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Chapter 1

Background

1.1 Dirichlet characters

Let N be a positive integer. A Dirichlet character modulo N is a homomor-
phism

x: (Z/NZ)* — C*.
If N is a positive integer and x is a Dirichlet character modulo N, then we

associate to x a function
7. — C,

also denoted by y, by the formula

_Jx(a+NZ) if(a,N)=1,
x(a) = {o if (a, N) > 1

for a € Z. We refer to this function as the extension of y to Z. It is easy to
verify that the following properties hold for the extension of x to Z:

1. x(1)=1;

2. if a1, ag € Z, then x(a1a2) = x(a1)x(a2);

3. ifa € Z and (a,N) > 1, then x(a) = 0;

4. if a1,a2 € Z and a1 = az (mod N), then x(a1) = x(az).

Let N be a positive integer, and let x be a Dirichlet character modulo N.
We have x(a)*™) = 1 for a € Z with (a, N) = 1; in particular, x(a) is a ¢(N)-th
root of unity. Here, ¢(N) is the number of integers a such that (a, N) = 1 and
1<a<N.

If N =1, then there exists exactly one Dirichlet character x modulo N; the
extension of x to Z satisfies x(a) =1 for all a € Z.
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Let N be a positive integer. The Dirichlet character n modulo N that sends
every element of (Z/NZ)* to 1 is called the principal character modulo N.
The extension of 1 to Z is given by

1 (a,N) =1
nla) = {0 if (a,N) > 1

)

for a € Z.

Let f : Z — C be a function, let N be a positive integer, and let x be a
Dirichlet character modulo N. We say that f corresponds to x if f is the
extension of y, i.e., f(a) = x(a) for all a € Z.

Let f : Z — C, and assume that there exists a positive integer N and a
Dirichlet character y modulo N such that f corresponds to x. Assume N > 1.
Then there exist infinitely many positive integers N’ and Dirichlet characters x’
modulo N’ such that f corresponds to x’. For example, let N’ be any positive
integer such that N|N’ and N’ has the same prime divisors as N. Let x’ be the
Dirichlet character modulo N’ that is the composition

(Z/N'Z)* — (Z/NZ)* 25 C*,

where the first map is the natural surjective homomorphism. The extension
of X' to Z is the same as the extension of y to Z, namely f. Thus, f also
corresponds to x’.

Lemma 1.1.1. Let f : Z — C be a function and let N be a positive integer.
Assume that f satisifes the following conditions:

1. f(1) #0;

2. if a1,a3 € Z, then f(ajaz) = f(a1)f(az);
3. ifa €Z and (a,N) > 1, then f(a) = 0;
4. ifa € Z, then f(a+ N) = f(a).

There exists a unique Dirichlet character x modulo N such that f corrsponds
to x.

Proof. Assume that f satisfies 1, 2, 3, and 4. Since 1 = 1 -1, we have f(1)
F()f(1), so that f(1) = 1. Next, we claim that f(a;) = f(az2) for aj,as €
with a; = ag (mod N), or equivalently, if @ € Z and = € Z then f(a + zN)
f(a). Let a € Z and « € Z. Write = ez, where € € {1, —1} and z is positive.
Then

Nl

fla+aN) = x(e(ea + zN))
— f(e)x(ea+ =N)
= f(e)x(ea+ N +---+N)

z



1.1. DIRICHLET CHARACTERS 3

= f(e)x(ea)
= f(a).

Now let a € Z with (a, N) = 1; we assert that f(a) # 0. Since (a, N) = 1,
there exists b € Z such that ab =1+ kN for some k € Z. We have 1 = f(1) =
f(A+ kN) = f(ab) = f(a)f(b). It follows that f(a) # 0. We now define a
function x : (Z/NZ)* — C* by x(a + NZ) = f(a) for a € Z with (a, N) = 1.
By what we have already proven, « is a well-defined function. It is also clear
that x is a homomorphism. Finally, it is evident that the extension of x to Z is
f, so that f corresponds to x. The uniqueness assertion is clear. O

Let p be an odd prime. For m € Z define the Legendre symbol by

m 0 if p divides m,
(—) =1¢ —1 if (m,p) =1 and 22 = m (mod p) has no solution = € Z,
p 1 if (m,p) =1 and 2 = m (mod p) has a solution z € Z.

The function (;) : Z — C satisfies the conditions of Lemma 1.1.1 with N = p.

We will also denote the Dirichlet character modulo p to which (5) corresponds
by (5). We note that () is real valued, i.e., takes values in {~1,0,1}.

Let 8 be a Dirichlet character modulo M. We can construct other Dirichlet
characters from [ by forgetting information, as follows. Let N be a positive

multiple of M. Since M divides N, there is a natural surjective homomorphism
(Z/NZ)* — (Z/MZ)*,
and we can form the composition
(Z/NZ)* — (Z/MZ)* L5 C*.

Then x is a Dirichlet character modulo N, and we say that x is induced
from the Dirichlet character S modulo M. If N is a positive integer and x is a
Dirichlet character modulo N, and  is not induced from any Dirichlet character
B modulo M for a proper divisor M of N, then we say that x is primitive.

Let N be a positive integer, and let x be a Dirichlet character. Consider the
set of positive integers Ny such that N;|N and

x(a) =1

for a € Z such that (a,N) = 1 and a = 1 (mod N;). This set is non-empty
since it contains IN; we refer to the smallest such N; as the conductor of x
and denote it by f(x).

Lemma 1.1.2. Let N be positive integer, and let x be a Dirichlet character
modulo N. Let N1 be a positive integer such that N1|N and x(a) =1 fora € Z
such that (a,N) =1 and a =1 (mod Ny). Then f(x)|N1.
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Proof. We may assume that N > 1. Let M = ged(f(x),N1). We will prove
that x(a) = 1 for a € Z such that (a,N) = 1 and ¢ = 1 (mod M); by the
minimality of f(x) this will imply that M = f(x), so that f(x)|N1. Let

N = p‘lal . .pft
be the prime factorization of () into positive powers ey, ..., e; of the distinct
primes p1,...,p:. Also, write
¢ ’ k k
foo=p'-pt, No=pit-p

By definition,
M = prlnin(fl,krl) . .p;‘ﬂin(ft,kt).

Let a € Z be such that (a,N) = 1 and a = 1 (mod M). By the Chinese
remainder theorem, there exists an integer b such that

b= 1 (mod pfi) if £; > ks,
" \a (mod pF)if ; < k

for i € {1,...,t}, and (b,7(x)) = 1. Let ¢ be an integer such that (¢, N) =1
and a = be (mod N). Evidently, b = 1 (mod p%*) and ¢ = 1 (mod p¥) for
i€ {l,...,t}, so that b =1 (mod f(x)) and ¢ = 1 (mod N;). It follows that
x(a) = x(be) = x(b)x(¢c) = 1. O

Lemma 1.1.3. Let N be a positive integer, and let x be a Dirichlet character
modulo N. Then x is primitive if and only if f(x) = N.

Proof. Assume that y is primitive. By Lemma 1.1.2 f(x) is a divisor of N. By
the definition of f(x), the character x is trivial on the kernel of the natural map

(Z/NZ)* — (Z/F(0)Z)*.

This implies that x factors through this map. Since x is primitive, f(x) is not

a proper divisor of N, so that f(x) = N. The converse statement has a similar

proof. U
Evidently, the conductor of (;) is also p, so that (5) is primitive.

Lemma 1.1.4. Let Ny and Ny be positive integers, and let x1 and x2 be Dirich-

let characters modulo N1 and Ns, respectively. Let N be the least common mul-

tiple of N1 and Ny. The function f : Z — C defined by f(a) = x1(a)x2(a) for

a € Z corresponds to a unique Dirichlet x character modulo N.

Proof. 1t is clear that f satisfies properties 1, 2 and 4 of Lemma 1.1.1. To see
that f satisfies property 3, assume that a € Z and (a, N) > 1. We need to prove
that f(a) = 0. There exists a prime p such that p|a and p|N. Write a = pb for
some b € Z. Since f(a) = f(p)f(b) it will suffice to prove that f(p) = 0, i.e,
Xx1(p) = 0 or x2(p) = 0. Since p|N, we have p|N; or p|No. This implies that
x1(p) = 0 or x2(p) = 0. O
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Let the notation be as in Lemma 1.1.4. We refer to the Dirichlet character
x modulo N as the product of y; and x2, and we write x1x2 for x.

Lemma 1.1.5. Let Ny and Ny be positive integers such that (N1, No) =1, and
let x1 and x2 be Dirichlet characters modulo N1 and modulo No, respectively.
Let x = x1x2, the product of x1 and x2; this is a Dirichlet character modulo
N = N1 Ns. The conductor of x is f(x) = f(x1)f(x2). Moreover, x is primitive
if and only if x1 and x2 are primitive.

Proof. By Lemma 1.1.2 we have f(x1)|N1 and f(x2)|Na2. Since N = NNy,
we obtain f(x1)f(x2)|N. Assume that a € Z is such that (a, N) =1 and a =
1 (mod f(x1)f(x2)). Then (a,N1) = (a,Nz) =1,a =1 (mod f(x1)), and a =
1 (mod f(x2)). Therefore, x1(a) = x2(a) = 1, so that x(a) = x1(a)x2(a) = 1.
By Lemma 1.1.2 it follows that we have f(x)|f(x1)f(x2). Write f(x) = M1 M,
where M; and Ms are relatively prime positive integers such that M| f(x1) and
Ms|f(xz2).- We need to prove that M; = f(x1) and Ma = f(x2). Let a € Z be
such that (a, N1) =1 and @ = 1 (mod M;). By the Chinese remainder theorem,
there exists an integer b such that b = a (mod M;), b = 1 (mod f(x2)), and
(b,N) = 1. Evidently, b = 1 (mod f(x)). Hence, 1 = x(b) = x1(b)x=2(b) =
X1(a). By the minimality of f(x1) we must now have M; = f(x1). Similarly,
My = f(x2). The final assertion of the lemma is straightforward. O
Lemma 1.1.6. Let p be an odd prime. The Legendre symbol (E) is the only
real valued primitive Dirichlet character modulo p. If e is a positive integer with
e > 1, then there exist no real valued primitive Dirichlet characters modulo p®.

Proof. We have already remarked that (5) is a real valued primitive Dirichlet
character modulo p. To prove the remaining assertions, let e be a positive
integer, and assume that x is a real valued primitive Dirichlet character modulo
p¢; we will prove that x = (5) if e = 1 and obtain a contradiction if e > 1.

Consider (Z/pcZ)*. It is known that this group is cyclic; let € Z be such that
(z,p) = 1 and = + p°Z is a generator of (Z/p°Z)*. Since x has conductor p°,
and since x + p°Z is a generator of (Z/p°Z)*, we must have x(x) # 1. Since x

is real valued we obtain x(z) = —1. On the other hand, the function () is also

a real valued Dirichlet character modulo p® such that (%) = —1 for some a € Z;
since « + p°Z is a generator of (Z/p°Z)*, this implies that (%) = —1, so that
x(x) = (%) Since x + p°Z is a generator of (Z/p°Z)* and x(z) = —1 = x/(z)
we must have xy = (5) We see that if e = 1, then the Legendre symbol (5) is
the only real valued primitive Dirichlet character modulo p. Assume that e > 1.
It is easy to verify that the conductor of the Dirichlet character (5) modulo p®

is p; this is a contradiction since by Lemma 1.1.3 the conductor of x is p¢. [

Lemma 1.1.7. There are no primitive characters modulo 2. There exists a
unique primitive Dirichlet character €4 modulo 4 = 22 which is defined by

84(1) = 1,
54(3) = -1
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There exist two primitive Dirichlet characters €5 and €f modulo 8 = 23 which
are defined by

eg(1) =1, eq(l) =1,
eg(3) = —1, eg(3) =1,

, and it

eg(5) = —1, eg(5) = —1,
es(7) =1, eq(7) = —1.

There exist no real valued primitive Dirichlet characters modulo p¢ for e > 4.

Proof. We have (Z/2Z)* = {1}. It follows that the unique Dirichlet character
modulo 2 has conductor conductor 1; by Lemma 1.1.3, this character is not
primitive.

We have (Z/4Z)* = {1,3}. Hence, there exist two Dirichlet characters
modulo 4. The non-principal Dirichlet character modulo 4 is €4; since 4(1+2) =
—1, it follows that the conductor of ¢4 is 4. By Lemma 1.1.3, &4 is primitive.

We have

(Z/8Z)* = {1,3,5,7} = {1,3} x {1,5}
The non-principal Dirichlet characters modulo 8 are e5,e¢ and egeg. Since
eg(1+4) =ef(1+4) = —1 we have f(ef) = f(e§) = 8. Since (egef)(1 +4) =1

we have f(e5eg) = 4. Hence, by Lemma 1.1.3, e§ and e§ are primitive, and egey

is not primitive.

Finally, assume that e > 4 and let x be a real valued Dirichlet character
modulo p°. Let n € Z be such that (n,2) =1 and n =1 (mod 8). It is known
that there exists a € Z such that n = a? (mod p¢). We obtain x(n) = x(a?) =
x(a)? = 1 because x(a) = %1 (since x is real valued). By Lemma 1.1.2 the
conductor f(y) divides 8. By Lemma 1.1.3, x is not primitive. O

1.2 Fundamental discriminants

Let D be a non-zero integer. We say that D is a fundamental discriminant
if
D =1 (mod 4) and D is square-free,
or
D =0 (mod 4), D/4 is square-free, and D/4 =2 or 3 (mod 4).
We say that D is a prime fundamental discriminant if
D=-8orD=—-40r D=8,
or
D = —p for p a prime such that p = 3 (mod 4),
or

D = p for p a prime such that p =1 (mod 4).
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it is clear that if D is a prime fundamental discriminant, then D is a fundamental
discrimiant.

Lemma 1.2.1. Let Dy and Dy be relatively prime fundamental discriminants.
Then D1Ds is a fundamental discriminant.

Proof. The proof is straightforward. Note that since D; and Dy are relatively

prime, at most one of Dy and D- is divisible by 4. O
Lemma 1.2.2. Let D be a fundamental discriminant such that D # 1. There
exist prime fundamental discriminants D1, ..., Dy such that

D=D;--- Dy
and D1, ..., Dy are pairwise relatively prime.

Proof. Assume that D < 0 and D =1 (mod 4). We may write D = —py ---p;
for a non-empty collection of distinct primes p1,...,p;. Since D is odd, each of
P1,---,p¢ is odd and is hence congruent to 1 or 3 mod 4. Let r be the number
of the primes p from py,...,p; such that p = 3 (mod 4). We have
1= D (mod 4)
= (—1)3" (mod 4)
1= (—1)""" (mod 4).

It follows that r is odd. Hence,

D=-— H P

PE{P1,-pt}
=—( II »xC II »
PE{P1,--sPL }s PE{PL,--sPt }s
p=1 (mod 4) p=3 (mod 4)
p=( JI »x( II -»
PE{pP1,..Pt ), pE{PL,... Pt}
p=1 (mod 4) p=3 (mod 4)

Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case.

Assume that D < 0 and D = 0 (mod 4). If D = —4, then D is a prime
fundamental discriminant. Assume that D # —4. We may write D = —4p; - - - p¢
for a non-empty collection of distinct primes p1,...,p; such that —p; -+ - p; =2
or 3 (mod 4). Assume first that —p;---p; = 2 (mod 4). Then exactly one
of p1,...,ps is even, say p; = 2. Let r be the number of the primes p from
D2, ..., pt such that p = 3 (mod 4). We have
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p=-8 [ »

pE{p2,..-,pt}

==s( I »xC I »

pE{p2;....pt}, pE{p2,....pt},
p=1 (mod 4) p=3 (mod 4)

D=(-)*8)x( JI »xC I -»-
pE{p2,..,pt 1, PE{P2;--pt},
p=1 (mod 4) p=3 (mod 4)
Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case. Now assume that —p; ---py = 3 (mod 4).
Then p1,...,p; are all odd. Let r be the number of the primes p from pq,...,p:
such that p = 3 (mod 4). We have

= —p1---p (mod 4)
—1=(-1)3" (mod 4)
1=(-1)" (mod 4).

It follows that r is even. Hence,

=—4( I »xC II »

pe{p1,....pt} pE{P1, Dt}
p=1 (mod 4) p=3 (mod 4)

D = (—4) x ( H p) x ( H -p).
pE{p1,....pe }, PE{P1,....pt},
p=1 (mod 4) p=3 (mod 4)
Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case.

Assume that D > 0 and D = 1 (mod 4). Since D # 1 by assumption, we
have D = py --- p; for a non-empty collection of distinct odd primes pq, ..., p;.
Let r be the number of the primes p from py,...,p; such that p = 3 (mod 4).
We have

D (mod 4)
3" (mod 4)
(=1)" (mod 4).

1
1

We see that r is even. Therefore,

D= H P

PE{P1,-pt}

- II »xC II »

PE{PL, P}, PE{PL,- P},
p=1 (mod 4) p=3 (mod 4)
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p=( [I »wxC I -»

PE{P1,-- Pt} PE{P1,- Dt}

p=1 (mod 4) p=3 (mod 4)
Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case.

Finally, assume that D > 0 and D = 0 (mod 4). We may write D = 4py - - - p;

for a non-empty collection of distinct primes pq,...,p; such that p;---p; = 2
or 3 (mod 4). Assume first that p;---p, = 2 (mod 4). Then exactly one of
p1,---,p¢ is even, say p; = 2. Let r be the number of the primes p from
D2, ..., Pt such that p = 3 (mod 4). We have

D=4 [ »

pE{P1,.-sPt }
D=8 [ »
pE{p2,....pt}
=s( JI »xC II »
pE{p2,....pt}, pE{p2,....pt},
p=1 (mod 4) p=3 (mod 4)
p=(-8)x( I »x( II -».
pE{p2,.-spt}, pE{P2,..sPt },
p=1 (mod 4) p=3 (mod 4)

Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case. Now assume that p; ---p; = 3 (mod 4).
Then pq,...,p; are all odd. Let r be the number of the primes p from pq, ..., p;
such that p = 3 (mod 4). We have

3=p;---p (mod 4)
—1=3" (mod 4)
—1=(-1)" (mod 4)

1=(=1)""" (mod 4)

It follows that r is odd. Hence,

D=4 J[ »
PE{p1,---,pt }

=4( I »xC II »

pE{P1,..,pt}, PE{P1,-- Pt}
p=1 (mod 4) p=3 (mod 4)

D= (—4) x ( H p) x ( H -p).

PE{PL,- Dt} PE{PL,..,pt},
p=1 (mod 4) p=3 (mod 4)

Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case. O
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The fundamental discriminants between —1 and —100 are listed in Table A.1
and the fundamental discriminants between 1 and 100 are listed in Table A.2.
Let D be a fundamental discriminant. We define a function

XDZZ—)(C

in the following way. First, let p be a prime. We define

D
(—) if p is odd,
p

xp(p) = 1 if p=2and D=1 (mod 8),

-1 ifp=2and D=5 (mod 8),
0 if p=2and D=0 (mod 4).

Note that since D is a fundamental discriminant, we have D # 3 (mod 8) and
D # 7 (mod 8). If n is a positive integer, and

— e €t
n_pl ...pt

is the prime factorization of n, where pq,...,p; are primes, then we define

xp(n) = xp(p1) -+ xp(p)“" (1.1)

This defines xp(n) for all positive integers n. We also define

xp(=n) = xp(=1)xp(n)
for all positive integers n, where we define

(1) = 1 ifD>0,
XD =\ -1 D<o

Finally, we define

0 ifD+£1,
0) =
xp(0) {1 i D=1,

We note that if D = 1, then x3(a) = 1 for @ € Z. Thus, x; is the unique
Dirichlet character modulo 1 (which has conductor 1, and is thus primitive).

Lemma 1.2.3. Let Dy and Dy be relatively prime fundamental discriminants.
Then

XD1Ds (a) = XD, (a)XDz (a)
for all a € Z.

Proof. 1t is easy to verify that xp,p,(p) = xp,(P)xD,(p) for all primes p,
XDlDz(_l) = XD1(_1)XD2(_1)7 and XD1D2(O) =0= XDI(O)XD2(O)' The as-
sertion of the lemma now follows from the definitions of xp, xp, and xp, on
composite numbers. O



1.2. FUNDAMENTAL DISCRIMINANTS 11
Lemma 1.2.4. Let D be a fundamental discriminant. The function xp corre-
sponds to a primitive Dirichlet character modulo |D)|.

Proof. By Lemma 1.2.2 we can write
D=D,---D,

where D1, ..., Dy are prime fundamental discriminants and Dy, ..., D} are pair-
wise relatively prime. By Lemma 1.2.3,

xp(a) = xp,(a) - xp,(a)

for a € Z. Lemma 1.1.4 and Lemma 1.1.5 now imply that we may assume that
D is a prime fundamental discriminant For the following argument we recall
the Dirichlet characters g4, e§ and €f from Lemma 1.1.7.

Assume first that D = —8 so that |D| = 8. Let p be an odd prime. Then

(p)
)
(%1)( )
[

21

)7 (-1)"
1 itp=1,3 (mod 8)
1 ifp=5,7 (mod8)’

Also,
x-8(2) =0.
We see that x_s(p) = €4(p) for all primes p. Also, x_s(—1) = —1 = e{(-1)
and x_s(0) = 0 =¢{(0). Since x_g and €f are multiplicative, it follows that
X-8 = €l8/7

so that x_s corresponds to a primitive Dirichlet character mod | — 8| = 8.
Assume that D = —4 so that |D| = 4. Let p be an odd prime. Then
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p—1

= (_1)T
{1 ifp=1 (mod 4),

-1 ifp=3 (mod4).

Also, x-4(2) =0, x—4(—1) = —1, and x—4(0) = 0. We see that x_4(p) = c4(p)
for all primes p. Also, x_4(—1) — 1 = g4(—1) and x_4(0) = 0 = £4(0). Since
X—4 and g4 are multiplicative, it follows that

X—4 = €4,

so that x_4 corresponds to a primitive Dirichlet character mod | — 4| = 4.
Assume that D = 8. Let p be an odd prime. Then

-(5)
<§)3
=)

p2-1
8

~(-1)

1 if p=1,7 (mod 8),
-1 ifp=3,5 (mod 8).

Also, x8(2) =0, xs(—1) =1, and xs(0) = 0. We see that xs(p) = e5(p) for all
primes p. Also, xs(—1) =1 = e5(—1) and x5(0) = 0 = £5(0). Since xs and &g
are multiplicative, it follows that

/
X8 = €y,

so that xs corresponds to a primitive Dirichlet character mod [8] = 8.
Assume that D = —q for a prime ¢ such that ¢ = 3 (mod 4). Let p be an
odd prime. Then



1.2. FUNDAMENTAL DISCRIMINANTS 13

)

Also,
1 if —¢ =1 (mod 8),
2 =
xo(2) {—1 if =g =15 (mod 8)
)1 if g=7 (mod 8),
1 -1 ifg=3 (mod 8)
_ (_1)(17_
2
= 6)7
and

Since (5) and yp are multiplicative, it follows that (%) = xp(a) for all a €
Z. Since (E) is a primitive Dirichlet character modulo ¢, it follows that xp

corresponds to a primitive Dirichlet character modulo ¢ = | — ¢| = |D|.
Assume that D = ¢ for a prime ¢ such that ¢ =1 (mod 4). Let p be an odd
prime. Then
q
voio) = (2)
)=,

Also,
1 if ¢ =1 (mod 8),
w@—{' = 1modd
-1 ifg=5 (mod 8)
= (-1
2
-(5)
and
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Since (E) and xp are multiplicative, it follows that (%) = xp(a) for all a €
Z. Since (5) is a primitive Dirichlet character modulo g, it follows that xp
corresponds to a primitive Dirichlet character modulo ¢ = |¢| = | D|. O

From the proof of Lemma 1.2.4 we see that if D is a prime fundamental
discriminant with D > 1, then

el if D= -8,
es iD= —4,

xp=4 € D=3, (1.2)
(i) if D= —pis a prime with p =3 (mod 4),
p
<;> if D =pis a prime with p =1 (mod 4).
p

Proposition 1.2.5. Let N be a positive integer, and let x be a Dirichlet charac-
ter modulo N. Assume that x is primitive and real valued (i.e., x(a) € {0,1, -1}
fora € Z). Then there exists a fundamental discriminant D such that |D| = N
and X = XD-

Proof. If N =1, then x is the unique Dirichlet character modulo 1; we have al-
ready remarked that y; is also the unique Dirichlet character modulo 1. Assume
that N > 1. Let

N:pil...p?

be the prime factorization of N into positive powers eq,...,e; of the distinct
primes p1,...,p:. We have

(Z/NZ)* = (Z/pT*Z)* x -+ x (Z/p}*L)*

where the isomorphism sends « + NZ to (x +p{'Z, ..., x +pi'Z) for x € Z. Let
i€ {l,...,t}. Let x; be the character of (Z/p;Z)* which is the composition

(Z)pS L) — (Z)pS L) x -+ x (Z)pt L) =5 (Z/NZL)* 25 C,
where the first map is inclusion. We have
x(a) = xa(a) - xt(a)

for a € Z. By Lemma 1.1.5 the Dirichlet characters xi,..., X are primitive.
Also, it is clear that xi,...,x: are all real valued. Again let i € {1,...,t}.
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Assume first that p; is odd. Since x; is primitive, Lemma 1.1.6 implies that
e; = 1, and that y; = (;), the Legendre symbol. By (1.2), x; = xp, where

D, = )P if p; =1 (mod 4),
" l-pi ifpi=3 (mod 4).

