ideals in R. Since R is Noetherian, there exists n ∈ N such that for k ∈ N with

k ≥ n we have (Jn+k)
c = (Jn)c. Therefore, ((Jn+k)

c)e = ((Jn)c)e for k ≥ n. By 5.24 we have

((Jn)c)e and ((Jn+k)
c)e = Jn+k for k ≥ n. Hence, Jn+k = Jn for k ≥ n. It follows that S−1R is

Noetherian.

Suggest solution: Alternatively, we can argue as follows. Assume that R is Noetherian. Assume

that J is an ideal of S−1R; to prove that S−1R is Noetherian, it will suffice to prove that J is

finitely generated. Then Jc is an ideal of R. Since R is Noetherian, Jc is finitely generated by,

say, r1, . . . , rt: J
c = (r1, . . . , rt). We claim that (Jc)e is generated by r1/1, . . . , rt/1. It is clear that

r1/1, . . . , rt/1 are contained in (Jc)e. Let x ∈ (Jc)e. By 5.25 there exist a ∈ Jc and s ∈ S such that

x = a/s. Since a ∈ Jc there exist c1, . . . , ct ∈ R such that a = c1r1 + · · ·+ ctrt. This implies that

x = a/s

= (c1r1 + · · ·+ ctrt)/s

= c1r1/s+ · · ·+ ctrt/s

= (c1/s)(r1/1) + · · ·+ (ct/s)(rt/1).

Thus, x ∈ (r1/1, . . . , rt/1). We have proven that (Jc)e = (r1/1, . . . , rt/1), so that (Jc)e is finitely

generated. Since J = (Jc)e by 5.24, J is finitely generated. This implies that S−1R is Noetherian.

5.34. Let R be a non-trivial commutative ring, and assume that, for each P ∈ Spec(R), the

localization RP has no non-zero nilpotent element. Show that R has no non-zero nilpotent element.

Suggest solution: Assume that x ∈ R is such that x 6= 0 and x is nilpotent; we will obtain a

contradiction. Let I = {s ∈ R : sx = 0}. Then I = (0 : x), and I is an ideal of R. Assume that

I = R. Then 1 ∈ I; this implies that 1 · x = 0, i.e., x = 0; this is a contradiction. Hence, I $ R.

15
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Since I is a proper ideal, I is included in a maximal ideal M . Since M is a maximal ideal, M is

prime. Consider RM and the image x/1 of x in RM under the natural map R → RM . Since x is

nilpotent so is x/1. By hypothesis, RM does not contain a non-zero nilpotent element. Therefore,

x/1 = 0RM
= 0/1. This implies that there exists an element s ∈ S = R−M such that sx = 0. By

the definition of I we have s ∈ I ⊆M . We now have s ∈M ∩ (R−M); this is a contradiction.

6.11. Let M be a module over a commutative ring R, and let J ⊆ M ; let G be the submodule of

M generated by J .

(i) Show that, if J = ∅, then G = 0.

(ii) Show that, if J 6= ∅, then

G =

{
n∑
i=1

riji : n ∈ N, r1, . . . , rn ∈ R, j1, . . . , jn ∈ J

}
.

(iii) Show that, if ∅ 6= J = {l1, . . . , lt}, then

G =

{
t∑
i=1

rili : r1, . . . , rt ∈ R

}
.

Suggest solution: (i) Assume that J = ∅. Since G is a submodule of M we have 0 ⊆ G. Also, 0

is a submodule of M such that ∅ ⊆ 0. This implies that

G =
⋂

N submodule of M
such that J ⊆ N

N ⊆ 0.

Hence, G = 0.

(ii) Define

W =

{
n∑
i=1

riji : n ∈ N, r1, . . . , rn ∈ R, j1, . . . , jn ∈ J

}
.

We need to prove that G = W . Using the submodule criterion, it is straightforward to verify that

W is a submodule of M that contains J . Hence,

G =
⋂

N submodule of M
such that J ⊆ N

N ⊆W.