Evidently, | — D;| = p;*. Next, assume that p; = 2. By Lemma 1.1.7 we see
that e; = 2 or e; = 3 with x; = €4 if e; = 2, and x; = €5 or &f if e;, = 3. By
(12)a Xi = XDj» where

—4  ife; =2,
D; =<8 if e; =3 and x; = €5,
-8 ife; =3 and x; = &f.

Clearly, | — D;| = p§*. To now complete the proof, we note that by Lemma 1.2.1
the product D = Dy --- D; is a fundamental discriminant, and by Lemma 1.2.3
we have xp = Xp, -+ XD, Since xp, - - Xp, = X1 Xt = x and |D| = N, this
completes the proof. O

1.3 Quadratic extensions
Proposition 1.3.1. The map
{quadratic extensions K of Q} — {fundamental discriminants D, D # 1}

that sends K to its discriminant disc(K) is a well-defined bijection. Let K be a
quadratic extension of Q, and let p be a prime. Then the prime factorization of
the ideal (p) generated by p in ok is given as follows:

p? (p is ramified) if xp(p) =0,
(p)=q P9 (psplits) if xp(p) =1,
p (p is inert) if xp(p) =—1.

Here, in the first and third case, p is the unique prime ideal of ox lying over
(p), and in the second case, p and p’ are the two distinct prime ideals of o

lying over (p).

Proof. Let K be a quadratic extension of Q. There exists a square-free integer
d such that K = Q(v/d). Let ox be the ring of integers of K. It is known that

Z-1+7-Vd if d=2,3 (mod 4),

O = 1
Z-1+7- +2\/;l

if d=1 (mod 4).
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By the definition of disc(K), we have

1
det( ) \/\/&& )2 if d =2,3 (mod 4),
disc(K) = _1 1++Vd
det( . _2¢E )2 if d =1 (mod 4)
L 2

~J4d ifd=2,3 (mod 4),
“ld ifd=1 (mod 4).

It follows that the map is well-defined, and a bijection. For a proof of the

remaining assertion see Satz 1 on page 100 of [29], or Theorem 25 on page 74
of [16]. O

Lemma 1.3.2. Let D be a fundamental discriminant such that D # 1. Let
K = Q(vVD), so that K is a quadratic extension of Q. Then disc(K) = D.

Proof. Assume that D =1 (mod 4). Then D is square-free. From the proof of
Proposition 1.3.1 we have disc(K) = D. Assume that D = 0 (mod 4). Then
K =Q(+/D/4), with D/4 square-free and D/4 = 2,3 (mod 4). From the proof
of Proposition 1.3.1 we again obtain disc(K) =4 - (D/4) = D. O

1.4 Kronecker Symbol

Let A be a non-zero integer such that A = 0,1 or 2 (mod 4). We define a
function,
A
(—) :Z—C

called the Kronecker symbol, in the following way. First, let p be a prime.
We define

A
(5> (Legendre symbol) if p is odd,
0 if p=2 and A is even,
1

ifp=2and A =1 (mod 8),
-1 if p=2and A =5 (mod 8).
Note that, since by assumption A = 0,1 or 2 (mod 4), the cases A = 3 (mod 8)
and A =7 (mod 8) do not occur. We see that if p is a prime, then p|A if and

only if (%) = 0. If n is a positive integer, and

— el €t
n_pl ...pt
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is the prime factorization of n, where pq, ..., p; are primes, then we define

(-G

This defines (%) for all positive integers n. We also define

(£)=(5)E)

for all positive integers n, where we define

(5)-{ 1 §aze

&)-f 1ar

We note that if A = 1, then (%)(l) =1 for a € Z. Thus, (l) is the unique

a

Dirichlet character modulo 1. It is straightfoward to verify that

(@) =)

for a,b € Z. Also, we note that (%) =0 if and only if (a,A) > 1.

Finally, we define

Lemma 1.4.1. Let D be a non-zero integer such that D =1 (mod 4) or D =
0 (mod 4). There exists a unique fundamental discriminant Dgg and a unique

positive integer m such that
D= mQDfd.

Proof. We first prove the existence of m and Dgy. We may write D = 2°a2b,
where e is a positive non-negative integer, a is a positive integer, and b is an
odd square-free integer.

Assume that e = 0. Then D =1 (mod 4). Since a is odd, a®> = 1 (mod 4);
therefore, b = 1 (mod 4). It follows that D = m?Dgq with m = a and Dgq = b
a fundamental discriminant.

The case e = 1 is impossible because D =1 (mod 4) or D = 0 (mod 4).

Assume that e > 2 and e is odd. Write e = 2k + 1 for a positive integer k.
Then D = m2Dgq with m = 2¥=1q and Dsq = 8b a fundamental discriminant.

Assume that e > 2 and e is even. Write e = 2k for a positive integer k. If
b =1 (mod 4), then D = m?Dgq with m = 2¥a and Dyqy = b a fundamental
discriminant. If b = 3 (mod 4), then D = m?2Dgq with m = 2¥"1q and Dy = 4b
a fundamental discriminant. This completes the proof the existence of m and
Dfd.

To prove the uniqueness assertion, assume that m and m’ are positive inte-
gers and Dgg and Dy, are fundamental discriminants such that D = m?Dyq =
(m')2Dj}y. Assume first that Dgg = 1. Then m? = (m/)2D}{;. This implies
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that Df, is a square; hence, Df; = 1. Therefore, m? = (m/)?, implying that
m =m'. Now assume that D¢q # 1. Then also Df; # 1, and D is not a square.
Set K = Q(v/D). We have K = Q(v/Diq) = Q(\/Djy). By Lemma 1.3.2,
disc(K') = Dgq and disc(K) = Djy, so that Dgg = Dj. Since this holds we also
conclude that m = m/. O

Proposition 1.4.2. Let A be a non-zero integer with A = 0,1 or 2 (mod 4).
Define

_JA  ifA=0or1l (mod4),

~l4A  if A=2 (mod 4).

Write D = m2Dgq with m a positive integer, and Diq a fundamental discrimi-
nant, as in Lemma 1.4.1. The Kronecker symbol (é) is a Dirichlet character
modulo |D|, and is the Dirichlet character induced by the mod |Dsq| Dirichlet
character X p,, -

Proof. Let a be the Dirichlet character modulo |D| induced by xp,,. Thus, «
is the composition

(Z/|D\Z)* — (Z/|Dwl|Z)* > C*,

extended to Z. Since « and (é) are multiplicative, to prove that a = (é) it
will suffice to prove that these two functions agree on all primes, on —1, and on
0. Let p be a prime.

Assume first that p is odd. If p|D, then also p|A, so that «(p) and (é)
evaluated at p are both 0. Assume that (p, D) = 1. Then also (p, A) = 1. Then

(é> evaluated at p <%) (Legendre symbol)

7) if A=0or 1 (mod 4),
7)2<—> if A =2 (mod 4),

) if A=0or 1 (mod 4),

) if A =2 (mod 4),
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Assume next that p = 2. If 2|D, then also 2|A, so that «(2) and (£)
evaluated at 2 are both 0. Assume that (2, D) = 1, so that D is odd. Then
D = A, and in fact D = 1 (mod 4). This implies that A = 1 or 7 (mod 8).
Also, as D = 1 (mod 4), and D = m?Dyq, we must have Dtg = D (mod 8)
(since a® =1 (mod 8) for any odd integer a). Therefore,

1 if D=1 (mod 8),
-1 if D=5 (mod 8),
_ 1 if Dfd =1 (mod 8) y
"1 -1 if Dgg =5 (mod 8) ,

= XDxaq (2)
= a(2).

(é) evaluated at 2 = {

To finish the proof we note that

(é) evaluated at —1 = sign(A)
= sign(D)
= sign(Dga)
= XDw(—1)
=a(-1).
Since A = 1 if and only if Dy = 1, the evaluation of (£) at 0 is xp,,(0) =
a(0). O

Lemma 1.4.3. Assume that Ay and Ao are non-zero integers that satisfy the
congruences Ay = 0,1 or 2 (mod 4) and Ay = 0,1 or 2 (mod 4). Then we have
A1As =0,1 or 2 (mod 4), and

()@= (53) 13

for all integers a.

Proof. Tt is easy to verify that AjAy = 0,1 or 2 (mod 4), and that if Ay =1 or
Ay =1, then (1.3) holds. Assume that A; # 1 and As # 1. Since (@), (@),
and (Al_AQ) are multiplicative, it suffices to verify (1.3) for all odd primes, for

2, —1 and 0. These cases follows from the definitions. O

1.5 Quadratic forms

Let f be a positive integer, which will be fixed for the remainder of this section.
In this section we regard the elements of Z/ as column vectors.

Let A = (a; ;) € M(f,Z) be a integral symmetric matrix, so that a; ; = a;;
for i,5 € {1,...,f}. We say that A is even if each diagonal entry a;; for
ie{l,...,f} is an even integer.
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Lemma 1.5.1. Let A € M(f,Z), and assume that A is symmetric. Then A is
even if and only if ‘yAy is an even integer for all y € Z.f .

Proof. Let y € Zf | with 'y = (y1, ... ,Yf). Then

n
tyAy = Z i, jYiYj

ij=1
f

:Zai,iy?"‘ Z 2ai,59:Y;-
i=1 1<i<j<f

It is clear that if A is even, then ‘yAy is an even integer for all y € Z/. Assume
that "yAy is an even integer for all y € Z/. Let i € {1,..., f}. Let y; € Zf be
defined by

% = (0,...,0,1,0,...,0)

where 1 occurs in the ¢-th position. Then tyiAyi = a;;. This is even, as
required. O

Suppose that A is an even integral symmetric matrix. To A we associate the
polynomial

I
1
Q... ) = 5 > iy,

ij=1
and we refer to Q(z1,...,zf) as the quadratic form determined by A. Evi-
dently,
1
Qz) = 3 ‘Az
with
Z1
xr =
Ly
Since a; ; is even for i € {1, ..., f}, the quadratic form Q(z) can also be written
as
Q(IL‘l,...,fEf) = Z b@jl’ﬂﬂj
1<i<j<f
where

b — aj,j for1§i<j§f,
J a;;/2 forl1<i<f

is an integer. We denote the determinant of A by

D = D(A) = det(A).
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and the discriminant of A by

2k if f is even,

A = A(A) = (-1)" det(A), f={2k+1 if fis odd.

For example, suppose that f = 2. Then every even integral symmetric matrix

has the form
2a b
A= { b 20]

where a, b and ¢ are integers, and the associated quadratic form is:
Q(x1,22) = ax? + b2 + 3.

For this example we have
D = 4ac — b2, A = b — 4ac.

Lemma 1.5.2. Let A € M(f,Z) be an even integral symmetric matriz, and let
D =D(A) and A = A(A). If f is odd, then A =D =0 (mod 2). If f is even,
then A =0,1 (mod 4).

Proof. Let A = (a;;) with a;; € Z for i,j € {1,...,f}. By assumption,
a;; = a;j,; and a;; is even for ¢,j € {1,..., f}.
Assume that f is odd. For o € Sy (the permutation group of {1,..., f}, let

t(o) = sign(o)ay,o(1) - ay,0(5) = sign(o) H ;o (i)

ie{l,...,n}
We have
det(A) = Z t(o)
O'GSf
=> to)+ > to)
oeX O'ESf—X

Here, X is the subset of 0 € Sy such that o0 # o~ !'. Let o € Sy. Then

t(o™1) =sign(o™t) H Ujo—1(i)
ie{l,...f}

= sign(o) II Ao (i),0-1 (0 (i)
ie{l,...f}

= sign(o) H Ao (i),i

ie{l,...f}

= sign(o) H Q0 (1)

ie{l,...f}
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=t(o).

Since the subset X is partitioned into two element subsets of the form {7, o1}
for 0 € X, and since t(c) = t(c~!) for o € Sy, it follows that

z t(o) =0 (mod 2).

oceX
Let o0 € Sy — X, so that 02 = 1. Write 0 = oy - - - 04, where 01,...,0; € Sy are
cycles and mutually disjoint. Since 02 = 1, each o; for i € {1,...,t} is a two
cycle. Since f is odd, there exists ¢ € {1,..., f} such that ¢ does not occur in
any of the two cycles o1,...,0;. It follows that o (i) = i. Now a; o(;y = ai,; by

hypothesis, this is an even integer. It follows that ¢(o) is also an even integer.
Hence,
Z t(o) =0 (mod 2),
G‘GSf*X
and we conclude that A = D =0 (mod 2).

Now assume that f is even, and write f = 2k. We will prove that A =
0,1 (mod 4) by induction on f. Assume that f = 2, so that

2a b
A= [b 20]

where a, b and ¢ are integers. Then A = b? — 4ac = 0,1 (mod 4). Assume
now that f > 4, and that A(4;) = 0,1 (mod 4) for all fi x fi even integral
symmetric matrices A; with f; even and f > f; > 2. Clearly, if all the off-
diagonal entries of A are even, then all the entries of A are even, and A(A) =
0 (mod 4). Assume that some off-diagonal entry of A, say a = a,; is odd with
1 <i < j < f. Interchange the first and the i-th row of A, and then the first and
the i-th column of A; the result is an even integral symmetric matrix A’ with
a in the (1,7) position and det(A’) = det(A). Next, interchange the second
and the j-th column of A’, and then the second and the j-th row of A’; the
result is an even integral symmetric matrix A” with a in the (1,2)-position and
det(A”) = det(A’) = det(A). It follows that we may assume that (i,5) = (1,2).

We may write
_|A B
A= [tB Ag] ’

where As is an (f — 2) x (f — 2) even integral symmetric matrix,

a1 ai2
Al = |: ’ :| )

a1,2 Aa22

and B is a 2 X (f — 2) matrix with integral entries. Let

adj(4,) = [ e “’“] :

—ai2 a1
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so that
A1 . adJ(Al) = adJ(Al) . Al = det(Al) . 12

Now
12 A1 B
— tB . adJ(Al) det(Al) . 1f_2 tB A2

B

A
:{ B adi(Ay) - B+ det(An)dy| - (1Y

Consider the (f —2) x (f —2) matrix — ‘B -adj(A;) - B. This matrix clearly has
integral entries. If y € Zf~2, then By € Zf~2 and

(y)(= B -adj(A1) - By = — (By) - adj(4:1) - (By);

since adj(A;) is even, by Lemma 1.5.1 this integer is even. Since the last dis-
played integer is even for all y € Zf~2, we can apply Lemma 1.5.1 again to
conclude that — 'B - adj(A;) - B is even. It follows that

As = — ‘B -adj(A;) - B + det(A;)A,

is an (f —2) x (f — 2) even integral symmetric matrix. Taking determinants of
both sides of (1.4), we obtain

det(A;)7 2 - det(A)

det(Al)"L2 . (—1)”C det(A) =

det(A;)772 . A(A)

det(Ay) - det(As)
(~1) det(Ar) - (~1)"~" det(As)
A(Ar) - A(4y).

By the induction hypothesis, A(A;) = 0,1 (mod 4), and A(A43) =0,1 (mod 4).
Hence,
det(A;)’ 72 - A(A) = 0,1 (mod 4).

By hypothesis, a; 2 is odd; since f — 2 is even, this implies that det(A4;)/ 2 =
1 (mod 4). We now conclude that A(A) = 0,1 (mod 4), as desired. O

Let A € M(f,R). The adjoint of A is the f x f matrix adj(A) with entries
adj(A)s,; = (=1)""7 det (A(j]1))

for i,5 € {1,...,n}. Here, for i,5 € {1,...,n}, A(j]7) is the (f — 1) x (f = 1)
matrix that is obtained from A by deleting the j-th row and the i-th column.

For example, if
a b
a=[ed]

then
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We have
adj(A) - A= A-adj(A) = det(A) - 15.

Thus,
A = det(A)adj(A)~?
adJ(A) det(A) - A7,
~h=det(4)7 ad.]( )
adj(A) b= det(A)7
det (adj(A)) = det(A)f 1.
We let Sym(f,R) be the set of all symmetric elements of M(f,R). Let A €

Sym(f,R). We say that A is positive-definite if the following two conditions
hold:

1. If x € RY, then Q(z) =
2. ifz € RS and Q(z) =

We will also write A > 0 to mean that A is positive-definite. We say that A
is positive semi-definite if the first condition holds; we will write A > 0 to
indicate that A is positive semi-definite. Since A is symmetric with real entries,
there exists a matrix T € GL(f, R) such that “TT = T ‘T = 1 (so that T~ = ‘T
and

rAx > 0;

1t
2 =
t

%on:fO then x = 0.

A1
A2

“TAT = T'AT = A3 (1.5)

Af

for some Ai,...,Af € R (see the corollary on p. 314 of [9]). The symmetric
matrix A is positive-definite if and only if Ai,...,A; are all positive, and A is
positive semi-definite if and only if Ai,...,A; are all non-negative. It follows
that if A is positive-definite, then det(A) > 0, and if A is positive semi-definite,
then det(A) > 0. Assume that A is positive semi-definite, and that 7" and
Al,..., Ay are as in (1.5); in particular, A1,...,A; are all non-negative real
numbers. Let

BT Vs 71 (1.6)

VA
The matrix B is evidently symmetric and positive semi-definite, and we have
A="BB=BB= B (1.7)

Also, it is clear that if A is positive-definite, then so is B.
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Lemma 1.5.3. Assume f is even. Let A € M(f,Z) be a positive-definite even
integral symmetric matriz. The matriz adj(A) is a positive-definite even integral
symmetric matriz.

Proof. We have adj(A) = det(A) - A~!. Therefore, ‘adj(A) = det(A) - t(A*I) =
det(A) - (*A)~! = det(A) - A~! = adj(A), so that adj(A) is symmetric. To see
that adj(A) is positive-definite, let 7' € GL(f,R) and Aq,..., A be positive real
numbers such that (1.5) holds. Then

Y(“T)adj(A) ‘T = det(A) - TA™ T

det(A)A!
det(A)A;!
_ det(A)Az*

det(A)A;!

This equality implies that adj(A) is positive-definite. It is clear that adj(A) has
integral entries. To see that adj(A) is even, let ¢ € {1,..., f}. Then adj(A);; =
det (A(i[¢)). The matrix A(i[i) is an (f — 1) x (f — 1) even integral symmetric
matrix. Since f — 1 is odd, by Lemma 1.5.2 we have det (A(i]i)) = 0 (mod 2).
Thus, adj(A);,; is even. O

Let A € M(f,Z) be an even integral symmetric matrix with det(A) non-zero.
The set of all integers N such that NA~! is an even integral symmetric matrix
is an ideal of Z. We define the level of A, and its associated quadratic form, to
be the unique positive generator N (A) of this ideal. Evidently, the level N(A) of
A is smallest positive integer N such that NA~! is an even integral symmetric
matrix.

Proposition 1.5.4. Assume [ is even. Let A € M(f,Z) be a positive-definite
even integral symmetric matriz. Define

adj(A)Ll

9 adj(A)l,g adj(A)Lg e adj(A)l,f
. adj(A . .
adi(4)e "D i), o adi(a)y
. . adj(A): .
G = ged( adj(A)13  adj(A)zs % adj(A)s,f )
. . . adj A
adj(A)1,r adj(A)s,r adj(A)s s %

Then G divides det(A), and the level of A is

_det(A)
==

N

The positive integers N and det(A) have the same set of prime divisors.
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Proof. The integer G divides every entry of adj(A). Therefore, G/ divides
det (adj(A4)). Since det (adj(A)) = det(A)’~, G' divides det(A)/~!. This
implies that G divides det(A). Now by definition, G is the largest integer g such
that

1
gadj (A) is even.

Since adj(A) = det(A)A~!, we therefore have that

det(A)
G

This implies that det(A)G~! is in the ideal generated by the level N of A, i.e.,
N divides det(A)G~!; consequently,

A7l s even.

GN < det(A).

On the other hand, NA~! is even. Using A~! = det(A4)~tadj(A), this is equiv-

alent to 1
Wad} (A) is even.

Since det(A)N~! is a positive integer (we have already proven that N divides

det(A)), the definition of G implies that G' > det(A)N !, or equivalently,

GN > det(A).

We now conclude that GN = det(A), as desired.

To see that N and det(A) have the same set of prime divisors, we first note
that (since N divides det(A)) every prime divisor of N is a prime divisor of
det(A). Let p be a prime divisor of det(A). If p does not divide G, then p divides
N (because NG = det(A)). Assume that p divides G. Write det(A4) = p’d
and G = pFg with k and j positive integers and d and ¢ integers such that
(d,p) = (g,p) = 1. From above, Gf divides det(A)f~!. This implies that
(f = 1)j > fk. Therefore,

This means that p divides N = det(A4)/G. O

Corollary 1.5.5. Let f be an even positive integer, let A € M(f,Z) be a
positive-definite even integral symmetric matriz and let N be the level of A.
Then N =1 if and only if det(A) = 1.

Proof. By Proposition 1.5.4, N and det(A) have the same set of prime divisors.
It follows that N =1 if and only if det(A) = 1. O

Corollary 1.5.6. Let A be a 2 x 2 even integral symmetric matriz, so that

2a b
A= {b 26]
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where a, b and ¢ are integers. Then A is positive-definite if and only if det(A) =
dac—b>>0,a >0, and c > 0. Assume that A is positive-definite. The level of
A s

_ dac— b?

~ ged(a,b,c)’

Proof. Assume that A is positive-definite. We have already pointed out that

det(A) > 0. Now
=3 [ 2] =

1
2
n-Y B[t 2]

Since A is positive-definite, these numbers are positive. Assume that det(A) =
4ac—b%2 > 0,a >0, and ¢ > 0. For =,y € R we have

Q(z,y) = az® + bxy + cy?

1 b o  dac—b% ,
(a2 + 5y +

4a
1 b o det(4) ,
= —(az+5y)"+ — — v~

Clearly, we have Q(z,y) > 0 for all 2,y € R. Assume that z,y € R are such
that Q(z,y) = 0. Then since det(A) > 0 and a > 0 we must have az + Sy =0
and y = 0; hence also x = 0. It follows that A is positive-definite. The final

assertion follows from
. 2¢ —b
adj(4) = {—b Qa}

and Proposition 1.5.4. O

Corollary 1.5.7. Let f be an even positive integer, let A € M(f,Z) be a
positive-definite even integral symmetric matriz and let N be the level of A.
Let ¢ be a positive integer. Then the level of the positive-definite even integral
symmetric matriz cA is ¢cN.

Proof. This follows from the formula for level from Proposition 1.5.4. O

Lemma 1.5.8. Let f be an even positive integer, let A € M(f,Z) be a positive-
definite even integral symmetric matriz and let N be the level of A. Define
the integral quadratic form Q(x) by Q(x) = %%Aaj. Let h € ZJ be such that
Ah = 0 (mod N). Then Q(h) = 0 (mod N). Also, if n € ZS is such that

n=h (mod N), then Q(n) = Q(h) (mod N?) and Q(n) =0 (mod N).

Proof. Since Ah =0 (mod N), there exists m € Z/ such that Ah = Nm. We
have

Q) = 5 '
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“(AR)A™(Ah)

=z i
NN

‘m(NA™ m.

By the definition of N, NA~! is an even symmetric integral matrix. Therefore,
by Lemma 1.5.1, m(NA~")m is an even integer. Hence %tm(NA_l)m is an
integer, so that Q(h) = 0 (mod N). Next, let n € Z/ be such that n =
h (mod N). Let b € Zf be such that n = h + Nb. Then

2Q(n) = ‘(h + Nb)A(h + Nb)
= ("h+ N B)A(h + Nb)
= "WAh + 2N bAh 4+ N? b Ab
= 'hAh (mod 2N?)
=2Q(h) (mod 2N?).
Here bAh = 0 (mod N) because Ah = 0 (mod N) and Ab = 0 (mod 2)

because A is even. It follows that Q(n) = Q(h) (mod N?). Finally, since
Q(h) =0 (mod N) and Q(n) = Q(h) (mod N?), we have Q(n) =0 (mod N). O

1.6 The upper half-plane

Let GL(2,R)™ be the subgroup of ¢ € GL(2,R) such that det(c) > 0. We define
and action of GL(2,R)™ on the upper half-plane H; by

az+b

cz+d

for 2 € Hy and o € GL(2,R)* such that

o= [Z Z] . (1.8)

We define the cocycle function
j:GL(2,R)T xH; — C

by
jlo,z) =cz+d

for z € H; and o € GL(2,R)" as in (1.8). We have
j(aﬂaz) :j(aaﬂ : Z)j(ﬂaz)

for o, 8 € GL(2,R)* and z € H;. Let F : H; — C be a function, and let £ be
an integer. Let o € GL(2,R)". We define

F|g:H1—>(C
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by the formula

az + b)
cz+d
= det(0)"?j(0,2) "' F(o - 2)

(Fleo)(2) = det(0)/2(cz + d)*eF(

for z € Hy. We have
(Flect)|eB = Fle(aB)
for a, 3 € GL(2,R)™.

1.7 Congruence subgroups

Let N be a positive integer. The principal congruence subgroup of level N
is defined to be

F(N):{L d} €SL(2,Z):a=d=1 (mod N),b=c=0 (mod N)}.

The Hecke congruence subgroup of level N is defined to be

To(N) = {{‘CL Z} € SL(2,Z) : ¢ =0 (mod N)}.

If T is a subgroup of SL(2,Z), then we say that I" is a congruence subgroup
of SL(2,Z) of SL(2,Z) if there exists a positive integer N such that T'(N) C T

1.8 Modular forms

Let N be a positive integer, and let R > 0 be positive number. Let

S Nlog(l/R)}

H(N,R) ={z € H; : Im(z) o

and
D(R)={q€C:|q| < R}.
The function
H(N,R) — D(R)
defined by ‘
PN q(z) _ e27rzz/N
is well-defined. We have ¢(z + N) = q(z) for z € H(N, R).

Lemma 1.8.1. Let f : Hy — C be an analytic function, and let N be a positive
integer such that f(z + N) = f(z) for z € Hy. Assume that there exists a real
number such that 0 < R <1 and a complex power series
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that converges for g € D(R) such that

oo

f(Z) — Z a(n)BZﬂinz/N
n=0
for z € H(N,R). If M s another positive integer such that f(z + M) = f(z)
for z € Hy, then there exists a real number such that 0 < T < 1 and a complex

power series
(o]

> b(k)q"
k=0
that converges for g € D(T) such that

(F’ko) (2) = Z b(k;)ekaz/M
k=0

forz€ H(M,T).
Proof. For z € H(N, R),

f(z) = f(z+ M)

_ Z a(n)eQ‘n—in(z+M)/N

n=0
o oo

a(n)e27rinz/N — Za(n)eQﬂ'inM/N . e?ﬂ'inz/N.

n=0 n=0
It follows that _
a(n) _ a(n)627mnM/N

for all non-negative integers m. Hence, for every non-negative integer n, if
a(n) # 0, then nM/N is an integer, or equivalently, if nM /N is not an integer,
then a(n) = 0. Let z € H(N, R). Then

1z = 3 aln)erine/

n

62‘11'2'(nM/N)z/M

M

a(n)

3
Il
=)

b(k)(627riz/M)k

M

>
Il

(

where
(k) = a(kN/M) if kN/M is an integer,
o if kN/M is not an integer.

Because the series > oo a(n)e?™m#/N converges for = € H(N,R), the above
equalities imply that the power series Y po  b(k)g" converges for ¢ € D(RN/M).
Since H(M, RN/M) = H(N, R), the proof is complete. O



1.9. THE SYMPLECTIC GROUP 31

Definition 1.8.2. Let k be a non-negative integer, and let I be a congruence
subgroup of SL(2,Z). Let F : H; — C be a function on the upper-half plane
H;. We say that F' is a modular form of weight k& with respect to I' if the
following conditions hold:

1. For all a € I we have
fla=r.
2. The function F is analytic on Hj.

3. If o € SL(2,Z), then there exists a positive integer N such that I'(N) C T,
a real number R such that 0 < R < 1, and a complex power series

> a(n)g"

n=0

that converges for ¢ € D(R), such that

(F|,0)(2) = Za(n)q(z)" = Za(n)eQﬂ'inz/N
n=0 n=0

for z € H(N, R).

The third condition of Definition 1.8.2 is often summarized by saying that F’
is holomorphic at the cusps of I'. We say that F' is a cusp form if the three
conditions in the definition of a modular form hold, and in addition it is always
the case that a(0) = 0; this additional condition is summarized by saying that
F vanishes at the cusps of I'. The set of modular forms of weight k& with
respect to I' is a vector space over C, which we denote by M (I"). The set of
cusp forms of weight k with respect to T is a subspace of M(T"), and will be
denoted by Si(T).

1.9 The symplectic group

Let R be a commutative ring with identity 1, and let n be a positive integer.
As usual, we define

GL(2n, R) = {g € M(2n, R) : det(g) € R*}.

Then GL(2n,R) is a group under multiplication of matrices; the identity of
GL(2n, R) is the 2n x 2n identity matrix 1 = 15,. Let

LM

JP=-1, Jl=-J

We note that

We define
Sp(2n,R) = {g € GL(2n,R) : ‘gJg = J}.

We refer to Sp(2n, R) as the symplectic group of degree n over R.
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Lemma 1.9.1. If R is a commutative Ting with identity and n is a positive
integer, then Sp(2n, R) is a subgroup of GL(2n,R). If g € Sp(2n,R), then
‘g € Sp(2n, R).

Proof. Evidently, 1 € Sp(2n, R). Also, it is easy to see that if g, h € Sp(2n, R),
then gh € Sp(2n, R). To complete the proof that Sp(2n, R) is a subgroup of
GL(2n, R) it will suffice to prove that if g € Sp(2n, R), then g~ € Sp(2n, R).
Let g € Sp(n, R). Then ‘9Jg = J. This implies that g~ = J~1 'gJ = —J ‘q.J.
Now
(o797t = "Ig"1 I 9]

= JgJJJ 'gJ

= —JgJ ‘qJ

= —JgJ-'gJg-g7"

=—JgJJg~!

=J.

Next, suppose that g € Sp(2n, R). Then
9J'g=9J'gJgg7 "I
=gJJg tg!
=_Jg1
=J.
This implies that g € Sp(2n, R). O

Lemma 1.9.2. Let R be a commutative ring with identity and let n be a positive
integer. Let

_|A B

9= {C D

Then g € Sp(2n, R) if and only if

] € GL(2n, R).

‘AC ='CA, ‘BD="'DB, ‘AD-'CB=1.

If g € Sp(2n, R), then

1 ‘D -'B
_ tC tA 5

and

A'B=B'A, ¢'D=D'C, A'D-B'C=1.

Proof. The first assertion follows by direct computations from the definition of
Sp(2n, R). To prove the second assertion, assume that g € Sp(2n, R). Then

‘D -'B][A B] ['DA-'BC ‘DB-"'BD .
~'c ‘A ||c D] [YAC-'CA ‘AD-'CB|
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by the first assertion. It follows that g—' has the indicated form. But we also
have
L[4 B ‘D -'B] [A'D-B'C B'A-A'B
“|lc p||-'¢ ‘A| |c'D-D'C D'A-C'B.
This implies the remaining claims. O

Lemma 1.9.3. Let R be a commutative ring with identity. Then Sp(2, R) =
SL(2, R).

Proof. Let g € GL(2, R), and write

_|a b
I=1¢ d
for some a,b,c,d € R. A calculations shows that

ad = bc} = det(g) - J.

t p—
979 = {—(ad —be)
It follows that g € Sp(2, R) if and only if det(g) = 1, i.e., g € SL(2, R). O

Lemma 1.9.4. Let R be a commutative ring with tdentity, and let n be a positive
integer. The following matrices are contained in Sp(2n, R):

L E )
4 %4, AcGL(n, R),

1?} X e M(n,R),'X = X,
(1
A!

},YeMmﬁﬂY:Y

Proof. These assertions follow by direct computations. O

Lemma 1.9.5. Let R be a commutative ring with tdentity, and let n be a positive
integer. The sets

P:{é g}e%@mRyC:OL
M:{A M1YAEGMmML
U:{lfyXeMmﬁyX=X}

are subgroups of Sp(2n, R). The subgroup M normalizes U, and P = MU =
UM.



34 CHAPTER 1. BACKGROUND

Proof. These assertions follow by direct computations. O

Let R be a commutative ring with identity. Assume further that R is a
domain. We say that R is Euclidean domain if there exists a function | - | :
R — 7Z satisfying the following three properties:

1. If a € R, then |a| > 0.
2. If @ € R, then |a| = 0 if and only if a = 0.

3. If a,b € R and b # 0, then there exist =,y € R such that a = bz + y with
lyl < b].

Any field F is an Euclidean domain with the definition |a| = 1 for @ € F with
a # 0 and |0] = 0. Also, Z is an Euclidean domain with the usual absolute
value.

Theorem 1.9.6. Let R be an Euclidean domain, and let n be a positive integer.
The group Sp(2n, R) is generated by the elements

=l 1

for X € M(n, R) with X = X.
Proof. See Satz A 5.4 on page 326 of [5]. O

Corollary 1.9.7. Let R be an Fuclidean domain, and let n be a positive integer.
If g € Sp(2n, R), then det(g) = 1.

Proof. This follows from Theorem 1.9.6. 0

Theorem 1.9.8. Let F' be a field, and let n be a positive integer. Assume that
the pair (2n, F) is not (2,Z/27Z), (2,Z/3Z) or (4,Z/2Z). Then the only normal
subgroups of Sp(2n, F) are {1}, {1, -1}, and Sp(2n, F').

Proof. See Theorem 5.1 of [3]. O

1.10 The Siegel upper half-space

Let n be a positive integer. We define H,, to be the subset of M(n, C) consisting
of the matrices Z = X +iY with X,Y € M(n,R) such that ‘X = X, 'Y =Y,
and Y is positive-definite. We refer to H,, as the Siegel upper half-space of
degree n.

Lemma 1.10.1. Let n be a positive integer. The set Sym(n,R)™ is open in
Sym(n,R).
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Proof. For 1 < k < n and V € Sym(n,R), let V(k x k) = (Vij)i<ij<k- An
element V' € Sym(n,R) is positive-definite if and only if det V(k x k) > 0 for
1 <k < n. Consider the function

f:Sym(n,R) — R",  f(V)=(detV(1 x1),...,det V(n xn)).

The function f is continuous, and therefore f~!((Rs()") is an open subset of
Sym(n, R); since f~1((Rso)™) is exactly Sym(n, R)™, the proof is complete. [J

Proposition 1.10.2. Let n be a positive integer. The set H,, is an open subset

of Sym(n,C).

Proof. There is a natural homeomorphism Sym(n, C) 2 Sym(n, R) x Sym(n, R).
Under this homeomorphism, H,, = Sym(n,R) x Sym(n, R)*. By Lemma 1.10.1,
the set Sym(n,R)™ is open in Sym(n,R). It follows that H, is an open subset
of Sym(n, C). O

Proposition 1.10.3. Let n be a positive integer. Let Z1,Zs € H,. Then
(1-t)Z1+tZy € H,, for allt € [0,1]. Therefore, H,, is convez, and in particular,
connected.

Proof. Write Z, = Uy +iVq and Zy = Uy + iVa. Then (1 — )2y + tZs =
(1 —8)U; + tUz +4((1 — t)V4 + tVa) for t € [0,1]. Since (1 — ¢)U; + tUs €
Sym(n,R) for ¢t € [0,1], to prove the proposition it will suffice to prove that
ft) = (1 —t)V3 + tVa € Sym(n,R)T for t € [0,1]. Write V; = W? where
W € Sym(n,R)* (see (1.7)). Then W=tf(t)W=t =1 —1¢)-1, +tW VoW1
for t € [0,1]. We have W~'VoW~! € Sym(n,R)*", and for each t € [0,1],
W=Lf#)W~1 € Sym(n,R)* if and only if f(t) € Sym(n,R). It follows that
we may assume that V3 = 1. Let ¢t € [0,1]; we need to prove that A = f(¢) is
positive-definite. It is clear that A is positive semi-definite. If B € M(n,R), and
k e {1,...,n}, then we define B(k) = (Bj;)1<i j<k- Since A is positive semi-
definite, by Sylvester’s Criterion for positive semi-definite matrices, we have
det(A(k)) > 0 for k € {1,...,n}; by Sylvester’s Criterion for positive-definite
matrices, we need to prove that det(A(k)) > 0 for k € {1,...,n}. Assume that
there exists k € {1,...,n} such that det(A(k)) = 0. Then

det (1 — 1)1, + Va(k)) =0,
so that
det ((t — 1)1 — Va(k)) = 0.

It follows that ¢ — 1 is an eigenvalue for V5(k); this implies that ¢ — 1 is an
eigenvalue for Vo. This is a contradiction since all the eigenvalues of V5, are
positive, and ¢t — 1 < 0. O

Corollary 1.10.4. Let n be a positive integer. The topological space H,, is
simply connected.

Lemma 1.10.5. Let k be positive integer. Let f : Hy — C be an analytic
function. If f(iU) = 0 for all U in an open subset S of Sym(k,R)™, then f = 0.
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Proof. By Proposition 1.10.3, the open subset Hj of Sym(k,C) is connected.
By Proposition 1 on page 3 of [19] it suffices to prove that f vanishes on a
non-empty open subset of Hy. Let U be any element of S. Since f is analytic
at iU and Hy, is an open subset of Sym(k, C), there exists € > 0 such that

D ={Z € Sym(n,C) : |Z;; —iU;;| < €,1 <i < j <k} C Hy,

and a power series

> calZ—iU)”

k
aEZZO

that converges absolutely and uniformly on compact subsets of D, such that
this power series converges to f(Z) for Z € D. Evidently, iU € D. Define

D' ={Y € Sym(n,R) : |Y;; — Ujj| <e,1 <i < j <k}
Then U € D’. We may assume that D’ C S. If Y € D', then iY € D. Define
h:D"— Cby h(Y) = f(iY). We have
hY)= Y caiV —iU)* = Y il (Y —U)*
aczh, aczh,
for Y € D’. The function h is C*°, and we have

i1y = é(Dah)(U).

Since by assumption f(iY) = 0 for Y € S, we have h = 0. This implies that
o =0 for a € Z;O, which in turn implies that f vanishes on the open subset
D C Hg. O

Lemma 1.10.6. Let n be a positive integer. Let

A B
9= [C D] € Sp(2n, R)
and Z € H,,. Then CZ + D 1is invertible, and
(AZ+B)(CZ+ D)™ € H,.

Proof. We follow the argument from [13]. Write Z = X 4+ Y with X,Y €
M(n,R). Define
P=AZ+B, Q=CZ+D.

We will first prove that @ is invertible. Assume that v € C™ is such that Qv = 0;
we need to prove that v = 0. We then have:

'PQ — QP = (Z'A+'B)(CZ + D) — (2 'C + 'D)(AZ + B)
=Z'ACZ + Z'AD + *BCZ + '‘BD
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~Z'CAZ -~ 7'CB — 'DAZ - 'DB
=7 —7 (cf. Lemma 1.9.2)
= 2iY. (1.9)
It follows that
tv( 'PQ — tQﬁ)E =2 vYT
v "PQu — " 'QPv = 2i YT
% 'PQu — (Qu) Pt = 2i YT
0=2i"vY0s
0= "Y7.

Write v = vy + ivg with vy, vy € R™. Then
0="2Y0= tlevl + tvngg.

Since Y is positive-definite, the real numbers tlevl and tvngg are both non-
negative; since the sum of these two numbers is zero, both are zero. Again,
since Y is positive-definite, this implies that v; = vo = 0 so that v = 0. Hence,
Q is invertible. Now we prove that PQ~! is symmetric. Evidently, PQ "
symmetric if and only if "PQ = '‘QP. Now

'PQ —'QP = (AZ + B)(CZ + D) — (CZ + D)(AZ + B)
= ("Z'A+"'B)(CZ + D) — (*Z'C + 'D)(AZ + B)
='7'A0Z +'Z'AD + 'BCZ + '‘BD
—'7'CAZ -‘'Z7'CB-"'DAZ - 'DB
=0 (cf Lemma 1.9.2)

as desired. It follows that PQ~! is symmetric. Write PQ ™' = X’ + Y’ where
X', Y'" € M(n,R) with X’ = X" and 'Y’ = Y’. To complete the proof of the
lemma we need to show that Y is positive-definite. Now

Q"
QY ('PQ-'QP)Q T
tQ,

; '(2iY)Q1  (cf. (1.9))
=Q'YQL

Qi(X’HY — (X7 iY"))
§<PQ1 PG

1

=5 ((PQ™) - PQ)

= (e P Pa)

14

2

1

2

o+
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Using that Y is positive-definite, it is easy to verify that Y/ = thlYQfl is
positive-definite. O

Lemma 1.10.7. Let n be a positive integer. For g = [4 B] € Sp(2n,R) and
Z € H,, we define

g-Z=(AZ+B)(CZ+ D)™}, j(g9,Z) = det(CZ + D).
We have

(gh)-Z =g (h-2),

for g,h € Sp(2n,R) and Z € H,.
Proposition 1.10.8. Let n be a positive integer, and let
A B
- 3]
There exists an analytic function
s(g,+)  H,, — C

such that
s(g, Z)? = det(CZ + D)

for Z € H,,. Moreover, there exists an eighth root of unity £ such that
s([_l 1] JiU) = € det(U)"/?

for all U € Sym(n,R)t. Here, det(U)'/? is the positive square root of the
positive number det(U) for U € Sym(n,R)™.
Proof. We follow an idea from [5], page 19. Define a function
a:[0,1] x H,, — C
by
alt,Z) = det ((1 —#)(C(il,) + D) + H(CZ + D))
= det (C((l —1)(il,) + t2) + D))

fort € [0,1) and Z € H,,. Here, given Z € H,,, the points W (t) = (1—¢)(il,)+tZ
for t € [0, 1] are the points on the line between iI,, and Z; by Proposition 1.10.3,
all these points are in H,,, and by Lemma 1.10.6, det(CW (¢) 4+ D) is non-zero
for t € [0,1]. Thus, a actually takes values in C — {0}. Evidently, for fixed
Z € H,, the a(-,Z) is a polynomial in ¢, and hence «a(-, Z) : [0,1] — C — {0}
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is a piecewise C! curve (see [17], page 75. Also, for fixed t € [0,1], a(t,) is
a function on H,, that is a polynomial in each entry of Z € H,,, and is hence
analytic in each variable. Define

H:H, —C

by the contour integral (see [17], page 76)

or more concretely,

for Z € H,,. Here, the derivative is taken with respect to ¢ € [0,1] for fixed
Z € H,. We claim that (¥} = det(—iZ) for Z € H,. To see this, fix
Z € H,. Since |a(-, Z)] is continuous, [0, 1] is compact, and |a(t, Z)| > 0 for
t € [0,1], the number € = inf({|a(t, Z)| : ¢t € [0,1]} is positive (see Theorem 5
on page 88 of [18]). The function a(-, Z) : [0,1] — C is uniformly continuous
(see Theorem 7 on page 92 of [18]). Hence, there exists a positive integer n
such that if ¢t1,¢3 € [0,1] and |t; — to| < 1/n, then |a(t1, Z) — a(te, Z)| < €/2.
Let k € {0,1,2,...,n—1}. If t € [k/n, (k + 1)/n], then «(t, Z) lies in the disc
Dy = {w € C: |a(k/n,Z) — w| < €¢/2}. By the definition of €, the disc Dy
does not contain 0. Therefore, there exists 8, € [0,27) such that none of the
points on the ray R(6;) = {re'* : r € [0,00)} lie in Dy. For § € [0,27), let
logy : C — R(#) — C be the branch of the logarithm function given by

log(z) = log(|z]) + dargy(2),

where z € C— R() and 0 < argy(z) < 0 + 2mi. The function log, is analytic in
its domain, and we have

d 1
@(bge)(z) =3
for z € C — R(6). Now using Theorem 4 on page 83 of [17],
1
a(-,Z)
1 (kt1)/n
5 e,
N alt,Z)
k=0 k/n
n—1

= logg, (a((k +1)/n, Z)) — logy, (a(k/n, Z)).
k=0
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For each k € {0,...,n — 1}, logy, (a((k+1)/n, Z)) = logy, , , (a((k+1)/n,Z) +
27mim for some integer m. It follows that

H(Z) =logy, ,(a(1,Z)) —logy, (a(0, Z)) + 2miN
for some integer N. Therefore,

GH(Z) 610g9n_1(oc(l,Z))floggo(a(O,Z))+27riN

=a(1,2)a(0,2)7!
= det(CZ + D) det(C(il,) + D) "

Next, we claim that H : H,, — C is an analytic function on H,,. To see this, we
note that the function sending (¢, Z) € [0,1] x H,, to

o' (t, Z2)
alt, Z)

is continuous, and for fixed ¢ € [0, 1], is analytic on H,,. We thus may differenti-
ate under the integral sign in the definition of H (see 2. on page 324 of [18]), and
use the Cauchy-Riemann equations criterion (see Theorem 19 on page 48 of [17])
to see that H is analytic on H,,. Fix w € C* such that w? = det(C(il,) + D).
We now define s(g,-) : H,, — C by

s(g, Z) = weH(9)/2,

Then for Z € H,, we have
S(Q, Z)2 _ wQeH(Z)
= det(C(il,) + D) det(CZ + D) det(C(il,) + D)~*
=det(CZ + D).

To prove the uniqueness statement, we first note that
# [—1 1] U = det((~1)iU) = ()" det(U)

for U € Sym(n,R)". Fix ¢ € C* such that ¢(? = (—4)". Then ( is an eighth
root of unity. It follows that for every U € Sym(n,R)" there exists e(U) € {1}
such that

s<[_1 1} JiU) = e(U)¢ det(U)M/?
for U € Sym(n,R)". Consider the function Sym(n,R)™ — R defined by U
s( [_1 1] ,iU)/ det(U)Y? for U € Sym(n,R)T. This function is continuous

and defined on the connected set Sym(n,R)*. Since this function takes values
in the eighth roots of unity, it follows from the intermediate value theorem (see
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Theorem 6 on page 90 of [18]) that this function is constant. Hence, there exists
an eighth root of unity £ such that

5([1 1} LiU) = Edet(U)'/?

for all U € Sym(n,R)*. O

Corollary 1.10.9. Let n be a positive integer. Let s : Sp(2n,R) x H,, — C
be the function from Proposition 1.10.8. If g,h € Sp(2n,R), then there exists
e € {£1} such that

s(gh,Z) =es(g,h- Z)s(h,Z)

for all Z € H,.
Proof. Let g,h € Sp(2n,R). If Z € H,,, then

s(gh, Z)? gh, Z)

(
i(g,h-2)j(h, Z) (see Lemma 1.10.7)
(9,h-2)%s(h, Z)?

s(g,h - Z)s(h,Z))Q.