Since G contains J , G also contains all R-linear combinations of elements of J . Thus, W ⊆ G. We

conclude that G = W .

(iii) Let W be as above, and let

U =

{
t∑
i=1

rili : r1, . . . , rt ∈ R

}
.
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Evidently, U ⊆W . Conversely, let x =
∑n

i=1 riji ∈W . Recalling that J = {l1, . . . , lt}, we have:

x =

n∑
i=1

riji

=

 n∑
i=1
ji=l1

riji

+ · · ·+

 n∑
i=1
ji=lt

riji



=

 n∑
i=1
ji=l1

ril1

+ · · ·+

 n∑
i=1
ji=lt

rilt



=

 n∑
i=1
ji=l1

ri

 l1 + · · ·+

 n∑
i=1
ji=lt

ri

 lt

∈ U.

Thus, W ⊆ U . It follows that W = U .

Assignment 11

7.45 Let G be a module over a non-trivial commutative Noetherian ring R. Show that G has finite

length if and only if G is finitely generated and there exist n ∈ N and maximal ideals M1, . . . ,Mn

of R (not necessarily distinct) such that

M1 · · ·MnG = 0.

Suggest solution: Assume that G has finite length. By 7.36 the R-module G is Noetherian. By

7.13, G is finitely generated. Let

0 = G0 $ G1 $ · · · $ Gn−1 $ Gn = G

be a composition series. By definition, Gi/Gi−1 is simple for i = 1, . . . , n. By 7.32, for each

i ∈ {1, . . . , n} there exists a maximal ideal Mi of R such that Gi/Gi−1 ∼= R/Mi as R-modules. Now

let g ∈ G, and let mi ∈Mi for i ∈ {1, . . . , n}. Since Gn/Gn−1 ∼= R/Mn, we have r(x+Gn−1) = 0 for

r ∈Mn and x ∈ Gn. This implies that mng ∈ Gn−1. Similarly, mn−1mng ∈ Gn−2, and continuing,

we find that m1 · · ·mng ∈ G0 = 0. This proves that M1 · · ·MnG = 0.

Now assume that G is finitely generated and and there exist n ∈ N and maximal ideals M1, . . . ,Mn

of R (not necessarily distinct) such that

M1 · · ·MnG = 0.
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Since R is a Noetherian ring (by assumption), and since G is finitely generated, G is Noetherian

by 7.22. By 7.30, G is also Artinian (this uses the hypothesis M1 · · ·MnG = 0). By 7.36, G has

finite length.

7.46 Let R be a principal ideal domain which is not a field. Let G be an R-module. Show that G

has finite length if and only if G is finitely generated and there exists r ∈ R with r 6= 0 such that

rG = 0.

Assume that G has finite length. By 7.45, G is finitely generated, and there exist n ∈ N and

maximal ideals M1, . . . ,Mn of R (not necessarily distinct) such that

M1 · · ·MnG = 0.

Since R is not a field, 0 is not a maximal ideal of R. This implies that M1, . . . ,Mn are all non-zero.

Since R is a PID, we may write Mi = (ri) for some ri ∈ R for i ∈ {1, . . . , n}. Since M1 · · ·MnG = 0

we have rG = 0 with r = r1 · · · rn; note that r 6= 0 as r1 6= 0, . . . , rn 6= 0, and R is an integral

domain.

Now suppose that G is finitely generated and there exists r ∈ R with r 6= 0 and rG = 0. If r

is a unit, then G = 0, and G has finite length. Assume that r is not a unit. Since R is a PID,

R is a UFD by 3.39. Therefore, there exist n ∈ N and irreducible elements p1, . . . , pn ∈ R such

that r = p1 · · · pn. Let Mi = (pi) for i ∈ {1, . . . , n}. By 3.34, Mi is a maximal ideal of R for

i ∈ {1, . . . , n}. Since rG = 0 we have M1 · · ·MnG = 0. By 7.45 we now conclude that G has finite

length.
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