J
J
s
=

It follows that for each Z € H, there exists e(Z) € {£1} such that s(gh,Z) =
e(Z)s(g,h- Z)s(h, Z). The function on H,, that sends Z to e(Z) is continuous
and takes values in {£1}. Since H,, is connected (see Proposition 1.10.3), the
intermediate value theorem (see Theorem 6 on page 90 of [18]) implies now that
this function is constant. O

1.11 The theta group

Let k be a positive integer, and let M € M(k,C). We define an element of
M(k,1,C) by

mi1

diag(M) =
Mk

Lemma 1.11.1. Let k be a positive integer, Assume that M € M(k,Z) and
X € Sym(k,Z). Then

diag(M X *M) = Mdiag(X) (mod 2).
Proof. If A is a k x k matrix, and 4,5 € {1,...,k}, then we let A;; be the
(7,7)-th entry of A. Let ¢ € {1,...,k}. Then the i-th entry of diag(MX ‘M) is:

k

ZMM X M ZMMZXZJ

(=1
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£,5e{1,....k} £,5e{1,....k}
l=j 23]
= Z MZQJXJJ + Z (MMMZJXZJ + MZJMMXJZ)
je{1,...,k} 05e{l,....k}
1<j
= > MAEXj;+ Y 2MyM;; Xy
je{1,...,k} l,5€{1,....k}
0<j
= Y MJXj; (mod 2)
]E{l’ 7k}
= Z MinJ] (mod 2)
Je{l’ 7k}

Since 2521 M;; X;; is the i-th entry of Mdiag(X), the proof is complete. O
For the next proposition, we follow Lemma 7.6 from p. 457 of [7].
Proposition 1.11.2. Let n be a positive integer. Define a function

Sp(2n, Z) x (Z/27)*" — (Z./27.)*"

by .
T diag(C "D)
g{m} =g~ m+ [diag(A ‘B)
for g =1[24 B] € Sp(2n,Z) and m € (Z/2Z)*". Then this function is an action,
i.e.,

g{h{m}} = (gh){m}
for g,h € Sp(2n,Z) and m € (Z/27)*".

Proof. Let g, h € Sp(2n,Z) with

A B
s= o p]espen)

and let m € (Z/2Z)?". To prove that g{h{m}} = (gh){m} we may assume that
h is a generator for Sp(2n,Z) as described in Theorem 1.9.6. Assume first that
h has the form
L1 X
=[]

for some X € Sym(n,Z). Then

nim) = & A% T D] tm) moa2)
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ot o1 [diag(C (CX + D))

= (gh)""m+ | diag(A (AX + B)) (mod 2)

ot -1 [diag(CX 'C + C ‘D)

= (gh)""m+ _diag(AXtA—l—AtB) (mod 2)

ot a1 [diag(CX ‘C) 4 diag(C ‘D)

= (9h)7"m + | fiag(AX *4) + ding(A 'B)| (M0 2)

And

g{h{m}} = g{'h~"m + [

diag(X)]} (mod 2)

ns)] * o)

(gh)"'m+ [_% _AC} {diag(X)} + Eii((i Zg;] (mod 2)

= tg_1 hlm + tg_1 } (mod 2)

ot -1 —C - diag(X) + diag(C ‘D)
= (gh)"m+ { A- diag(X) + diag(A ‘B) | (™04 2):
The equality g{h{m}} = (gh){m} follows now from Lemma 1.11.1. Next, as-
sume that
1
=1

Then

t . t

1 _t 1 14 diag(—D C)
(9 { 1 ]){m} =y [_1 } m+ {diag(_BtA) (mod 2)
t . t
_ 1|_ diag(D C
= g1 {_1 } L+ {diai%B tA; (mod 2)

And

otnimp) =o( [, | mb tmoa

= [y e [ )] o

Because g € Sp(2n,Z), the matrices C'D and A'B are symmetric; this now
implies that (gh){m} = g{h{m}}. O

Let n be a positive integer. By Proposition 1.11.2, the group Sp(2n,Z) acts
on (Z/27Z)?". We define the theta group I'y to be the stabilizer of the point
0 in (Z/2Z)*". When we need to indicate that Ty is contained in Sp(2n,Z) we
will write I'g o, for I'g. The definition of this action implies that the theta group
is the subset of all [4 B] € Sp(2n,Z) such that diag(A‘B) = 0 (mod 2) and
diag(C *D) = 0 (mod 2). Let g = [4 B] € Sp(2n,Z). Then

o _['D -'B
g - _tC tA .
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Since Iy is a group, we have g € Ty if and only if g=! € I'y. Thus, for [2 B] €
Sp(2n, Z),

diag(A ‘B) = 0 (mod 2)
diag(C 'D) = 0 (mod 2)  9¢clo

1 diag(*BD) = 0 (mod 2)
9 €ly — diag(‘CA) = 0 (mod 2) ~

1.12 Elementary divisors

Theorem 1.12.1 (Theorem on elementary divisors). Let n be a positive inte-
ger. Let M € M(n,Z). There exist a non-negative integer k, positive integers
di,...,dy and g1, 92 € SL(n,Z) such that k < n,

dy
do
ds

g1Mgs = ’ di

and
di|dy, dalds, ..., di_1|d.

If M is non-zero, then the greatest common divisor of the entries of M is d;.

Proof. For the first assertion see Proposition 2.11 on p. 339 of [10], or p. 8 of
[4]. Assume that M is non-zero. If X € M(n,Z) is non-zero, then let I(X) be
the ideal of Z generated by X. If X € M(n,Z) is non-zero, then the greatest
common divisor of the entries of X is the positive generator of I(X). Since
91,92 € SL(n,Z) we have I(M) = I(g1Mg2) = (d1); thus, the greatest common
divisor of the entries of M is d;. O



Chapter 2

Classical theta series on Hj

2.1 Definition and convergence

Lemma 2.1.1. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz, and for x € RY let

Q(x) = % ‘rAx.

For z € Hy, define

Q(A,Z) _ Z o™iz ‘mAm _ Z eQﬂ'izQ(m)

mezZf meZf

For every § > 0, this series converges absolutely and uniformly on the set
{z € H; : Im(z) > §}.

The function 0(A,-) is an analytic function on Hj.

Proof. Since A is positive-definite, the function defined by = — +/Q(z) defines a
norm on Rf. All norms on R/ equivalent; in particular, this norm is equivalent
to the standard norm || - || on Rf. Hence, there exists ¢ > 0 such that

ellzll < vQ(),

or equivalently,
elz)* = %zt + - -2}) < Q(x)

for x = (x1,...,25) € R,
Now let 6 > 0, and let z € H; be such that Im(z) > J. Let m =
Y(ma,...,mys) € ZS. Then

‘GQﬂizQ(m)| _ 6727r1m(z)Q(m)

45
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< 6—2776@(171)
< e—27r552\|m|\2
- q\|m||2

mf—&-m—&-m?

=4q

where ¢ = e=2™* Since 0 < q < 1, the series

>

neZ

converges absolutely. This implies that the series

Yoa™) = 3 grivimi= 37 g

neZ meZf mezZf

converges absolutely. It follows from the Weierstrass M-test that our series

Z 627r7izQ(rn)

meZf

converges absolutely and uniformly on {z € H; : Im(z) > d} (see, for example,
[17], p. 160). Since for each m € Z7 the function on H; defined by z + ¢?72Q(m)
is an analytic function, and since our series converges absolutely and uniformly
on every closed disk in Hj, it follows that §(A,-) is analytic on Hy (see [17], p.
162). O

Proposition 2.1.2. Let f be a positive integer. Let € be a real number such
that 0 < e < 1. Let Ky be a compact subset of Hy, and let Ko be a compact
subset of C/. Then there exists a positive real number R > 0 such that

Im(z - (w + g)(w + g)) > eIm(z - ‘gg),
or equivalently
(s - (w+ g)(w + g)) < —Im(=- ‘gg),
for z € Ky, w € Ky and g € R such that ||g|| > R.
Proof. Let M > 0 be a positive real number such that
M = [Re(2)], [Im(z)], [[Re(w)]], [Im(w)]]
for z € K71 and w € K5. Let 6 > 0 be such that
Im(z) >0 >0
for z € K. Let R > 0 be such that if x € R and > R, then

0 < (1—¢e)da? —4M?x — 4M?3,
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or equivalently,
AM?(x + M) < (1 —¢)dz?.

Now let z € K1, w € Ka, and let g € R/ with ||g]| > R. Write 2 = o + it
for some o,t € R with ¢ > 0. Also, write w = a + bi with a,b € Rf. Then
calculations show that

2- Im(z twg) = 2t ‘ag + 20 by,

Im(z tww) = o(‘aa — bb) — 2t ‘ab.
It follows that

-2 Im(z twg) — Im(z tww)

< [2-Im(z twg)| + Im(z tww)|

< 2t] "ag| + 2|o]| "bg| + |o]| ‘aal + |o| bb| + 2¢| ‘abd]

< 2t|lalllgl + 2lellolllgll + lolllall® + olllb]* + 2t|all o]
< 2M?||g|| + 2M?||g|| + M? + M?® + 2M°

= 4M?| g|| + 4M*

= 4M?(|lgll + M)

< (1-¢)dllg)?

< (1-e)tlgll?

=(1- E)Im(z . tgg).

Therefore,

<(1- E)Im(z . tgg)
slm(z . gg) < Im(z . tgg) +2. Im(z twg) + Im(z tww)
< Im(z . t(w +g)(w+ g))
This is the desired inequality. O

Corollary 2.1.3. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz. Let € be real number such that 0 < € < 1. Let K,
be a compact subset of Hy, and let Ky be a compact subset of Cf. For x € Cf,
define

Qz) = % ‘rAx.

Then there exists a positive real number R > 0 such that

Im(z - Q(w + g)) > eIm(z- Q(g)),

or equivalently,
~Im(z- Q(w +g)) < —eIm(z- Q(g)),
for z € K1, w € Ko, and all g € Rf such that ||g|| > R.
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Proof. Since A is a positive-definite symmetric matrix, there exists a positive-
definite symmetric matrix B € M(f,R) such that A = ‘BB = BB (see (1.7)).
The set B(K>) is a compact subset of C/. By Proposition 2.1.2 there exists a
positive real number 7" > 0 such that

Im(z . t(w’ + g ) (w' + g’)) > EIm(z . tg'g’)
for 2 € K1, w' € B(K>2), and ¢’ € Rf with |¢/|| > T. We may regard the matrix
B~ as a operator from R/ to RY: as such, B~! is bounded. Hence,

1B~ @)l < 1B~ Hlgll

for g € Rf. Define R = ||[B7Y|T. Let z € K;, w € Ky and g € R/ with
llgll > R. Then w' = Bw € B(K3), and:

1B=H (Bl < 1B~ IB)I

lll < 1B~ 11IB(g)ll

R<|IB7H[IB(9)l
IBTHIT' R < [|B(9)l
T <|IB(g)l-

Therefore, with ¢’ = B(g),

Im S+ ) (W' +4¢')) >elm(z- tg/g/)
Im(z - (Bw + Bg)(Bw + Bg)) > eIm(z - (Bg)Byg)
Im(z - (w + g) ‘BB(w + g))) > eIm(z - 'g "BBg)
Im(z - (w+ g)A(w +g))) > eIm(z - 'gAg)
Im(z - Q(w+g))) > eIm(z- Q(g))
This completes the proof. O

Proposition 2.1.4. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz, and for x € RY let

Qz) = % ‘rAx.

For z € Hy and w = (w1, ... ,wy) € CT, define
0(A, z,w) = Z o™iz ((mtw) A(m+w) _ Z p2mizQ(mtw)
mezZrl mezf

Let D be a closed disk in Hy, and let D1,..., Dy be closed disks in C'. Then
0(A,z,w1,...,wf) converges absolutely and uniformly on D x Dy X --- X Dy.
The function 6(A, z, w1, ..., ws) on H; x C/f is analytic in each variable.
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Proof. We apply Corollary 2.1.3 withe =1/2, K; = D and Ky = Dy x---x Dy.
By this corollary, there exists a finite set X of Zf such that for m € Zf — X,
z € K; and w € K5 we have:

|627rizQ(m+w)| — eRe(2ﬂ'izQ(m+w))
_ e—27rIm(zQ(m+w))

o2 (1/2)1m (2Q(m))

_ e—27rQ(m)Irn(z/2)

IN

—276Q(m)

A

<e
— |€27ri(5i)Q(m)|.

Here, 6 > 0 is such that § < Im(z/2) for z € D. By Lemma 2.1.1 the series

Z |627ri(6i)Q(7n)|

meZf

converges. The Weierstrass M-test (see [17], p. 160) now implies that the series

Q(A, z,w) _ Z e27rizQ(m+w)

meZf

converges absolutely and uniformly on D x Dy x --- x Dy. Since for each
m € ZJ the function on H; x C/ defined by (z,w) r €>™*Q(m+%) js an analytic
function in each variable z, w1, ..., wys, and since our series converges absolutely
and uniformly on all products of closed disks, it follows that 0(A, z, w1, ..., wy)
is analytic in each variable (see [17], p. 162). O

2.2 The Poisson summation formula

Let f be a positive integer. Let ¢ : Rf — C be a function, and write g = u + iv,
where u, v : Rf — R are functions. We say that g is smooth if u and v are both
infinitely differentiable. Assume that g is smooth. Let (av,...,ay) € ZJ;O. We
define
o o

)o

pog = (L 2
g Oaft  0al’

We say that f is a Schwartz function if

sup |P(z)(D)(x)]
zERS

is finite for all P(X) = P(Xy,...,X;) € C[Xy,...,Xf] and o € ZL,. The set
S(RY) of all Schwartz functions is a complex vector space, called the Schwartz
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space on R/, If g € S(R/), then we define the Fourier transform of g to be
the function Fg : Rf — C defined by

(Fo)() = / g(y)e 2 v dy

RS

for x € Rf. If g € S(RY), then the integral defining Fg converges absolutely for
every € R7. In fact, if g € S(Rf), then Fg € S(R/), and a number of other
properties hold; see, for example, chapter 7 of [23], or chapter 13 of [15].

Lemma 2.2.1. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz, and for v € R let

Qx) = % ‘rAz.

Let w € Cf. The function g : Rf — C defined by

g(x) = e*QWQ(erw) — T Yz+w)A(z+w)

for x € R is in the Schwartz space S(RY).

Proof. We begin with some simplifications. Also, there exists a positive-definte
symmetric matrix B € GL(f,R) such that A = ‘BB = BB (see (1.7)). The
function ¢ is in S(RY) if and only if go B~! in in S(Rf). Now

g(B_ll‘) —e 7 t(371ar:—i-w)A(37laxc—i-w)
—e T t'(Bilgr:—i-w) *‘BB(B~ lz+w)

—e T Y(z+Bw)(z+Bw) )

It follows that we may assume that A = 1. Next, let w = u+iv where u,v € Rf.
Since g is in S(RY) if and only if the function defined by x + g(z—u) for z € Rf
is in S(RY), we may also assume that u = 0. Now

g(x) — 7 Y(z+iv) (z+iv)

_ e—ﬂ' trx—2mi o+ v

t, t, -t
T WY =T T —27T TV
=e e .

. t,
Since e™ VY

defined by

is a constant, it suffices to prove that the function » : Rf — C

h(l’) —e T Yer—2mi tzv

for x € R/ is contained in S(R/). Let o = (a1,...,af) € Z’;O. Then there
exists a polynomial Q. (X1,...,Xs) € C[Xy,..., X[] such that

(Do‘h)(x) _ Qa(x)e—ﬂ' trx—2mi fzv
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for z € Rf. Hence, if P(X1,...,Xs) € C[X1,..., X ], then
|P(2)(DR)(2)| = |P(2)Qq (x)e™™ wo =27 0|
= |P(2)Qu(z)e ™ 7|

for x € Rf. This equality implies that it now suffices to prove that the function
t,

defined by z + e~™ ** for x € R/ is contained in S(R/). This is a well-known

fact that can be proven using L’Hoépital’s rule. O

Lemma 2.2.2. Let f be a positive integer. If w € C/, then
/ e W) ) gy / = gy,
RS RS

Proof. By Fubini’s theorem

/6—7r Hy+w) (y+w) dy = /e—Tr(y1-&-w1)2—“'—77(yf-i-wf)2 dy

RS RS
= /e—ﬂ(y1+w1)2 [P e_ﬂ(yf—"_wf)z dy
RSf
_ (/e—w<y1+w1>2 dyl)...(/e—w<yf+wf>2 dy;).
R R

It thus suffices to prove the lemma when f = 1. Write w = u+iv with u,v € R.

Then
/e—ﬂ(y+u+iv)2 dy _ /e—ﬂ(y+iv)2 dy

R R

To complete the proof we will use Cauchy’s theorem. Assume, say, v > 0. Let
a > 0, and let v = 1 + 72 + 3 + 74 be the closed piecewise smooth curve as
below:

—a + V3 a -+

Y4 Y2

By Cauchy’s theorem (see chapter 2 of [17]) applied to the analytic function
z+ e~ ™ we have

0= /e_”2 dz = /e_“2 clz—i—/e_”2 dz—l—/e_”2 dz—l—/e_“2 dz.

ol Y1 Y2 3 Y4
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Using the definitions of these contour integrals, this is:
@ 2 2 @ 2o \2 2
0:/ e”™ dy+/e_” dz—/ e~ THw) dy—i—/e‘“ dz,
- Y2 - Y4
or equivalently,
@ . 2 @ 2 2 2
/ e~ TwHw) dy:/ e ™ dy—|—/efm dZ++/€77TZ dz. (2.1)
- o 2 Y4

On the curves 7, and 74 the function z +— e~ is bounded by e—mat+mo?
Therefore (see Theorem 3 on page 81 of [17]),

.2 2 2 .2 2 2
|/6 TZ dZ‘ S ve~Ta “+mv , |/€ T2 le S ve T4 +mv .
2 V3

These bounds imply that

. J— 2 . p— 2
lim e ™ dz = lim e ™ dz=0.
a— 00 a—r o0
Y2 Y4

Letting a — oo in (2.1), we thus obtain

/OO e wtiv)® dy = /Oo eV’ dy.

This is the desired result. If v < 0, then there is a similar proof. O

Lemma 2.2.3. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz, and for v € R let

Qz) = % ‘rAx.

Let w € Cf. Define g: Rf — C by
g(m) — e—2ﬂ'Q(w+w) —e T Y(x4w) A(z4w)
for x € Rf. Then
(Fg) (x) — det(A)fl/Z(iQﬂ'i txwefﬂ' A"y
for z € RS,
Proof. There exists positive-definite symmetric matrix B € GL(f,R) such that
A="BB = BB (sce (1.7)). Let z € Rf. Then:

(Fo) () = / exp(—27Q(y + w)) exp(~2mi 'zy) dy
RSf
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= /exp ( —7(2Q(y + w) + 2i ta:y)) dy

RS

=7y + w) Ay +w) + 2 'ay) ) dy
Yy + w) Ay + w) + 2 tyx)) dy
y +w) ‘BB(y + w) + 2i (By) tB—lgc)) dy
By + Bw)(By + Bw) + 2i (By) tB—lac)) dy

(Fg)(z) = det(B)! /exp ( —n( Yy + Bw)(y + Bw) + 2i'y thla:)) dy.
RS

In the last step we used the formula for a linear change of variables (see Theorem
2.20, (e) on page 50 and section 2.23 of [24]; note also that det(A) and det(B) are
positive, as A and B are positive-definite symmetric matrices). Now det(B)? =
det(A), so that det(A)'/? = det(B). Hence,

(Fg)(z)

= det(A)~1/? /exp ( —7( Yy + 2 yBw + (Bw)Bw + 2i 'y tB_lx)) dy
RS

= det(A)*l/2 exp(—m twAw) /exp ( — 7r( Yy + 2 Bw +2i 'y thlx)> dy
RS
= det(A) Y2 exp(—7 ‘wAw) /exp ( —n( Yy + 2y (Bw + i tB_lac))) dy
RS
= det(A) Y2 exp(—7 ‘wAw) exp (7 t(Bw +i'B7 ) (Bw + i tB_lac))
X /exp ( —x( Yy + 2 'y(Bw +i ‘B~ )
RS
+ t(Bw +i'B7 ) (Bw + i tB_lac))) dy
= det(A)" 2 exp (—m twAw) exp (7 ‘wAw + 27 ‘ww — tzAflx)
X /exp ( — 7' (y+ Bw+i'B'z)(y + Bw +i tB*135)> dy.
RS

Applying now Lemma 2.2.2; we obtain:

(Fg)(z) = det(A)~ Y% exp (2mi ‘rw — txA_lx) /exp (= tyy) dy

RS
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(Fg)(z) = det(A)~'/2 exp (2mi ‘rw — 7 t;vA_lx).

Here, we have used the well-known classical fact that

/exp(—wtyy)dyzl.

Rf
This completes the calculation. O

Theorem 2.2.4 (Poisson summation formula). Let f be a positive integer. Let

g € S(RY). Then
> gm)= > (Fg)(m),

mezf mezf

where both series converge absolutely.
Proof. See page 249 of [15]. O

Lemma 2.2.5. Let f be a positive integer. Let A € M(f,R) be a positive-
definite symmetric matriz. Let € be real number such that 0 < € < 1. Let K,
be a compact subset of Hy, and let Ko be a compact subset of Cf. For x € CF,
define

Qz) = % ‘rAx.
Then there exists a positive real number R > 0 such that
—Im((—1/z) ‘gA g +2 tgw) < —eIm((-1/2) - tgAflg),
for z € K1, w € Ko, and all g € RT such that ||g|| > R.

Proof. This proof is similar to the proof of Proposition 2.1.2. First of all, there
exists a positive-definite symmetric matrix B € GL(f,R) such that A = ‘BB
(see (1.7)). If m € R/, then we note that

_ £
AT g =|"gA g

='gB™ 'B™!yg|
t — _
=1'('Bg)- ('B~9)
‘B |1
1 B 2
= (e 1B B 91

= ElB H H i
> ( -llg )

1 2
:FBTP'HQH .

Next, let M > 0 be such that

[Im(—1/2)[, [Tm(w)| < M
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for z € K7 and w € Ks; note that the set consisting of —1/z for z € K7 is also
a compact subset of H;. Let § > 0 be such that

Im(—-1/z) > > 0.
Let R > 0 be such that if x > R, then

1

Now 2z € K1, w € Ky, and g € Rf with ||g|| > R. Write —1/z = o + it for
o,t € Rand w = a + bi for a,b € Rf. We have

—Im(2 'gw) = =2 'gb
< 2| 'gb
< 2M||g]|-
On the other hand,
(1—¢)-Im((=1/2)'gA "g) =t - 'gA"'g

1
>6(1—¢)- TBIE lgll®

It follows that
—Im(2gw) < (1 —¢) - Im((—1/z) tgAflg)
—Im((—l/z) tgA_lg—&—Ztgw) —5~Im((—1/z) tgA_lg).
This is the desired result. O

<
<

Theorem 2.2.6. Let [ be a positive integer. Assume that f is even, and set

_f

Let A € M(f,R) be a positive-definite symmetric matriz, and for x € RS let

Qa(z) = %txA:r, Qa1 (x) = %tfolx.

The series

Z e‘n’i(fl/z) m A~ Ym4-27i 'maw

meZf
converges absolutely and uniformly for (z,w) € D x Dy X --- x Dy, where D is
any closed disk in Hy, and D1, ..., Dy are any closed disks in C'. The function
that sends (z,w) € Hy x Cf to this series is analytic in each variable. We have

k

9<A i w) Tk det( ) Z eﬂ-i(—l/z) 'mA™ 'm4-27i fmaw

1
ZFy/det(A) =,

for z € Hy and w € C/t.
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Proof. We apply Lemma 2.2.5 with e = 1/2, Ky = D, and K9 = Dy x--- x Dy.
By this corollary, there exists a finite set X of Z/ such that for m € Zf — X,
z € K1 and w € K5 we have:

|e7ri(—1/z) m A~ Y427 t7nw| — e*ﬂlm((fl/z) 'mAT m4-2 t17111))

_ (/2 dm((=1/2)-'mA~ m)
< oI ((=1/2)Q -1 (m))
_ 6727TQA,1(m)~Im(71/(2z))
< e 2m0Q 4—1(m)
— |627ri(5i)QA,1 (m) |
Here, 0 > 0 is such that 6 <Im(—1/(22)) for z € D. By Lemma 2.1.1 the series
Z |627ri(6i)QA,1 (m) |
meZl
converges. The Weierstrass M-test (see [17], p. 160) now implies that the series
Z ewi(—l/z)th71m+2wi muw
meZf

converges absolutely and uniformly on D x Dy x - - x D. Since for each m € Z/
the function on H; x C/ defined by (z,w) +— e™(~1/2) ‘mAT mA2mi mw g ap
analytic function in each variable z,w1,...,wy, and since our series converges
absolutely and uniformly on all products of closed disks, it follows that this
series is analytic in each variable (see [17], p. 162).

Now fix w € C/. Define g : Rf — C by

g(x) _ 6—27TQA($+UJ) — e 7 Yo4w)A(z4+w)
for 2 € Rf. Then by Lemma 2.2.3,
(]:g) ($) — det(A)—l/Qe—Tr e A Ye+27i trw

for 2 € Rf. By Theorem 2.2.4, the Poisson summation formula, we have:

Z e 2mRa(m+w) _ Z det(A)fl/Zefw‘xA’lquQﬂitacw

meZf mezZf
_ Nt a1 .t
§ 62772 -Qa(mtw) _ det(A) 1/2 E ewz( 1/3) 'z A™ ' w+2mi Tw.
meZf mezf

Let ¢t > 0. Replacing A by tA, we obtain similarly,

. 1 ) Ny b q—1 s
27i-it-Qa(m+w) _ mi-(—1/(it)) ‘c AT " z+27i zw
Z € det(tA)1/2 Z €

mezl ezt
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_ Z em( 1/(it)) w A" L e+27i rw

(it) \/det mer

§ e27'ri-z-QA(m+w) — E e —1/2) 'z A" Y e+42mi trw

meZf V det mer

E —1/z) w A" Ya4-27i tzw

\/det ' ’

for z € Hj of the form z = it for ¢ > 0. Since both sides of the last equation
are analytic functions in z for z € Hj, the Identity Principle (see p. 307 of [17])
implies that this equality holds for all z € Hj. O

0(A, z,w) =

2.3 Differential operators
Let f be a positive integer. Let H(C7) be the C-algebra of all functions
F:Ccf=>cC

that are analytic in each variable. Let ¢ = t(El, b)) € Cf. We define a C
linear map

H(C) — H(CTY)
by
) OF

Lo(F) = 8w

SMR

Lemma 2.3.1. Let f be a positive integer, and let £ € CT. Then
Li(Fy - Fy) = Le(Fy) - Fo + Fy - Ly(Fy)

for Fy,Fy € H(CY). Also,

for F € H(CY).
Proof. Let F|, F, € H(C/). We have

f
0
Lo(Fy - Fy) = ;:1 éiawz (Fy - Fy)
f
I OF,
- — év(awi'FQ Fl'&wi)
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f /
oOF, 0F,
= bi—) - Fy + Fy - 4;
(; awi) 2+ 11 (; 5‘wi)
= Lo(Fy) - Fo + Fy - Le(F3).
Let F' € H(CY). Then:
9
L@(BF) = Zgz 9w, (eF)
i=1 v
_ ig 8F 6F
N - zawi
=1
f
OF
= ?; F
(; o0 ¢
= Ly(F)-e"
This completes the proof. O

Lemma 2.3.2. Let f be a positive integer and let A € M(f,R) be a positive-
definite symmetric matriz. Assume that ¢ € CT is such that

YAl = 0.
Let m € C7 be fized, and let r be a non-negative integer. Then:
Le( Y(m +w)A(m + w)) =2 YA(m +w),
Le(( YA(m + w))r) =0,
Le( ‘mw) = Ym.
Here, all functions are variables in w € C7.
Proof. We have

Le((m + w)A(m + w))
f
= Lz( Z agj(m; +w;)(my; + U’J))

i,j=1

a;jLg ((mz + wz)(mJ + wJ))

-

~
Il
—

I
VZM\

S
S
I

-

I
M-

Qg5 (&(mj + wj) + €j (ml + wi))

S

&
Il
—

I
™M-
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f !
= > agli(mj +w) + Y ailj(mi +w;)

ij=1 ij=1
= Y%A(m +w) + (m + w) Al
= 2%A(m +w).

We prove the second assertion by induction on r. The assertion is clear if r = 0.
For r = 1, we have:

;
Lg(tlA(m+w)) = Ly( Z aijli(m; +w;))

ij=1

= Z aijliLe(m; + wj)

7]1

= Z aijéiéj
ij=1
SNV
=0.
Assume now that » > 2 and that the claim holds for the non-negative integers
0,1,...,7— 1. Then

= Lg(tZA m+w) - (CAm +w))"
_ Lg( CA(m + w ) (‘eA(m + )™ + CA@m +w) - L ((CAm+w) )

r—1

+ "YA(m 4 w) -0

The final assertion of the lemma is straightforward. O

Proposition 2.3.3. Let f be a positive even integer, and let A € M(f,R) be a
positive-definite symmetric matriz. Define

_f
k=3

Let ¢ € CT be such that
‘oAl = 0.

For every non-negative integer v the series

ST (“A(m A+ w)) emiE e Almew)
mezZf
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and )
t S0 t, — R T
§ : ( gm)rem( 1/2z) 'mA™ "m+2mi ‘mw
meZf

converge absolutely and uniformly for (z,w) € D x Dy x --- X Dy, where D is
any closed disk in Hy, and D1,..., D¢ are any closed disks in C!. Both series
define functions on Hy x Cf that are analytic in each variable. Moreover,

> (A +w)) e (m+w)A(m+w)

meZzf
— § r Tm —1/2) 'mA™ ' m427i 'mw

k+r
z \/det mer

Proof. We prove this result by induction on r. The case r = 0 is Theorem 2.2.6.
Assume the claims hold for r; we will prove that they hold for r + 1. Let

Si(zyw) = Y (YA(m +w)) em= (mtwAmw)
meZf
for s € Hy and w € C/. Let D be any closed disk in Hy, and let Dy, ..., Dy be

any closed disks in C/. Since the above series converge absolutely and uniformly
on DxDyx---xDy to Sy, and since the terms of this series are analytic functions

in each of the variables z,ws,...,wy, the series
Z Le( KA (m +w)) iz (m+’w)A(m+w))
meZf

converges absolutely and uniformly on D x D; x---x D¢ to the analytic function
LyS; (see p. 162 of [17]). We have for z € H; and w € C/, using Lemma 2.3.1
and Lemma 2.3.2,

(LeS1) (2, w)
=2 Lé( ("CA(m + w)) e °<m+w>A<m+w>)

meZzf

Z Ly (( tUl(m + w))r) iz (mtw) A(m+w)

meZf

+ ( t@A(m + w))TLg (eﬂ'iz t(m+w)A(m_|-w))
Z (CA(m +w))" - Le(miz (m +w)A(m +w)) - ™= Ym+w) A(m+w)

meZSf

— 9z Z fA m + ))T-‘rlem‘z t(m-‘rw)A(m-‘rw)'
meZf

Next, for z € Hy and w € (Cf, let

SQ(Z,IU) Z r ﬂi(—l/z) YmA~ m4-27i tmw.

k—i—r
z \/det mEZf



2.3. DIFFERENTIAL OPERATORS 61

Comments similar to those above apply to S2 and the series defining S5. For
Sy we have for z € H; and w € Cf, using Lemma 2.3.1 and Lemma 2.3.2,

(LeS2) (2, )
_ Z Lz( gm r Tri(—l/z) th71m+27ritmw>

k+
z T\/det mer

— Z ( wi(—l/z)th71m+2witmw)
zk”\/det

mezf

= Z ) Le(mi(—1/z) ‘mA™ m + 2mi tmw)

k-‘rT
z \/det mer

X eﬂ'i(—l/z) ‘m AT mA4-2mi fmw
= 2mi - k+ T Y . emH=1/2) mAT m+2mi 'mw
r
: \/W mzezf
. 2 : o 6 4—1 .
= 271 - 7’+1 7”( 1/2z) 'mA~ "m+2mi mw

k+r
z \/det mer

Since (LyS1)(z,w) = (L¢S2)(2,w), we have for (z,w) € Hy x C7,

Uiz Z EA (m + ))7"+1€7riz Y(mA4w) A(m+w)
meZLf

— i - Z (tgm)r+1 . 671'1'(71/2) m AT mA4-27i fmaw

Zktr, /det(A) ot 7

or equivalently,

S (tedm )y e s

mezf
Z r+1 emi(=1/2) 'mAT m4-27i tmw'
Zk+r+1\/cﬁ ot
By induction, the proof is complete. O

Let f be a positive even integer, and let A € M(f,R) be a positive-definite
symmetric matrix. For r a non-negative integer, we let H,.(A) be the C vector
space spanned by the polynomials in wy,...,wy given by

("CAw)"

where w = ‘(wi, ..., wy) and £ € C/ with 'YA¢ = 0. The elements of H,(A)
are homogeneous polynomials of degree r, and are called spherical functions
with respect to A.
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2.4 A space of theta series

Lemma 2.4.1. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Qx) = % ‘rAx.

Let r be a non-negative integer, and let P € H,(A). Let h € Z/ be such that
Ah =0 (mod N).
For z € H;y define

O(APhz) = Y Ph)e S,
nezf
n=h (mod N)

This series converges absolutely and uniformly on closed disks in H; to an ana-
Iytic function. If h,h' € Z/ are such that Ah =0 (mod N), Ah' =0 (mod N),
and h = h' (mod N), then

0(A, P, h,2) = 0(A,P,I,2), (2.2)
O(A, P, h,2) = (—1)"0(A, P,—h, 2), (2.3)

for z € Hy. For h € Zf with Ah =0 (mod N) and P € H,(A) we have

1
(A, P,h,2) |, [1 ]

-k £
{ 2mi Lo
= —F € N2 Q(A,P,g,Z) (24)
v/det(A) p (rgg N

Ag=0 (mod N)

and

1 b] _ 2S5 G4 P, 2) (2.5)

Q(A’P’h’z)‘k—&-r |: 1 =e N

for z € Hy. Let P € H,(A), and let V (A, P) be the C vector space spanned by
the functions (A, P, h,-) for h € Z/ with Ah =0 (mod N). The C vector space
V(A, P) is a right SL(2,Z) module under the |4, action.

Proof. The assertions (2.2) and (2.3) follow from the involved definitions.

To prove (2.4) and (2.5), let h € Z/ with Ah =0 (mod N) and P € H,.(A).
Using the definition of H,(A), it is clear that may assume that the polynomial
P is of the form

P(w) = (YAw)".

for some ¢ € Cf such that "A¢ = 0. We recall from Proposition 2.3.3 that
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S (A + e et

meZf

_ § : 7 wi(—l/z) *mA~m427i 'maw

ket A)
2kt /det(A iy

for € Hy; and w € C/. Replacing w with h/N, we obtain:

> (tA(m+ %))’”e’”z (mt-fe) A(mt )
mezf

Z r 7T’L( 1/z) 'mA~tm42n 'mh.
zk”\/det mer
Let m € Z7. Then
h  h+mN
mtNT TN
n
N’
where n = h +mN. The map
7} = {neZ' :n=h(mod N)}

defined by m +— n = h + mN is a bijection, the inverse of which is given by
n— (n—h)/N. It follows that

N—T Z ( 1 An )7' iz NA2n
nezf
n=h (mod N)

h

_ E 7‘ 7r7, —1/z) 'mA~ m+27rz fm

zk”\/det er

Next, consider the map
75 =5 {gez!: Ag=0 (mod N)}

defined by m + g = NA~'m; note that NA~'m € Z; for m € Z/ because
NA~1is integral by the definition of the level N. This map is a bijection, with
inverse defined by g — m = N~ !Ag. Hence,

NS () e

nezf
n=h (mod N)

ik fgA i
- N—T ? Z ( éAg)T mi(— 1/z) +27i

2ktr, /det(A) o

Ag=0 (mod N)

gAh
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Canceling the common factor N™", we get:

t r iz;n/m
E (CAn) €™ Nz
nez’
n=h (mod N)

Y tgAg 4t’gAh
(teAg)re‘m( 1/z)v+2ﬂlv,

N 2ktr, /det(A) Z

gez’t
Ag=0 (mod N)

The set of g € Z7 such that Ag = 0 (mod N) is a subgroup of Z7; this subgroup
in turn contains the subgroup NZ/. We may therefore sum in stages on the
right-hand side. Let F(g) be the summand on the right-hand side for g € Z/
with Ag =0 (mod N). The form of this summation in stages is then:

oo Fm= Y > Flg+m)

gez’ gezf /NzT meNZS
Ag=0 (mod N) Ag=0 (mod N)
g (mod N) n, €z’

Ag=0 (mod N)ni=g (mod N)

Applying this observation, we have:

t -k
AR e — Y
O - DY

nez’ g (mod N)
n=h (mod N) Ag=0 (mod N)
. tnyAn tny AR
E : (tﬁAm)re’”(*l/z)%““%.

nler
n1=g (mod N)

Let g € Z7 with Ag =0 (mod N) and let n; € Z/ with n; = g (mod N). Write
ni1 = g+ Nm for some m € Zf. Then

tny AR tgAh N 'mAR
e27rz ]\1]2 _ 6271'2 ~2 6271'2T
tg AR P AR
_ 6271'1 NT e T
t,
tgAR
_ 62771 NT
— ‘mAh . .
In the last step we used that Ah =0 (mod N), so that —— is an integer. We

therefore have:

" r o ‘nAn

E ( EAn) e’ TNz
nezf

n=h (mod N)
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tgAh tnq Ang
_ T — 627” ~2 2 : (EATL )'r mi(=1/2)—gz— )
” 2 :
z \/det (mod N) -
Ag 0 (mod N) n1=g (mod N)

Interchanging z and —1/z, we obtain:

S (e
nezf
n=h (mod N)
k+r:k k+r n
( ) 1z Z 6271-1 ?V‘;h Z ( EA"H, )r Tz i\;‘; 1 )
det(A) o (mod ) et
Ag=0 (mod N) n1=g (mod N)

This implies that

—i k+2rzk+r T{"L‘tgﬂ
- ()dt(A) S @TNTH(APg.2), (26)
¢ g (mod N)

Ag=0 (mod N)

which is equivalent to (2.4).
Next, let b € Z. We have

sapl,, | ]

1
=0(A,P,h,z +)
= > PeenenSE
nezf
n=h (mod N)
nezf
n=h (mod N)
b Q) iz L)
_ eQTrlbW Z P(n)eQﬂ'ZZ N2 (Cf Lemma 158)
nezf

n=h (mod N)
— 25 9( A, P b, ).
This is (2.5).

Finally, the vector space V (A, P) is mapped into itself by SL(2,Z) via the
|k+r right action because SL(2,7Z) is generated by the matrices

ST

and because (2.4) and (2.5) hold. O
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2.5 The case N =1

Proposition 2.5.1. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be a even symmetric positive-definite matriz, and let N be the level
of A. By Corollary 1.5.5 N = 1 if and only if det(A) = 1; assume that N =1 so
that also det(A) = 1. Then f is divisible by 8. Let r be a non-negative integer,
and let P € H,(A). The C vector space V (A, P) has dimension at most one,
and is spanned by the theta series

0(A, P,0,z) = Z P(n)e?mi=Qm),
nezf

We have
(A, P,0,2)|,, a=0(A, P0,z) (2.7)

for all a € SL(2,Z), and 6(A, P,0,z) is a modular form of weight k + r with
respect to SL(2,Z).

Proof. Let h € Zf; since N = 1, we have Ah =0 (mod N). Now

0(A,Ph,z)= Y P(n)e*=9

nez’
n=h (mod 1)

— Z P(n)eQTrizQ(n)

neZ’
n=0 (mod 1)

=6(A, P,0, 2).

It follows that V (A, P) is at most one-dimensional, and is spanned by the func-
tion 6(A, P,0,z). By Lemma 2.4.1, we have

0(A, P,0,2)],... {_1 Y = i*0(A, P0,2), (2.8)
s rol, | ] —oaro) (29)

for b € Z. Since SL(2,Z) is generated by the elements

R

it follows that there exists a function ¢ : SL(2,Z) — C* such that

0(A, P,0, z a=t(a)-0(A,P0,z2) (2.10)

>‘k+r
for a € SL(2,Z) and for all non-negative integers r and P € SL(2,Z). We claim
that t(«) = 1 for all @ € SL(2,Z). Assume that r = 0 and let P € Hy(A) be
the polynomial such that P(Xy,...,X;) = 1. Then the function (A, P,0, z) is
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not identically zero. Since §(A, P,0, z) is not identically zero, and since | is a
right action, equation (2.10) implies that ¢ is a homomorphism. Also, by (2.8)

e o [ P
-1 ’ 1

|

Applying these matrices to 8(A, P,0, z) we obtain:

for b € Z. Now

0(4, P,0,)], {1 1} [1 1}29(A,P,07z)|k [_1 J
i?*0(A, P,0,2) = (—1)*4(4, P,0, 2).

Since 6(A, P,0, z) is not identically zero, we have i?* = (—1)*. We also have the

matrix identity R

for b € Z. Applying these matrices to 6(A, P,0, z), we find that:

i**0(A, P,0,z) = (—1)k9(A,P,0,Z)|k [ll) 1}

for b € Z. Since i?* = (—1)*, this implies that

0(A,P.0,2)|, E J —0(4,P,0,2)

for b € Z. Therefore, t is trivial on all matrices of the form

1 b 1

i
for b € Z. Since these matrices generate SL(2,7Z) it follows that the homomor-
phism ¢ is trivial. This proves (2.7) for all o € SL(2,Z), for all non-negative
integers r and P € H,.(A). Also, since t is trivial, we must have i* = 1. Write
k = 4a 4+ b where a and b are non-negative integers with b € {0,1,2,3}. Then
1 = i* = (i*)%i® = *. This equality implies that 4|k, so that 8|f.

Given what we have already proven, to complete the proof that 6(A, P, 0, 2)
is a modular form of weight k + r for SL(2,Z), it will suffice to prove that
0(A, P,0, z) is holomorphic at the cusps of SL(2,Z), i.e., that the third condition
of the definition of a modular form holds (see section 1.7). Clearly, the smallest
positive integer N such that T'(V) C SL(2,Z) is N = 1. Let o € SL(2,Z). We
have already proven that 6(A4, P,0,2)|x+r0 = (A, P,0,z). Thus, to complete
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the proof we need to prove the existence of a positive number R and a complex

power series
> a(m)g™

m=0

that converges in D(R) = {q € C: |¢| < R} such that

0(A,P,0,z2) = Z a(m)e?™im=

m=0

for z € H(1,R) = {z € H; : Im(z) > —%} (note that H(1, R) is mapped
into D(R) under the map defined by z — €*™%%). Consider the power series

> P(n)g%™ (2.11)

neZf

in the complex variable ¢. Let ¢ be any element of C with |¢| < 1. Since
g = e*™* for some z € H;, and since

Z p(n)eQTriZQ(n) — Z P(n)qQ(")

neZf nezl

converges absolutely by Lemma 2.4.1, it follows that the power series (2.11)
converges absolutely at g. Hence, the radius of convergence of the power series
(2.11) is greater than 0, and in fact at least 1 (see Theorem 8 on p. 172 of [17]).
Since by the definition of §(A, P,0, z) we have

6(A, P0,z2) = Z P(n)ezsz(n),
neZf

for z € Hj, the proof is complete. O

2.6 Example: a quadratic form of level one

If the level N of A is 1, so that the §(A, P, h, z) are modular forms with respect
to SL(2,Z), then necessarily 8|f by Proposition 2.5.1. Assume that f = 8. Up
to equivalence, there is the only positive-definite even integral symmetric matrix
A in M(8,Z) with det(A) = 1. This matrix arises in the following way. Consider
the root system Eg inside R®. To describe this root system with 240 elements,
let e1,...,es be the standard basis for R®. The root system Eg consists of the
112 vectors

d1e; + dae, where 1 < i,k <8, i #k, and 7,02 € {£1}
and the 128 vectors

1
5(6161 +---+egeg) whereep,...,eg € {1} and € ---eg = 1.
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Every element of Eg has length /2. As a base for this root system we can take
the 8 vectors

1

o :5(61_62_63_64_65_66_€7+€8)a
az = ey + ez,

a3 = —e; + ey,

a4 = —eg + €3,

a5 = —e3 + ey,

ag = —eq + es,

a7 = —es + e,

ag = —eg + er.

Every element of Eg can be written as a Z linear combination of aq, . .., ag such
that all the coefficients are either all non-negative or all non-positive. Let A be
the Cartan matrix of Eg with respect to the above base; this turns out to be
A = ((ovi,j))1<ij<s. Here, (+,-) is the usual inner product on R®. Explicitly,

we have:

o . -
2 -1
-1 2 -1
-1 -1 2 -1
A= -1 2 -1
-1 2 -1
-1 2 -1
L _1 2 -
Clearly, A is the matrix of (-,-) with respect to the ordered basis ai,...,as

for R8; hence, A is positive-definite. Evidently A is an even integral symmetric
matrix, and a computation shows that det(A4) = 1. Since det(A) = 1, the level
of Ais N = 1. The quadratic form @ is given by:

2 2 2 2 2 2
.,xg):x%+x§+x3+x4+x5+x6+x7+x8

— X1X3 — X2T4 — T3Ty4 — Ty4X5 — T5Lg — Lely — T7I8.

Q(:El,mQa Z3,..

Let r =0, and let 1 € Ho(A) be the constant polynomial. The theta series

0(A 2) =0(A,1,0,2) = Y m)

meZ8

is a non-zero modular form for SL(2,7Z) of weight 8/2 = 4. We may also write

0(A,z) = Z r(n)e2™m
n=0

where

r(n) = #{m € Z% : Q(m) = n}.
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It is known that the dimension of the space of modular forms for SL(2,Z) of
weight 4 is one (see Proposition 2.26 on p. 46 of [27]). Moreover, this space
contains the Eisenstein series

E(z) =1+ 240 Z o3(n)e?™ "z

n=1

o3(n) = Z a®

aln,a>0

where

for positive integers n. Since r(0) = 1, we have 6(A4, z) = E(z). Thus,
r(n) =240 - o3(n)

for all positive integers n. Evidently, 240 - 03(1) = 240. Thus, there are 240
solutions m € Z3 to the equation Q(m) = 1. These 240 solutions are exactly
the coordinates of the elements of Eg when the elements of Fg are written in
our chosen base (note that the coordinates are automatically in Z, as this is
property of a base for a root system). O

2.7 The case N > 1

The action of SL(2,Z)

Lemma 2.7.1. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Let ¢ be a positive integer; by Corollary 1.5.7, the level of cA is
cN. Let r be a non-negative integer. We have H,(cA) = H,.(A). Let h € ZT
be such that Ah = 0 (mod N) and let P € H,(A). If g € Zs is such that
g =h (mod N), then (cA)g =0 (mod ¢N) so that (cA, P, g,-) is defined, and

(A, P h,z) = Z 0(cA, P, g,cz)
g (mod ¢N)
g=h (mod N)
for z € Hy.

Proof. If £ € C/, then %Al = 0 if and only if %(cA)¢ = 0; this observation, and
the involved definitions, imply that H,(cA) = H,(A). Next, let z € H;. Then:
27iz Q)

0(A, P h,z)= Y.  Pn)e®™ 2

nezf
n=h (mod N)

- Z Z P(g+ m)e%izQ(gNBnl) :

g€zf /cNZS ni€cNZS
g=h (mod N)
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Let g € Z7 with g = h (mod N). There is a bijection
eNZ) =5 {m e Z/ : m =g (mod ¢N)}

given by n1 — m = g + ny. Hence,

Q(A,P, h, z) = Z Z P(m)e%ﬁz%

g (mod ¢N) meZzf
g=h (mod N)m=g (mod cN)
t’l” m

= XX PmeR

g (mod cN)  mezf

g=h (mod N)m=g (mod cN)

. YmecAm

D

g (mod cN)  mezf

g=h (mod N)m=g (mod cN)
= Z 0(cA, P, g,cz).

g (mod ¢N)

g=h (mod N)

This completes the proof. O

Lemma 2.7.2. Let f be a positive even integer. Let A € M(f,Z) be an even
symmetric positive-definite matriz, and let N be the level of A. Let

a b
o= L d} € SL(2,Z),

and assume that ¢ # 0. Let
Y(A)={meZ : Am =0 (mod N)}.
Define a function
Sa 1 Y(A)xY(A) — C

by

sa(g1,92) = Z 62’”( eNZ2 )

g (mod ¢N)
g=g2 (mod N)

The function s, is well-defined. If g1,9}, 92,95 € Y(A) and g1 = ¢} (mod N)
and g2 = g5 (mod N), then s4(g1,92) = salgl, g5). Moreover,

b %95 Ag91+bdQ(g1)

5q(91,92) = 6_2“( NZ )Soc(oa g2 +dg1) (2.12)
for g1,92 € Y(A).

Proof. To prove that s, is well-defined, let g1,g> € Y(A), and g,¢ € Zf with
g =¢ (mod ¢N) and g = ¢’ = go (mod N). Write ¢ = g + ¢Nm for some
m € Zf. Then

. aQ(g')+tg1Ay'+dQ(91))
627”( N2

aQ(g+ecNm)+tg; A(g+eNm)+dQ(g1) )

= 62771( cN?2



72

CHAPTER 2. CLASSICAL THETA SERIES ON H;

27”-( aQ(g)t+acN Ygamtac? N2Q(m)+tg1 AgteN Y91 Am+dQ(g1) )
cN2

2Tr<(aQ(g)+ 91 Ag+dQ(g1)+acN Y(Ag)mtac?N2Q(m)+eN ”(Agmm)
cN?2

(aQ(9)+%91Ag+dQ(g1)
e?ﬂz(—)

N2
cN s

where in the last step we used that Ag = Ag; =0 (mod N). It follows that s,
is well-defined.

Next we prove (2.12). Let g1,92 € Y(A). Then

b9y Agy+bdQ(g1)

N2 )Sa(07 g2 +dg1)
_ Z 6_27”.(bthAgierzbdQ(m))627”.((10@1\55))

g (mod ¢N)
g=g2+dg1 (mod N)

(aQ(g)—be tgaAgy —bedQ(g1)
= E 627”( cN?Z2 )

g (mod ¢N)
g=g2+dg1 (mod N)

(aQ(g+dgy)—be Y93 Agy —bcdQ(g1)
= g 627”( cN2 )

g (mod ¢N)
g=g2 (mod N)

727r7,(

aQ(g)+ad *g1 Ag+ad?Q(g1)—be bgaAg1 —bcdQ(g1) )

= Z e2ﬂi( cNZ2

g (mod ¢N)
g=g> (mod N)

aQ(9)+°91 A(adg—bcgn)+dQ(g1) )

= Z 627”( cN?2

g (mod ¢N)
g=g> (mod N)

Let g € Zy with g = go (mod N). Write g» = g + Nm for some m € Z/. Then

ezwi(tglA(adgfbcgz)) 27”

t91 A((ad—be)g— chnL))
cN?2

cN?2

27rz tg1 A(g— b(‘Nm))

cN?2

cN cN2
t t

A bYAgy)m
91 9) 2 z( (Nyl) )

91 Ay)

cN

(
(

(52 o (22 )
(
(

27r1

where the last step follows because Ag; =0 (mod N). We therefore have:

e—2m(

t,
6_27”,(17 ngglNJ;bdQ(gl))Sa(O,gg n dgl) _ Z 62 z(aQ(g)Jr g;]\z?g+dQ(gl))

g (mod ¢N)
g=g2 (mod N)

b9y Ag1+bdQ(g1)

N2 )Sa(0792+d91) = 54(91,92)-
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This completes the proof of (2.12).

Finally, let g1, 91, 92, g5 € Y (A) with g1 = g} (mod N) and g2 = g4 (mod N).
It is evident from the definition of s, that s4(g1,92) = Sa(g1,95). Write g} =
g1 + Nm for some m € Z/. Then

b°g2Ay'1+bdQ(§’1)) ,
N? Sa(07g2+dgl)

b 95 A(g91+Nm)+bdQ (g1 +Nm)
2

N )sa(O,gg +d(g1 + Nm))

Salgh,g2) = e=2mi{

_ 67271'1'(

72‘”(11 t90 Ag1+bdQ(g1)+bdN M Agy)m+bdN2Q(m)+bN t(Agz)m,)
= e N2

X 84(0, g2 + dg1 + dNm)

b5 A9, +bdQ(g1)

_ 6_2M(T) $(0, g2 + dg1)
== Sa(gl7g2)

Here we used that Ag; = Ago =0 (mod N). This completes the proof. O

Lemma 2.7.3. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Qx) = % ‘Az,

Let v be a non-negative integer, and let P € H,(A). Let h € Z/ be such that

Ah =0 (mod N).

a b
o= L d} € SL(2,Z),

and assume that c is a positive integer. Then

a b
0(A, Ph,2)], ., [C d]

> salg.h)-0(A,Pg,z), (213)

1
= sk+2r Ak
ik+2rek, /det(A) o (mod )

Ag=0 (mod N)
where so s defined in Lemma 2.7.2.

Proof. We have

a b
AP, |0 1)

. ke az+b
=il r(A P )
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aerb)

= jla,z)7F Z 9<cA,P,g, c- P

g (mod ¢N)
g=h (mod N)

1
. —k—
—jla, )Y 9<A,P,,—7 )
Jj(a, z) A, Pg, ———— +a
g (mod ¢N)
g=h (mod N)
Qecalg)

Tia —SL s 1
—jlavz) Y ST G(CA,P,g,— )

g (mod ¢N) cz+d
g=h (mod N)

:j(aaz)_k_r Z 627”@

g (mod ¢cN)
g=h (mod N)

T nia 29) 1
= (_1)k+ Z 62 ?;12 (9(6A7P7g7')‘k+r |:1 :| )(CZ+ d)

Q) 1
: 29( A P.g, — )
" ¢ g cz+d

g (mod cN)
g=h (mod N)
k(__1\k+r 9
_ ¢ ( 1) Z 627”(1?15’-2)
/det(cA) g (mod e
g=h (mod N)
oi91(cA)g
Z e M O(cA,P,g1,cz +d)
g1 (mod ¢cN)

(cA)g1=0 (mod cN)

_ ik(_l)kJrT Z 627‘%‘&%
v/det(cA) g (mod eN)

g=h (mod N)
t,
onid1lcA)g . Q(91)
E e T em? 2NN O(cA, P gy, cz)
g1 (mod ¢N)

(cA)g1=0 (mod cN)

B Zk(fl)kJrT Z
\ det(CA) g1 (mod ¢N)
(cA)g1=0 (mod cN)
aQ(9)+"%1 Ag+dQ(g1)

Z ezm'(c,\,—z))e(cA,P, g1,CZ)

g (mod cN)
g=h (mod N)

k -1 k+r
G Z Sa(g1,h)0(cA, P, g1,cz)

\/det(cA) o1 (mod eI

(cA)g1=0 (mod cN)

k -1 k—+r
sy Z Sa(g1,h)0(cA, P, g1,cz)

/det(cA) g1 (mod o)

Ag1=0 (mod N)
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i’“(—l)’“”‘
= Jdet(cA) > > salgr +m, h)6(cA, Pgy + m, c2)
et(ed) g1€2f /N2 meNZS JeNZS

Ag1=0 (mod N)

F(—1)ktr
- m Z sa(glah) Z Q(CAA,F)7 g1 +mvcz)
e g€z’ /NZ/ meNz! JeNZS

Ag1=0 (mod N)
ik(_l)kJr'r

NN > Sa(g1,h) > 0(cA, P, g, cz)
V €t<C ) g€z’ /NzS g’ (mod cN)

Ag1=0 (mod N) g'=g1 (mod N)
,L'k'(_l)k-i-r

= Z Sa(g1,h) Z 0(cA, P,g',cz)
Vdet(cA) g€zt INZS g’ (mod cN)

Ag1=0 (mod N) g'=g1 (mod N)

1
_— salgi,h)-0(A, P, gy, 2).
jk+2r ok det(A) o (rr%;i N) (gl ) ( & )

Ag1=0 (mod N)

Here, we used Lemma 2.7.2. O

The action of I'y(N)

Lemma 2.7.4. Let f be an even positive integer, let A € M(f,7Z) be a positive-
definite even integral symmetric matrix and let N be the level of A. Let

Y(A)={geZ : Ag=0 (mod N)}.

Define a function

s:Y(4A) —C
b
v oi t9Ad omi 9Ad
S(g) — Z 2T RT — Z e TN
g (mod N) q€Y (A)/NZS

Ag=0 (mod N)

for g € Y(A). The function s is well-defined and

s(g) = 0 if g 20 (mod N),
P =AY (A)/NZS if g =0 (mod N)

for g € Y(A).

Proof. To see that s is well defined, let g,q1,q2 € Y and assume that ¢ =
q1 + Ngs for some q3 € Zf. Then

‘gAgo = ‘gAq1 + N 'gAgs
= "gAq1 + N (Ag)Ags
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= '9Aq, (mod N?)
because Ag =0 (mod N). This implies that

t t
."gAqy . "gAqy
627” N2 eZﬂ'z N2

b

so that s is well-defined. To prove the second assertion, asssume first that
g =0 (mod N). Write g = Nm for some m € Zf. Let ¢ € Y(A). Then

‘9Aq = N ‘m(Aq)
=0 (mod N?)
since Ag =0 (mod N) because q € Y(A). It follows that

sg) = Y (2R S 1= #Y(4)/NT.

q€Y (A)/NZS qE€Y (A)/NZS

Finally, assume that g # 0 (mod N). Then there exists m € Z/ such that
‘gm # 0 (mod N). This implies that ‘gNm # 0 (mod N?). Let ¢y = NA 'm.
Then g € Y (A) because Ag = Nm =0 (mod N). Also,

‘9Aq, = 'gNm # 0 (mod N?).

fgAqy
This implies that e*™N7 # 1. Since the function Y (A)/NZ/ — C* defined

. 'gAq
by q — e*™ N2 is a character, and since this character is non-trivial at ¢, it
follows that summing this character over the elements of Y (A)/NZ/ gives 0;
this means that s(g) = 0. O

Proposition 2.7.5. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Define the quadratic form Q(zx) in f variables by

Qz) = % ‘rAx.

Let r be a non-negative integer, and let P € H,(A). Let h € Z7 be such that
Ah =0 (mod N).
Let
a= {‘CL Z] € To(N)

and assume that d is a positive integer. Then

a b
AP,y |0 1]

. bQ(q)

= (= Y. €TUanT)-0(A Pah,z). (214)
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Proof. We will abbreviate

a=la o)

Applying first Lemma 2.7.3 (note that d > 0), and then (2.4), we obtain:

0(A, Ph,2)], ., [a b]
— (0(A, P,h, 2) HT{ }{ :|)|k+r L 1}
CURTO0T A DI R P

-1
v IEP ORI ICLE

g (mod N)
Ag=0 (mod N)
1 2mi 941
~ 2 dF det(A) > Y sala,h)e™ N O(A Py, 2)
g (mod N) g (mod N)
Ag=0 (mod N) Ag=0 (mod N)
1 omi
_ B)e2™ 0(A, P,
7;27‘dk det(A) Z ( Z S(X(qa )6 ) ( g,z
g (mod N) g (mod N)
Ag=0 (mod N) Ag=0 (mod N)
We can calculate the inner sum as follows:
L tgAqg
Z sa(q; h)€2m N®
g (mod N)
Ag=0 (mod N)
. (—ahAq+acQ(q) tgA
= Z Sa(0,h — cq)e_zm( N )627” Nz (cf. (2.12))

g (mod N)
Ag=0 (mod N)

= $4(0,h) Z 627Ti( t(ah;gmq ) 627”,( SIEY)

g (mod N)
Ag=0 (mod N)

= 54(0,h) Z eQﬂi(%) (cf. Lemma 1.5.8)

q (mod N)
Ag=0 (mod N)

= $4(0,h)s(g + ah) (cf. Lemma 2.7.4)
B 0 if g # —ah (mod N),
= 5a(0.h) {#Y(A) /NZ/ if g = —ah (mod N)

It follows that

0(A,P,h,2)], [“ Z]

7

2).

(cf. Lemma 2.7.4).

(2.15)
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#Y (A)/NZS

= iQ’”cgkcie/t(A) - 5a(0,h) - 0(A, P,—ah, z)

_ (=1)"#Y(A)/NZ!
i2rdF det(A)

_ #Y(A)/NZS
~ dkdet(A)

- $a(0,h) - 0(A, Pyah,z) (cf. (2.3))
$a(0,h) - 0(A, P ah, z). (2.16)

The definition of s, asserts that:

sy = S emilE),

Finally, to determine #Y (A)/NZ/, assume that h = 0, 7 = 0, and that P is the
element of Ho(A) such that P(X;,...,Xy) = 1. Then the function

0(A,1,0,z) = Z e2mizQ(n)
nezf

is not identically zero. Also, let

oo =[] e e=l 7

Then s,(0,0) = 1, and (2.16) asserts that:

#Y (4)/NZ!

0(A,1,0,z2) = dct(4)

-0(A,1,0,2).

We conclude that
#Y (A)/NZS = det(A).

This completes the proof. O

Lemma 2.7.6. Let f be a positive even integer, let A € M(f,Z) be an even
symmetric positive-definite matriz, and let N be the level of A. Let

Y(A) ={heZ: Ah=0 (mod N)}.

Then
#Y (A)/NZ! = det(A).

Proof. This was proven in the proof of Proposition 2.7.5. O

Lemma 2.7.7. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Assume that N > 1. Define the quadratic form Q(zx) in f variables
by

Qz) = % ‘rAz.
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Define

by

mez’ jdzt

ford € Z with (d,N) =1 and d > 0, by
xa(d) = (=1)*xa(~d)

ford € Z with (d,N) =1 and d < 0, and by x(d) = 0 for d € Z with (d,N) > 1.
Then x4 s a well-defined real-valued Dirichlet character modulo N. Moreover,
if v is a non-negative integer, h € 77 is such that Ah = 0 (mod N), and
P e H,.(A), then

a b . AbQ(h)
0(A, P h,2)],,, L d} = "™ TN - xa(d) - 0(A, Pah, 2) (2.17)
for
b
{‘CL d} € To(NV).
Proof. Define a function
a Fo(N) — C
in the following way. Let
a b
g= L d} € To(N). (2.18)
If d > 0, then define
1 2mri- 220
alg) = o Z e a (2.19)
qez’ jdz’

o) = (0| b=t e e

Note that d # 0 since ad —bc = 1 and N > 1 (by assumption). Our first goal
will be to prove that « takes values in Q* and is in fact a homomorphism from
To(N) to Q*. Let P =1 € Ho(A) be the polynomial in f variables such that
P(Xq,...,X5) =1. Let g be as in (2.18), and assume d > 0. Then by (2.14)

we have

Z 627”"%@) -0(A,1,0,2)

qez’ JdNZS
¢=0 (mod N)

1
9(A7 170a Z)|kg = (%
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_ (dik 3 2N ) L 0(A,1,0, 2)
qezt jazt

= (dik Z 62”%@) -0(A,1,0,2)
qez? jdzt

0(4,1,0,2)|,9 = ag) -0(A,1,0,2).
Assume that d < 0. Then by what we just proved,

-1 -1
H(Avlvo’z)\kg=9(A7170’Z)\k{ —1] [ —J !

(—-1)%0(A,1,0,2)|, {_1 1} g

_1)ka(_g)0(A7 1,0,2’)
a(g) - 0(A,1,0, 2).

Thus,
G(Aa 1,0, Z)|kg = O[(g) ’ G(Aa 1,0, Z)

for all ¢ € I'o(N). Since 6(A,1,0,2) is non-zero, this formula also implies
that a(g) # 0 for all g € To(N). Thus, « actually takes values in C*. Let
9,9 € To(N). Then

0(A,1,0,2)|,(99") = (0(A,1,0,2)|,9)|,9'

a(gg)0(A,1,0,2) = alg) - 0(A,1,0,2)|,4'

a(gg)0(A,1,0,2) = a(g)a(g')0(4, 1,0, z).
Since 0(A, 1,0, z) # 0, we have

a(gg') = a(g)a(g) (2.21)

for g, ¢’ € T'o(NN). We have already noted that a(g) is non-zero for all g € T'o(V);
we will now show that « takes values in Q*. To prove this it will suffice to prove
that a(g) € Q for g as in (2.18) with d > 0. Fix such a g. If d = 1 then it is
clear that a(g) € Q. Assume that d > 1. Then ¢ # 0 (recall that ad — bc = 1).
Let n be an integer such that nc+d > 0. Then

o' e =a" ]2 )

alg) =a([ ot

o

1T
o 2

an+b )
cn+d|””

By the definition of «, this implies that

1 . (an+b)Q(q)
274
alg) = — E e entd

d)k
(cn +d) qez’ jdzt
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It is clear from this formula that

a(g) € QCne+a)

where Cnepq = €27/ (7¢+d) g a primitive nc + d-th root of unity. Assume that
¢>0. Then c+d > 0, and

a(g) € Q(¢a) N Q(Ceta)-

Since ¢ and d are non-zero and relatively prime (because ad—bc = 1), d and c+d
are relatively prime. This implies that Q(¢s) N Q({c+q) = Q, so that a(g) € Q.
Assume that ¢ < 0. Then (—1)c+d > 0, and

a(g) € Q(¢a) NQ(C-cta)-

Since —c and d are non-zero and relatively prime, d and —c + d are relatively
prime, and Q((q) N Q(¢—c+d) = Q, so that a(g) € Q. This completes the
argument that a(g) € Q for g € I'o(N).

Now we prove the claims about x4. We need to prove that the four condi-
tions of Lemma 1.1.1 hold for x 4. It is immediate from the formula for x4 that
x4 (1) = 1; this proves the first condition. The third condition, that x4(d) =0
for d € Z such that (d, N) > 1, follows from the definition of x 4.

To prove the remaining conditions we first make a connection to a. We will
prove that if d € Z with (d, N) = 1, and

9= {z Z} € Lo(N)

then

@ =a(t o). (2.22)

Assume first that d > 0. By definition,

1 i 2Q@)
o) =g B e

qezt jazt

The summands in this formula are contained in Q(¢4), where (4 = e2™i/d_ Since
(b,d) = 1, there exists an element o of Gal(Q(¢4)/Q) such that o((q) = 4. We
have o1 (gg) = (4. Applying o~ to both sides of the above formula, and using
that a(g) € Q, we obtain:

qez? jdz
a(g) = xa(d).

This proves (2.22) for the case d > 0. Assume that d < 0. Using the previous
case, and the definition of a, we have:

xa(d) = (=1)*xa(—d)
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—-vta(| 2 O]
oral* 8 3
) =a((t 1)

This proves (2.22) in all cases.

Now we will prove the fourth condition of Lemma 1.1.1, which asserts that
Xa(d) = xa(d+N) foralld € Z. Let d € Z. If (d,N) > 1, then (d+ N,N) > 1,
and xa(d) = 0 = xa(d + N). Assume that (d,N) = 1. Then there exists
a,b € Z such that ad — bN = 1. By (2.22),

S I
(v aiv] =@
xald+N) = ya(d). (cf. (2.22))

To prove the remaining second condition of Lemma 1.1.1 let dy,ds € Z. If
(di,N) > 0 or (d2, N) > 0, then evidently xa(dide) = 0 = xa(d1)xa(ds).
Assume, therefore, that (dy, N) = (do, N) = 1. There exist aj,by,a2,by € Z
and g9 € {£1} such that be such that a;dy — b1 N = 1, asds — boea N = 1, and
by > 0. Then

O(( a1 ( aijas + b1€2N a1b2 + bldg )
N d1 EQN dg asN + dies N didy + b N

( a1 bl as ( aijag + bieaN  ai1bs + bida )
N dl €2N d2 (IQN + d1€2N d1d2 + b2N

XA(di)xa(d2) = xa(dida + baN)
d do) = xa(didy + N +---+ N
xa(di)xa(ds) = xa(dida + N+ ---+ N)

ba
xA(d1)xa(d2) = xa(didz) (fourth condition).

We have proven that all the conditions of Lemma 1.1.1; by this lemma x4 is a
Dirichlet character modulo N. Since (2.22) holds, and since a(g) € Q* for all
g € To(N), it follows that x4 is real-valued.

It remains to prove (2.17). Let

o= o] ero

and let h € Y(A), i.e., h € Z/ with Ah =0 (mod N). First assume that d > 0.
We have:

1 . bQ(a)
- e27rz-W
dk E :

q (mod dN)

g=h (mod N)
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— i Z 627”" Lf]é%)
dk

qez’ JdNZS
g=h (mod N)

- bQ(q)

_ L Z e*™ v (ad =1 (mod N))

qezf JdNZS
g=ad-h (mod N)

1 . bQ(g+4q1)
= E E 2T TN
dF

qez’ )Nz qeNz' JdNZF
g=ad-h (mod N)

1 . bQ(ad-h)+b Yad-h)Aq1 +bQ(a1)
- 627m~ NT
dk § :

@ eNzZ? JANZS

ba2d2Q(h)+abdN th Am+bN2Q(m)

:dik Z Q27 s

mezf jdzt
- ab-ad-O(h . abYAh)m . .
= d];k ’ 6271.% ’ Z 627”4% N 6271-1.@
mez? /dz?
joabadQ(n) ] i bQUm) :
=2 E 2™ (since Ah =0 (mod N))
dk
mez! /dzf
;L ab(h) ] ;. bQUm)
— 6271'1 N . dT . E 6271'1 d (a,d =1+ bC, N|C’ Lemma 158)
mezt jdz’
. abQ(h)
_ 627” -~ . a(g)

. abQ(h)
=P TRT xald)  (cf. (2.22)).

In summary, if d > 0, then

1 ;. bQ(a) ;. abQ(h)

— 2 : 62711 INT — 6271'1 N2 XA(d)
q (mod dN)
g=h (mod N)

This equality and (2.14) now imply (2.17) if d > 0. Assume that d < 0. We
then have:

a b
0(A,Ph,2)|,,. [C d]

= 0(A,P,h,2)],,, [_1 —1] [:i :Z]

B ktr o
= (-1) Q(A,Pah’z)|k+r [—c —d}

~xa(=d) - 0(A, P,(—a)h, 2)
= (—1)’“‘”62”'%(—1)’“ ~xa(d) - (=1)"0(A, P,ah,z) (cf. (2.3))

i (Za)(=b)Q(h)
— (_1)k+r627m ~Z
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. abQ(h)

=¥ TN xa(d) - 0(A, P,ah, 2).

This completes the proof. O

Calculation of y 4

Lemma 2.7.8. Let p be a prime, and let x : (Z/pZ)* — C* be a Dirichlet
character modulo p. We define the Gauss sum W(x) to be the complex number

p—1
~Sx@emE = ¥ e,
a=0

a€L/pZ

If x is trivial, then W(x) = 0. If x is non-trivial, then

WH)W(X) = x(—=1)p.

Proof. Let G be a finite group. In this proof we will the following fact:

If n € Hom(G,C*) and n # 1, then Y n(g) = 0. (2.23)
geG
Assume that y = 1. Consider the function Z/pZ — C* defined by a —

™% This function is a non-trivial element of Hom(Z/pZ, C*). The assertion

W(x) = 0 follows from (2.23).

Next, assume that x is non-trivial. In the following computation, if b €
(Z/pZ)*, then we will denote the inverse of b in (Z/pZ)* by ¥, so that bb’ = 1.
We have

WOOWE) = (Y x@er™)- (S x@)e*™i)

a€Z/pZ bEZ/pZ

=( Y x@eB) (> x) )

a€Z/pZ be(Z/pZL)*

(Y x@e™s) - 30 x ()i

a€Z/pZ bG(Z/PZ)

Z Z ab' 2742

be(Z/pZ)* a€EL/PL

Z Z abb/ 272 +b

be(Z/pZ)* a€Z/pZ

=TT et

be(Z/pZ)* a€Z/pZ

S x> e

a€Z/pZ be(Z/pZ)*

S xa)(—1+ Y e

a€Z/pZ beZ/pZ
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= > xa(-1+ ) (2rilesity

a€Z/pZ beZ/pZ
a+1=0 (mod p)

* > X@(=1+ > ezmmpw)

a€L/pZ beZ/pZ
a+1#£0 (mod p)

=x(-1)(-1+p)
+ > x(@(-1+0) (cf (2.23))

a€L/pZ
a+120 (mod p)

=x(-De-1)- > «x@
a€L/pZ
a+1#£0 (mod p)

=x(-Dp-1) = (=x(-1)+ > x(a)

a€Z/pZ
=x(-1)(p—1) = (= x(-=1)+0) (cf. (2.23))
= px(—1).
This completes the proof. O

Lemma 2.7.9. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Assume that N > 1. We recall from Lemma 1.5.4 that N divides
det(A), and that det(A) and N have the same set of prime divisors. Define
XA : Z — C as in Lemma 2.7.7; by this lemma, xa s a Dirichlet character
modulo N. Let A = A(A) = (—1)F det(A) be the discriminant of A. Let (2)
be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo
det(A) by Proposition 1.4.2 and Lemma 1.5.2. Then the diagram

(Z/ det(A)Z)* —— (ZNZ)*

—

{1}
commutes. We have
i - (3) - (et oo

fordeZ.

Proof. By Lemma 1.5.4, N divides det(A4), and det(A) and N have the same
set of prime divisors. To prove the assertions of this lemma it will suffice to
prove that xa(d) = (%) for d € Z with (d,N) = 1. Let d € Z with (d,N) = 1;
then (d,det(A)) = 1. By Dirichlet’s theorem about infinitely many primes in
arithmetic progressions (see, for example, Theorem 155 on p. 125 of [14]), there
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exists an odd prime p such that p = d (mod det(A)). Then (p, N) = 1 and
p = d (mod N). Regard A as an element of M(f,Z/pZ). We have det(A) €
(Z/pZ)*. Tt follows that there exists a matrix U € M(f,Z) and a1,...,a; € Z
such that (a1,p) =--- = (ay,p) =1, (det(U),p) =1, and

a1

‘AU = (mod p).
ag

L1y e
p

meZl | pZf

1 Q(em)
_ — - § 6271'2 >

p meZrl [ pLf

1 4%mAm
_ — . § : 6271'1 5p

p me(Z/pZL)f

]_ . 2-mAm
_ 7 . 2 : 627”‘77’

p me(Z/pZ)f

. 2 Um)A(Um)
§ : 627”'#
mée(Z/pL)!
2t W AUmM
=—- § : e?ﬂ%f
mée(Z/pL)!
1 2777;‘2(a17n%+~-~+af'rn%)
= —k . E e p
Po eyt
. 2a;m?
H E 627TZ~ = L

1<i<f m;E€Z/pZ

;m

I > (1+<%>).62m¢%

1<i<f mi€Z/pL

1
pk
1
pk
CLUTL (X e Y (e
p p
1
pk
1
pk

1<i<f  m;€Z/pZ m,EZL/pZ

I x> (%)er“”‘zaipmi (cf. (2.23))

1<i<f m;€Z/pZ

1> ()

1<i<f m;€Z/pZ
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p
()" (2fdetU])2detL4)

) (cf. Lemma 2.7.8)

This completes the proof. O

Theorem 2.7.10. Let f be a positive even integer, and define k = f/2. Let
A € M(f,Z) be an even symmetric positive-definite matriz, and let N be the
level of A. Define the quadratic form Q(z) in f variables by

Qx) = %txAx.

Let v be a non-negative integer, and let P € H,(A). Let h € Z/ be such that
Ah =0 (mod N).

The analytic function 0(A, P, h,z) on H; defined by
O(APhz)= S Pn)e S
meZf
n=0 (mod N)

for z € Hy from Lemma 2.4.1 is a modular form of weight k + r with respect to
I(N). If r >0, then (A, P, h, 2) is a cusp form.

Proof. The case N =1 is Proposition 2.5.1. We may thus assume that N > 1.
Let

azk ﬂeﬂN)
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Then a € T'g(N). By (2.17), we have

2 abﬁéh)

0(A, P, h, z)|k+roz =e ~xa(d)-0(A, P,ah, z).

Since a@ € T'(N) we have a = d = 1 (mod N) and b = ¢ = 0 (mod N). By
Lemma 2.7.7, xa is a Dirichlet character modulo N; hence, xa(d) = 1. By
Lemma 1.5.8, Q(h) = 0 (mod N). Hence, abQ(h) = 0 (mod N?); this implies

;. abQ(h)
that €™ “~N*" = 1. Since a = 1 (mod N), we see that ah = h (mod N); by

(2.2), this implies that (A, P,ah,z) = 0(A, P, h, z). We now have

0(A, P h,z a=0(A,Ph,z).

)’k+r

To prove that 8(A, P, h, z) is a modular form of weight k + r with respect
to T'(N) we still need to prove that (A, P, h,z) is holomorphic at the cusps
of T'(N), as defined in section 1.8. Clearly, N is the smallest positive integer
M such that T'(M) C T'(N). To prove that §(A, P, h,z) is holomorphic at the
cusps of I'(N), and is a cusp form if r > 0, it will suffice to prove that for each
o € SL(2,7Z) there exists a power series

> alm)g™

m=0

that converges in D(1) = {q € C: |¢| < 1} such that

0(A, P, h, z)’kﬂa = Z a(m)eZ’”m/N

m=0

for z € Hy, and a(0) = 0 if » > 0. Let

o= [CC” 2] € SL(2, 7).

We recall the set Y (A) = {g € Z/ : Ag =0 (mod N)}, and the finite-dimensional
vector space V (A, P) spanned by the theta series 6(A, P, g, z) for g € Y(A)/NZ
from Lemma 2.4.1. By Lemma 2.4.1 the vector space V (A, P) is preserved by
SL(2,Z) under the |k+r action. It follows that there exist constants c(g) € C

for g € Y(A)/NZ/ such that

geY (A)/NZI

Let g € Y(A). By Lemma 1.5.8, for every n € Zf with n = g (mod N), the
number Q(n)/N is a non-negative integer. Consequently, we may consider the
power series

S Pn)g (2.26)

nezf
n=g (mod N)
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in the complex variable gq. Let ¢ € D(1). There exists z € Hj such that
q = e2™*/N  Since

S P = Y PN —6(4, Py, 2)

nez’ nezf
n=g (mod N) n=g (mod N)

converges absolutely by Lemma 2.4.1, it follows that the power series (2.26)
converges absolutely at g. Hence, the radius of convergence of (2.26) is at least
1. Consequently, the radius of convergence of the finite linear combination of

power series
Q(n)
Yoooelg) Y. Pmgw (2.27)

geY (A)/Nzf nez’
n=g (mod N)

is also at least 1. Denote this power series by

By construction,
o .
0(A, P, h, z)‘kHa = Z a(m)e?mim/N
m=0

for z € H;. This proves that (A, h, P, z) is a modular form of weight k+r with
respect to T'(IV). Finally, assume that » > 0; we need to prove that a(0) = 0.

From above,
a0)= > g >, Pn

geY (A)/NZI nez’
n=g (mod N)
%
= > o > P
gEY (A)/NZJ nezf
n=g (mod N)
n=0
= ¢(0)P(0)
=¢(0)-0
= 0.

Here, P(0) = 0 because P is a homogeneous polynomial in 7 > 0 variables. [

2.8 Example: the quadratic form 27 + 23 + 23 + 7

In this example we let



90 CHAPTER 2. CLASSICAL THETA SERIES ON H;

so that
Q(w1,79, 73, 74) = T3 + T3 + 23 + 27,

Evidently,
N=4 and k=2

Also, x4 is the trivial character of (Z/4Z)*. We will simplify the notation for
0(A,1,h,z) for h € Y(A), and write:

6(h) =0(A,1,h,z2).
Let V be the C vector space spanned the §(h) for h € Y(A):
V ={(0(h): heY(A)).

By Theorem 2.7.10, we have V C My(['(4)). If h € Z*, then h € Y(A) if and
only if Ah =0 (mod 4), i.e., h = 0 (mod 2). Define the following elements of
Y(A):

hg = hy =

>
(V)
|
oo
S

O N NN

The vector space V' is spanned by the five modular forms
0(ho), 6(h1), 6(ha), O(hs), O(ha).

For z € H;, define .
qu= 6271'12/4.

We have:

am2+4am24+am2+4am?
(ho) = Z q4m1+ mg+4mg+4my

i

g(hl) _ Z q(2m1+1)2—&-4m§+4m§—i—4m?1
= A ’
mezZ*
O(hy) = Z q(2m1+1)2+(2m2+1)2+4m§+4m§
4 )
mezZ4
O(hs) = Z q(2m1+1>2+(2m2+1)2+<2m3+1)2+4m3
= A 7
meZ4
O(hy) = Z q(2ml+1>2+(2Mz+1)2+(2ma+1)2+(2m4+1)2
= 4 .
mezZ*

Calculations show that:

0(ho) = 1+ 8¢} + 2445 + 32¢}% + 24¢1% + 48¢2° + - -,
0(h1) = 2q4 + 1245 + 26¢5 + 281> + 364;" + 64¢3" + - -,
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0(hy) = 4q3 + 1645 + 24¢1° + 32¢3% 4 52¢;° + 48¢2% + - - -,
0(hs) = 843 + 164 + 24q;" + 48¢;° + 40q;° + 48¢3> + - -+,
0(hs) = 1643 + 64q;° + 96¢5° + 12843° + 208¢3° + 192¢4* + - - -

These expansions show that 6(hg),...,0(hs) are linearly independent, so that
dim¢c V = 5.
Lemma 2.8.1. We have
dim M>(Tp(2)) =1 and dim Ms(Ty(4)) = 2.

Proof. See, for example, Proposition 1.40 on page 23, Proposition 1.43 on page
24, and Theorem 2.23 on page 46 of [27]. O

Proposition 2.8.2. Let
Vi = (0(ho) + 0(ha), 0(h2)), V2= (0(ho) — O(h4), O(h1), O(h3)),

so that
V=Vao.
Then Vi and Va are irreducible SL(2,7) subspaces of V.. Moreover,

M3(To(4)) = (0(ho), 0(ha)),
M>(T'o(2)) = (0(ho) + O(ha)).

Proof. By (2.4) we have

0ho)l, |, 1] :—i(@(ho)+4-9(h1)+6-0(h2)+4-9(h3)+9(h4)),
o)l |, 1] :—i(e(ho)m.e(hl)—2.9(h3)—9(h4)),

o)l |, 1] :—%(9(h0)—2.9(h2)+0(h4))

o), |, 1| - 1 (6(h0) ~ 2 0() +2-0(hs) — B(ha),

0(h), __1 1 _ —i(@(ho) 4 0(hy) + 6 - O(ha) — 4 O(hs) + O(hs)).

By (2.5) we have:
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o, | 1] = 0.
o(h)l, |1 L] = —io(ha),
o), |! } — O(ha).

Since SL(2,Z) is generated by

B

the above equations imply that V; and V5 are SL(2,7Z) subspaces of V.

To see that V; is irreducible as an SL(2,7Z) space, let W C V; be a SL(2,7Z)
subspace. We need to prove that W = 0 or W = Vi, and to prove this it
suffices to prove that dim W ## 1. Assume that dim W = 1; we will obtain a
contradiction. Let a,b € C be such that Fy = a(0(ho) + 6(ha)) + b0(h2) is a
basis for W. Since W is one-dimensional, SL(2,7Z) acts on W by a character
B :SL(2,Z) — C*. Fy is fixed by SL(2,Z). Now

MR

al0(00) + 001s)) ~ 0612) = | 1000 + 00 +05(|* ) cha)

This equality implies that a =0 or b= 0. If a = 0 and b # 0, then
1 1
Fil, {_1 } 5([_1 ])Fl
b 1
—1(9(710) —2-0(ha) +0(ha)) = B( 1 |)bO(ha).

This is a contradiction. Similarly, the case a # 0 and b = 0 leads to a contra-
diction. Thus, V; is irreducible.

To prove that V5 is irreducible, let W be a non-zero SL(2,Z) subspace of
V5; we need to prove that W = V5. An argument similar to that in the last
paragraph proves that W cannot be one-dimensional. Assume that W is two-
dimensional; we will obtain a contradiction. The formulas for the action of

-

show that W can contain at most one of 6(hg) — 6(h4), O(h1) and 6(h3);
otherwise, W = V;, a contradiction. Consider the quotient Vo/W. This
SL(2,Z) space is one-dimensional. Hence, SL(2,Z) acts on Va/W by a char-
acter 0 : SL(2,Z) — C*. Let p: Vo — V5/W be the projection map. We have
The formulas for the action of .

o
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imply that
p(O(ho)  0(2)) = (| 1 ip(6(h) — 6(11)).

) = a([* |woen),

—ip((0(ha)) = o(| " 1 pt0(ha))

Since at least two of p(0(ho) —60(h4)), p(6(h1)), and p(f8(hs3)) are non-zero, these
equations imply that
11
S

is equal to at least two distinct elements of {1,4,—i}, a contradiction. Thus, V5
is irreducible.

By Lemma 2.8.1 we have dim M»(I'g(4)) = 2 and dim M>(I'4(2)) = 1. By
Lemma 2.7.7 and Theorem 2.7.10, the functions 6(ho) and 6(hy) are contained
in M3(Ty(4)). Since 6(hg) and @(hy4) are linearly independent, 68(ho) and 0(h4)
form a basis for M3(I'9(4)). Finally, we need to prove that

F =0(ho) + 0(ha)
is contained in M5(T'g(2)). It will suffice to prove that
Fl,y=F foryeTy(2)

for v € Ty(2). We begin with some preliminary calculations. Let h € Y(A); we
write h = 2h/ for some h' € Z*. Let

By (2.13),

sa(g,1)0(g)

) 1
o(h = k92 Jdet( )
(h)], {2 1] k22, /det(A) gey(ZA;/4Z4

=5 Y sale M), (2.28)

geY (A) /474
Let g € Y(A), and write g = 2¢’ for some ¢’ € Z*. We obtain

Q=) +'9Az+Q(g)
b= Y n(nm)

z€Z*/82*
z=h (mod 4)

_on(%) y (o)

z€2* /82*
z=h (mod 4)
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Q(h+4y>+tgA(h+4y))
32

S Q) .
— 6271'1( 35 ) 2 : 627”(
yez* /274
S Qg) .
— 6271'1( 35 ) 2 : 627”(
yez* /274
(Q(9)+Q(h)+2 *gh (8 Yg+h)y+16Q(y)
27”(372) E 627”(372)
yez* /274
(Qg+h) (16 (g’ +h))y+16Q(y)
_ 6271'1(?’72) Z 627”(—32 )
yezt /274
t, 1 ’
- Q(g+h) (9" +h)y+Q ()
_ 62772(;72) Z 627”(72 )
yezt /274
t, 1 !
S Qg+h) (9" +h)y+Q(y)
_ 6271'2(%72) Z 62-“(72 )

yezt /274

Q(h)+2 'gh+8 Yg+h)y+16Q(v) )
32

=€

The function Z*/2Z* — C* defined by

te 1 ’
(9" +RD)y+Q(Y)
Y — 62771( 5 )

is a homomorphism. This homomorphism is trivial if and only if every entry of
g + 1 is odd, or equivalently, g + h = hy (mod 4). Therefore,

S (97 h) _ e27ri(7Q(g'2"h)) Z 627”-( t(s?’-%-h’;y-%—c?(y))
yezt /27t

(0.h) —2* if g+ h = hy (mod 4),
Salg, ) = .
g 0 if g+ h # hy (mod 4).

Consequently,

oy 4| = X (i)

g€eY (A) /424
— O(ha— h).
This implies that:

o -

9(h0)|2 2 1 :9(h4)a
' Z

o), |5 4| = 0ha).
' Z

9(h2)’2 2 1 = 9(h2)a
'l Z
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0(ha)|, B 1] — 0(ho).

Since F' € M3(T'g(4), to prove that Floy = F for v € T'9(2), it will suffices to
prove that Flyy = F for 7 € T'y(2) of the form

_|a b
T2 d

where ¢ is an odd integer; we note that since ad — 2bc = 1, d is also odd. Let
v € I'g(2) have this form. Then

Flyy = 0(ho)|,y + 0(ha) |y
= 0(ho)lyy [—12 1} E 1] +0(ha)] [—12 1} B 1}

= 0(ho)], {2?0_22) 201 d] B 1] +0(ha)l, |:26(LC_22) 20b+d} B 1]

— 0(ho)], E J +0(ha), B J (c — d is even)

= 0(ha) +0(ho)
=F

This proves our claim about F'. O

Proposition 2.8.3 (Jacobi’s four square theorem). If n is a positive integer,
then the number of (x,y,z,w) € Z* such

x2+y2—|—22+w2=n

8- Z m.

m > 0, m|n,
m#0 (mod 4)

18

In particular, every positive integer is a sum of four squares.

Proof. We have
0(ho,z) =Y a(n)q"
n=0
where
a(n) = #{m € Z* : Q(m) = n}

for each non-negative integer n. The modular form 6(hg, z) is contained in
M5(Ty(4)). By Lemma 2.8.1, the dimension of M5(T'y(4)) is two, and the di-
mension of M2(T'¢(2)) is one. The vector space Ma(T'y(2)) is spanned by

Bz) = oo+ Y b
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where ¢ = €?™* for z € Hy; here, for positive integers n,
b(n) = o1(n) —201(n/2) ?f n 15 even,
o1(n) if n is odd.

For this, see Theorem 5.8 on page 88 of [28]. Trivially, the function E(z) is
contained in M3(T'g(4)). The function

B(2)|, {2 J — EB(22)

is also contained in M3(T'g(4)). We have

E(2z2) = i +Y eln)g"

where

o1(n/2) —201(n/4) if n is divisible by 4,
c(n) =< o1(n/2) if n is even and n/2 is odd,
0 if n is odd

for positive integers n. The two modular forms E(z) and E(2z) form a basis for
M5(T'o(4)). Hence, there exist ¢1,co € C such that

O(ho,z) = c1 - E(2) + 2 - E(22).
Calculations show that
O(ho, z) = 1+ 8¢ + 24¢* + 32¢° + 24¢™* + 48¢° + 96¢° + 644" + - - -,

1
B(z) = or+a+ 0> +4¢° +¢" + 60+ 4¢° +8¢7 + -

1
B22) = op + 0+ 0" +4¢° + 0"+ 6¢'0 +4¢"7 +
Using these expansions to solve for ¢; and ¢y, we find that:
O(ho,z) =8 E(z) + 16 - E(2z).

It follows that

8b(n) 4+ 16¢(n)

801(n) — 3201(n/4) if 4|n,
= ¢ 801(n) if n is even and n/2 is odd,
8c1(n) if n is odd,

=8- Z m.

m > 0, m|n,
m#Z0 (mod 4)

a(n)

This completes the proof. O



Chapter 3

Classical theta series on H,

3.1 Convergence

Let m and n be positive integers. If A € M(m,C) and X € M(m x n,C), then
we define
AlX] =X AX.

Lemma 3.1.1. Let m and n be positive integers, and let A € M(m,Z) be an
even positive-definite symmetric integral matriz. For every N € M(mxn,Z) the
n X n integral matriz A[N] is an even positive semi-definite symmetric matriz.

Proof. Let N € M(m x n,Z). Set B = A[N]. It is clear that B is integral and
symmetric. Let z € R". Then wBz = (Nz)A(Nz) > 0. It follows that B is
positive semi-definite. O

Assume that A € M(m,Z) and B € M(n,Z) are even symmetric integral
matrices. Assume further that A is positive-definite, and that B is positive
semi-definite. We say that A represents B if there exists N € M(m x n,Z)
such that

A[N] = B.

We let
r(A,B) = #{N € M(m x n,Z) : A[N] = B}.

Lemma 3.1.2. Let m and n be positive integers, and let A € M(m,Z) and
B € M(n,Z) be even symmetric integral matrices with A positive-definite and
B positive semi-definite. The set {N € M(m x n,Z) : A[N] = B} is finite, so
that (A, B) is a non-negative integer.

Proof. By §1.5, there exists T € GL(m,R) and positive numbers Aq,..., Ay

97
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such that ‘T = T and
A1
A2
D ="TAT = A3

Am

Define Let N € M(m x n,Z). We have A[N] = B if and only if D[TN] = B.
Write TN = [(TN)y---(TN),] where (T'N)y,...,(T'N), € R™ are column
vectors. We have

Bjj ='(TN);D(TN); = Xm: X(TN);

i=1

for 1 < j <n. Let S be the set of X € M(m x n,R) such that

D RLS
i=1

for 1 < j < n. It follows that {N € M(m x n,Z) : A[N] = B} is contained
in T=1S N M(m x n,Z). The set S is compact, so that T~1S is also compact.
Since T71S is compact and M(m x n,Z) is a discrete subset of M(m x n,R),
the set T=1S N M(m x n,Z) is finite. O

Lemma 3.1.3. Let n be a positive integer. Let S,T € M(n,R) be positive
semi-definite symmetric matrices. Then tr(ST) > 0.

Proof. Arguing as before (1.7), there exist positive semi-definite symmetric ma-
trices U,V € M(n,R) such that S = U? and T = V2. Now

tr(ST) = tr(UUVV)
= tr(VUUV)
=tr(Y(V) 'UUV)
=t ((UV)UV).
Let W =UV. Then
tr(ST) = tr("WW)

_ZZ Wik)

k=1 j=1

= zn:(z Wik Wik)

k=1 j=1

YW

k=1 j=1
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This completes the proof. O

Lemma 3.1.4. Let K be a compact subset of Sym(n,R). Assume that S > 0
for S € K. Then there exists § > 0 such that S —d >0 for all S € K.

Proof. Let S € K. Since S is positive-definite, there exists T' € GL(n,R) such
that ‘TT =TT = 1 and

A
A2

A="T As T

An

for some positive numbers A1,..., A, € R. Let eg > 0 be a positive number
such and A\; > €g,..., A\, > €g. Let £ € R™ with  # 0. Then

A
A2

(S —es)r ="zT A3 Tz —eg ‘z

— t(Tx) A3 — €5 Tx

)\n_ES
> 0.

It follows that S —eg > 0. Hence, S € €5 + Sym(n,R)*. By Lemma 1.10.1,
set Sym(n,R)" is open in Sym(n,R). The sets €5 + Sym(n,R)* form an open
cover for K. Since K is compact, this cover has a finite subcover Sym(n, R)™ +
€5y, -+, 9ym(n,R)T + €g, for some Sy,...,S; € K. Let § = min(es,, ..., €s,)-
Now let S € K. Then S € Sym(n,R)" + g, for some i € {1,...,k}. Hence,
S — €5, € Sym(n,R)*. This implies that S — eg, > 0, so that S > eg, > 4, as
desired. O

Lemma 3.1.5. Let m and n be positive integers. Let M, N € M(m x n,R).
Then .
t
lte("MN)| <> | M ||Vl
i=1
Here, for P € M(m x n,R), we write P = [Py---P,], where P, € R™ for
1 < i < n are column vectors.
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Proof. We have
jtr("MN)| = [te(‘My - - Mp][Ny -+ - Ny))|

= | zn: M; N
i=1
<D I'MiNy|
=1

< Z [ M ||| N3],
i=1

where in the last step we used the Cauchy-Schwarz inequality. O

Lemma 3.1.6. Let k be a positive integer, and let 6 > 0 and M > 0 be positive
real numbers. Then there exists positive numbers R > 0 and € > 0 such that if
120, ..., 2, >0 and

Fterat 2R

then
—6(2} 4+ a) + 2M (21 + ) + M < —e(a} 4+ +ad).

Proof. Let € be any positive number such that 0 < € < §. Let m € R be such
that
m < (6 —€)x? —2Mxz — M

for all z € R. There exists a positive number T such that if x > T, then
—(k—1)m < (6 — €)x* + 2Mx — M.

Now define R = T%k. Assume that z; > 0,...,2x > 0 and 2} + -+ + 27 > R.
Then for some i € {1,...,k} we have 2? > R/k, ie., z; > \/R/k =T. It
follows that

G—e)@f+ - +af) —2M(x1 + - +ax) — M
> (6 —€)a? —2Mx; — M + (k — 1)m

K2

>—(k=1)m+ (k—1)m

> 0.
This completes the proof. O

Lemma 3.1.7. Let m and n be positive integers, and let A € M(m,R) be a
positive-definite symmetric matriz. Let K be a compact subset of H,,, and let
K1 and Ks be compact subsets of M(m x n,C). There exists a positive real
number R > 0 and a positive constant € such that such that

Re(mitr(ZA[N = Y1) + 2mitr(‘'NX) — witr(‘'XY)) < —e- > _[|Ni]|?
=1
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forZe K, X € K1,Y € Ky and N € M(m x n,R) with

D INil* = R.
i=1

Here, for N € M(m x n,R), we write N = [Ny---N,|, where N; € R™ for
1 < i < n are column vectors.

Proof. We first prove that we may assume that A = 1. To see this, assume
that the assertion holds for 1 = 1,,,. Since A is positive-definite, there exists a
positive-definite symmetric matrix B € M(n,R) such that A = B? (see (1.7)).
Define K| = B7'(K;) and K} = B(K,). Since we are assuming that the
assertion holds for 1 = 1,,, there exists a positive real number R > 0 and a
positive constant e such that

Re(ritr(Z (N = Y')(N' = Y")) + 2mitr(‘N'X") — witr('X'Y")) < —e- Z | V|2
for Z € K, X' € K| = B(K1),Y' € B"}(K3) and N’ € M(m x n,R) with

> IN/|I? > R.
=1

Regard the matrix B~! as operator from R™ to R™. Then B is continuous and
hence bounded. Therefore, there exists a positive constant ||[B~!|| such that

1B~ @) < 1B~ Illgll
for g € R™. Define T = | B7!||?R. Let N € M(m x n,R) with

D INiPP > T
i=1

Define N’ = BN. Then
S OIN|P = ZH(BN) 12
i=1

I BN;||?

I
=1
I

1

.
Il

IB=HIZ2 B~ IB N

M:

.
Il
i

1B=HI72 1B~ BN

'MS

o
Il
=

B2V

NE

1

.
I
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=B~ >IN
i=1
> | BT
=R.
Let ZE K, X € K;andY € Ky. Then X’ = B~ }(X) € K, and Y/ = B(Y) €
K. Since
Re(mitr(Z (N' — Y')(N' = Y")) + 2mitr(‘N'X") — witr("X'Y"))
= Re(witr(Z (BN — BY)(BN — BY)) + 2ritr((BN)B~'X)
— rite('(B"1X)BY))
= Re(mitr(Z (N — Y)BB(N - Y)) + 2ritr(‘NX) — mitr("XY))
= Re(mitr(Z (N — Y)A(N - Y)) + 2ritr(‘NX) — mitr('XY))
= Re(mitr(ZA[N - Y]) + 2ritr(‘NX) — mitr('XY)),

and,

—e- Y IN{I? = —e- > IBNi|f?
i=1 i=1
=—e- Y _IB7IA B IBN|?
i=1

n
< —e- Y 1B
i=1

= —e|B77% - V1%
=1

we conclude that
Re(ritr(ZA[N — Y1) + 2mitr(‘NX) — witr('XY)) < —€| B~ 72 > [IV:]>.
i=1

It follows that we may assume that A =1 = 1,,.
We now prove the lemma for A =1 =1,,. Since K, K; and K are compact,
there exists a positive number M > 0 such that

(VY 4+ U Y — 'Xo)|| < M, forl1<i<n,
tr("X1 Y2 + XYy — U(MNYa + VoY) = V(M Y; + VoY) < M
for Z=U+iV € K, X = X1 +iXy € K; and Y = Y] +1Y; € Ky where

U,V,X1,X5,Y; and Y5 are real matrices. By Lemma 3.1.4 there exists 6 > 0
such that Im(Z) — 6 > 0 for all Z € K. Let N € M(m x n,R). Then ‘NN > 0.
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Hence, by Lemma 3.1.3, we have tr((Im(Z) — ) ‘NN) > 0 for N € M(m x n,R),
or equivalently,

— tr((Im(Z) 'NN) < =6tr(‘"NN) for N € M(m x n,R). (3.1)

Let Ze K, X € Kj and Y € Ko. Write Z = U +4V for U,V € M(n x n,R)
with U =U, 'V =V, and V > 0. Also, write X = X; +iX, and Y = Y; + iV,
for X1, Xo,Y1,Ys € M(m x n,R). We have

7 Re(mitr(Z (N — Y)(N = Y)) + 2ritr(‘N X) — witr('XY))
= —n 'Im(7tr(Z (N = Y)(N = Y)) + 2rtr(‘NX) — mtr("XY))
= —tr(V'NN) + 2tr(V 'ViN) + 2tr(U YaN) — 2tr(‘N X>)
+tr("X1Ys + XoY; — U('1Ys + VoY1) — V(M Y: + YaY2))
= —tr(V'NN) + 2tr((V V1 + U Vs — 'X5)N)
+tr("X1 Y2 4+ XoY1 — U(W1Ya + VoY1) — V(YY1 4 VaYa))
< —5tr("NN) + 2/tr((V 'Yy + U 'Yy — "X5)N))|
+ |tr(*X1 Yy 4+ Xo ¥y — U(W1Ys + VoY1) — V(' Y) + YoYh))|

n
=8> [INi[? + 2tx((V V1 + U Y2 — 'Xo)N)|
=1

+ [tr("X1Ys 4 XoY; — U(V1Ys + VoY1) — V(1Y + 'VaYy))|

<=6 NP +2) IV Yi+ U Ya = Xo)ill| Vi
i=1 i=1

+ [tr(X1Ys + XYy — U(V1Ya + VoY1) — V(1Y) + YaYa)))|

<=6 NP+ 2M ) |IN|| + M.

i=1 i=1

By Lemma 3.1.6, there exists positive numbers R > 0 and ¢ > 0 such that
—S N2 420 ST Nl 4+ M < —e 3 VP
i=1 i=1 i=1

for .
S INP > R.
i=1
This completes the proof. O

Proposition 3.1.8. Let m and n be positive integers, and let A € M(m,R) be
a positive-definite symmetric matriz. For Z € H,,, X, Y € M(m x n,C), define

(A, Z,X,Y) = Z exp (mitr(ZA[N = Y]) + omitr("NX) — m’tr(tXY)).
NeM(mxn,Z)
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If D, Dy and D5 are products of closed disks in C such that D C H, and
Dy, Dy C M(m x n,C), then the series (A, Z, X,Y) converges absolutely and
uniformly on D x Dy x Dy. The resulting function 0(A,Z,X,Y) defined on
H,, x M(m x n,C) x M(m x n,C) is analytic in each complex variable.

Proof. Let D, Dy and D5 be products of closed disks in C such that D C H,
and Dy, Dy C M(m x n,C). By there exists a positive real number R > 0 and
a positive constant € such that such that

n
Re(witr(ZA[N — Y]) + 2mitr(‘NX) — witr('XY)) < —€- > ||V
i=1

for Ze D, X € D1,Y € Dy and N € M(m x n,R) with

Do INiP > R
i=1

Hence,

lexp (mitr(ZA[N —Y]) + 2mitr (‘N X) — mitr(‘'XY))|
= exp (Re(mitr(ZA[N — Y]) + 2mitr (‘N X) — mitr("XY)))

< exp(—e~Z||NiH2)

=1

for Z € D, X € D1, Y € D5 and all but finitely many N € M(m x n,Z). The

series .
> exp(—e > NP
i=1

NeM(mxn,Z)

converges. The Weierstrass M-test (see [17], p. 160) now implies that the series
0(A, Z,X,Y) converges absolutely and uniformly on D x D; x Dy. Since for
each N € M(m X n,Z) the function on H,, x M(m x n, C) x M(m x n, C) defined
by

(Z,X,Y) = exp (mitr(ZA[N — Y]) + 2mitr (‘N X) — mitr(‘XY))

is an analytic function in each complex variable and since our series converges ab-
solutely and uniformly on all products of closed disks, the function §(A4, Z, X,Y")
is analytic in each variable (see [17], p. 162). O

Corollary 3.1.9. Let m and n be positive integers, and let A € M(m,Z) be an
even positive-definite symmetric integral matriz. For Z € H,,, define

0(A,Z)= > exp(mitr(A[N]2)).

NeM(mxn,Z)

If D is a product of closed disks in C such that D C H,, then the series 0(A, Z)
converges absolutely and uniformly on D. The resulting function 0(A, Z) defined
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on H,, is analytic in each complex variable. Moreover,

0(A, Z) = Z (A, B) exp (ritr(BZ)).
BESym(n,Z)evem
B>0

3.2 The Eicher lemma

Let k be a positive integer. For Z € Hy, and X,Y € M(k, 1,C) we will consider
the series

0(Z,X,Y)
= Y exp(m(R-Y)Z(R-Y)+2ri 'RX — 7 'XY). (3.2)
ReM(k,1,7)

This series is actually an example of the series considered in Proposition 3.1.8
with m = 1 and k = n. To see this, we note that if Wy, W5 € M(k, 1,C), then

WiWy = tr(("Wh) Wa).
Therefore, for Z € Hy, and X,Y € M(k,1,C),

0(2,X,Y)= >  exp(mi(R-Y)Z(R-Y)+2ri RX — mi 'XY)
ReM(k,1,Z)
= > exp(ritr("((R-Y)) (Z(R-Y))) + 2ritr('('R) 'X)
ReM(k,1,Z)
—mitr('(°X) 'Y))
= > exp(rit(("R="Y)('R—"Y)'Z) + 2mitr("('R) 'X)
ReM(k,1,7)
— mitr('(°X) 'Y))
= Y exp(ritr(Z'('R—"Y)('R-"Y)) + 2ritr('('R) 'X)
ReM(k,1,7)
—mitr('(°X) 'Y))
= > exp(mite(Z- 1N = 'Y]) + 2mitr('N 'X) — mwite('('X) 'Y))
NeM(1,k,Z)
=0(1,2,'X,'),

where 1 is the 1 x 1 matrix with entry 1. It follows that 6(Z, X,Y") for For
Z € Hi, and X, Y € M(k, 1,C) has the convergence properties mentioned in
Proposition 3.1.8. For Z € Hy, R € M(k,1,R), and X,Y € M(k, 1,C) define

9(Z,R,X,Y) =exp (ni (R—Y)Z(R—Y) + 2mi ‘RX — 7i ‘XY (3.3)
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Lemma 3.2.1. Let k be a positive integer, U € Sym(k,R)* and X,Y €
M(k,1,C). The function g(iU,-, X,Y) is contained in the Schwartz space

SOM(k, 1,R)) = S(RY)
(see section 2.2 for the definition of the Schwartz space).

PT’OOf. Write X = X1 + ’LXQ and Y = Yl + 25/2 for Xl,XQ,Yl,YQ S M(k)71,R)
Also, write U = V2 for some V € Sym(k,R)* (see (1.7)). Since exp(—mi ‘XY)
is constant, it suffices to prove that the function defined by

Rsexp(—n (R—Y)U(R-Y)+2mi '‘RX)

is contained S(M(k,1,R)). Since S(M(k,1,R)) is mapped to itself by the map
induced by R +— R+ Y3, we may assume that our function has the form

R exp (— 7 (R —iYa)U(R — iYa) + 2mi '‘RX)
Let R € M(k,1,R). Then

exp (— 7 (R—Y)U(R-Y)+2mi 'RX)
=exp (— 7 (R —iYs) VV(R — iYs) + 2mi ‘RX)
=exp (— 7 (VR—iVY2)(VR —iVYs) + 2mi 'RX).

Since S(M(k,1,R)) is mapped to itself by the map induced by R +— V'R, we
may assume that our function has the form

R exp (— 7 (R —iYa)(R — iYa) + 2mi ‘RX)
For R € M(k, 1,R) we have:

exp (— 7 (R — iY2)(R — iYa) + 2mi ‘RX)
=exp (— 7 'RR — 21 ‘RXs + 7 YaYa +i(27 'RX1 + 7 ‘RYs + 7 'YaR)).

Since exp(m thYQ) is constant, we see that it suffices to prove that the function
h:M(k,1,R) — C defined by

h(R) = exp (- 'RR — 21 'RX5 +i(27 'RX; + 7 'RY, + 7 'YaR))

is contained S(M(k,1,R)). Let a = (aq,...,ax) € Z%, and P(Xy,...,X}) €
C[X1,...,Xk]; we need to prove that |P(R)(D“h)(R)| is bounded as a func-
tion of R € M(k,1,R). To see this, we note that there exists a polynomial
Qu(X1,..., X)) € C[Xy,..., X;] such that

(D*h)(R) = Qa(R)h(R).
for R € M(k,1,R). For R € M(k,1,R) we have

[P(R)(D*h)(R)| = |P(R)Qa(R) exp ( — 7 'RR — 21 'RXo)|
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= |P(R)Qa(R)exp (— 7 (R + X2)(R+ X2) — 7 'X2Xo)|
= |exp(—7 X2 X2) P(R)Qu(R) exp (— (R + Xo)(R+ X2))|.  (3.4)

It is well-known that the function
R'—>exp(—7TtRR)
is contained S(M(k, 1,R)). As above, this implies that
exp (— 7 (R+ X2)(R+ X2))
is also contained S(M(k, 1,R)). This implies that (3.4) is bounded. O

Lemma 3.2.2. Let k be a positive integer. Let U € Sym(k,R)™ and X,Y €
M(k,1,C). The Fourier transform (see section 2.2) of the Schwartz function
g(iU,-, X,Y) is given by

F(g(iU,-, X, Y))(R) = det(U)"2g(—(iU)™*, =R, Y, — X).

Proof. Let R € M(k,1,R). We recall that for Z € Hy, the function g is given
by:

9(Z,R,X,Y) =exp (ni (R—Y)Z(R—Y) + 2mi '"RX — mi ‘XY).
Therefore,

= /exp (= r=YYU(r=Y) +2mi 'rX — mi tXY) exp(—2mi ‘Rr) dr
Rk
= exp(—mi XY /exp (- [ Yr—Y)U(r—Y) - 2i'rX +2i th}) dr.
Rk

Write U = V2 for some V € Sym(k,R)* (see (1.7)). Then:

/eXp(fﬂ[t(’f’fi/')U(T‘*Y)72it’l"X+2itR7’i|)d’r’

Rk

_ /exp ( —ﬂ:t(r— Y)U(r - Y) +2z’%(—X+R)}) dr
RE

= /exp (- 7r:t(7" —VVVE-Y)+2r VVTH-X + R)} ) dr
RE

_ /exp (= [ (Vr = VY)Vr = VY) 4+ 2i (Vi) V(=X 4 R)]) dr
RE

= det(V)7! /exp (- W[t(r —VY)r=VY)+ 2 V(=X + R)}) dr

Rk
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= det(U) "2 exp(—7 '(VY)(VY)) /exp (- [ Y 42 trQ}) dr,
Rk
where
Q=-VY+iVY{-X+R) =-VY —i'VIX4+iV IR

For the penultimate equality, we used the formula for a linear change of variables
(see Theorem 2.20, (e) on page 50 and section 2.23 of [24]). Completing the
square, we obtain:

det(U) Y2 exp(—n '(VY)(VY)) /exp (- { Y 42 %QD dr

= det(U)_l/2 exp(—m tYUY) /ixp ( - W[t’FT +2%Q + 'QQ — tQQD dr
Bk
= det(U) "2 exp(—n YUY) /exp (- [ r+Q)(r+Q) - tQQ]) dr
RE
= det(U) 2 exp(—n YUY + 7 'QQ) /exp (—m Y(r+Q)(r + Q))) dr
= det(U) "2 exp(—n YUY + = tQQ)R/ exp(—m 'rr) dr
RE

= det(U)_l/2 exp(—7 YUY + 7 tQQ).
For the penultimate equality, we used Lemma 2.2.2. Therefore,

Flg(iU, -, X, Y))(R)

= det(U) "2 exp(—7i ‘XY) exp(—7 YUY + 7 'QQ)

= det(U) "V ?exp (—in ‘XY — 7 XV IVIIX 4 n 'RV VIX
+ir' Y VVTIX —7x YUY +7'XV VIR
+ir ' XVWY — 7 'RV ''VIR —in 'RV-IVY
—ir Y VVTIR4+ 7Y VVY)

= det(U)"Y2exp (—in XY — 7 XU X + 7 'RUT'X
+ir'YX —aYUY +7'XU 'R
+in XY —n'RUT'R — iz 'RY
—ir'YR+7'YUY)

= det(U)"Y2exp (— [ 'XU"X — ‘RUTIX — XU 'R+ tRU*lR}
— 2im ‘RY +ir 'Y X)

= det(U)"Y2exp (- [ YR — X)U YR - X)
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— 2in ‘RY —in 'Y (—X))
— det(U) /2 exp (mi [ YR — X)(—(iU)" )R — X)}
— 2im 'RY —in 'Y (- X))
= det(U) /2 exp (i (~R — (~X))(~ () ) (~R — (~X))]
+2ir (~R)Y —in 'Y (—X))
= det(U)"?g(-(iU)"', —-R,Y, - X).
This completes the proof. O
Lemma 3.2.3. Let k be a positive integer. There exists an eighth root of unity
& such that for Z € Hy and X,Y € M(k,1,C) we have
0(Z,X,Y) = &s( [_1 1} L Z2)TH(-Z71 Y, - X).

Here, s([71 1],2) for Z € Hy, is defined as in Proposition 1.10.8, and has the
property

s([l 1] L Z)? :j([l 1} ,Z) =det(—2Z71).
for Z € Hy.

Proof. Let the function g be as in (3.3). Let U € Sym(k,R)* and X,Y €
M(k,1,C). By Lemma 3.2.1 the function g(iU,-, X,Y) is in S(M(k, 1,R)). By
Theorem 2.2.4, Lemma 3.2.2, and Proposition 1.10.8, we have:

> gURXY)= >  (Fg(URX)Y)
ReM(k,1,Z) ReM(k,1,Z)

(iU, X,Y) =det(U)~"/2 >~ g(—(iU)™",—R,Y,-X)
ReM(k,1,Z)

0(iU, X,Y) = det(U)20(—(iU) "', Y, - X)

0(iU, X,Y) = gs([_l 1] LU)TH(—-GU) LY, - X).

The assertion of the lemma follows now from Lemma 1.10.5. O

Let k be a positive integer. Let V' be the be C vector space of all functions
from Hy x M(k,1,C) x M(k,1,C) to C. For g = [4 B] € Sp(2n,Z) and F € V
we define another element F' ‘g of V' by the formula

(F|g)(2,X,Y) =5(9,Z)'F(g- Z,AX + BY,CX + DY)

for X € Hy and X,Y € M(k, 1,C). We define an equivalence relation ~ on the
set V by defining Fy, F» € V to be equivalent if there exists an eighth root of
unity ¢ such that Fo = (Fy. If F € V, then the equivalence class determined
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by F will be denoted by [F]. For F € V and g € Sp(2k,Z), we define another
equivalence class in V/ ~ by

[F]|lg = [F|g].

It is easy to see that [F' ]| g is well-defined, and a calculation using Corollary
1.10.9 and Lemma 1.10.7 shows that

[F1](gh) = ([F]|g)| R
for F € V and g, h € Sp(2k,Z). We define a function

T:7%% —V/~ (3.5)
by
T(m) = [exp ( — mi ‘m1 X/2 + mi ‘M2Y/2))0(Z, X + m2/2,Y + mq/2)]
where m € Z?* is (as usual) regarded as a column vector, and m = [j}] with

my, Mo € Vi
Lemma 3.2.4. Let k be a positive integer. Then
T(m+2n) =T(m)

for m,n € 72k,
Proof. We begin with an observation about 6. Let X,,Yy € M(k,1,Z). Then
for Z € Hy, and X,Y € M(k, 1,C) we have:

0(Z, X + X0, Y +Y0)

= Y exp(rZ[R-Y = Yy] + 2mi 'R(X + Xo) — i (X + Xo)(V + Yp))

ReM(k,1,Z)
= Y exp(rZ[R-Y]+2mi (R+Yo)(X + Xo)
ReM(k,1,Z)
— i (X + Xo)(Y + Yp))
> exp(nZ[R - Y]+ 2mi ‘RX + 2mi 'RXo + 2mi Vo X + 2mi 'Y Xo
ReM(k,1,Z)
— i XY — i XYy — 7 "XoY — mi ‘XoYp)
> exp(nZ[R— Y]+ 2mi ‘RX + mi Vo X+
ReM(k,1,Z)
— i XY — i 'XoY — mi XoY)) (since ‘RXy, Yo X € Z)
= exp (mi Yo X — mi "XoY — mi ‘XoYp)
x Y exp(nZ[R—Y]+2mi 'RX — i 'XY)
ReM(k,1,Z)
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= exp (i 'YoX — mi "XoY — 7i 'XoY0)0(Z, X,Y).
It follows that
[0(Z, X + Xo,Y + Y0)] = [exp (mi YoX — mi XoY)0(Z, X, Y)]
because exp(—mi tXOYO) is an eighth root of unity. Now let m,n € Z?*. Then
T(m + 2n)
= [exp ( — i “(my + 2n1)X/2 + i "(ma + 2n2)Y/2)
X Q(Z,X +m2/2 +ns,Y +m1/2 +n1)}
= [exp ( — tle/Z — i 'y X + i tm2Y/2 + 7 tngY)
x exp (i g (X +mg/2) — mi ng (Y + my/2))
X Q(Z,X —|—m2/2,Y—|—m1/2)]
= [exp (— 78 'm1 X/2 — 70 ‘i X + w0 ‘maY/2 + mi ‘naY)
X exp (m' ‘o X + i t7117712/2 — i 'nY — i tngml/Z)]
X Q(Z,X —|—m1/2,Y—|—m2/2)
= [exp ( — i 'my X /2 + i tng/2)
X exp (m t'1117712/2 — 7 t7127711/2)
X Q(Z,X —|—m2/2,Y—|—m1/2)]
= [exp ( — i 'my X /2 + i tmzY/Q)G(Z,X +m2/2,Y +my/2)]
=T(m),
because exp(mi ‘nyms /2 — mi ‘ngm;y /2) is an eighth root of unity. O
By Lemma 3.2.4, the function 7" induces a function
T:(2/22)** — V/ ~,

which we denote by the same name.
Next, if H : (Z/2Z)?* — V/ ~ is a function and g € Sp(2n,Z), then we
define a new function H|g : (Z/2Z)?* — V/ ~ by

(Hl|g)(m) = H(g{m})|g

for m € (Z/2Z)%F; here, g{m} is defined in Proposition 1.11.2, where it is proven
that this defines an action of Sp(2k,Z) on (Z/27)?*. 1t is easy to verify that

H|(gh) = (H|g)|h (3.6)
for g,h € Sp(2k,Z) and a function H : (Z/2Z)%** — V] ~.
Theorem 3.2.5. Let k be a positive integer. Then
Tlg=T
for g € Sp(2k,Z).
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Proof. Since (3.6) holds, it suffices to prove that T|g = T for the generators of
Sp(2k,Z) from Theorem 1.9.6. Let B € Sym(k,Z) and m € (Z/2Z)*". Then,
using that

| T

o[ Yol [ Y]

=T [_Bml + lengl—i— diag(B)} )’ F ?]
= [exp (— mi ‘my (X + BY)/2 + mi (—Bmi + mo + diag(B))Y/2)
1 B]
1
= [exp (— mi ‘my (X + BY)/2 + mi (—Bmi + mo + diag(B))Y/2)
x0(Z+ B,X + BY — Bmy/2+ ms/2 + diag(B)/2,Y + m1/2)]
(use s([* B],2)? =1, so that s([! §], Z) is identically 1 or —1)
= [exp (— i 'my (X 4+ BY)/2 4 mi (—Bmy + my + diag(B))Y/2)
x Y exp(mi(Z+ B)R-Y —my/2]
ReM(k,1,Z)
+ 270 "R(X + BY — Bmy /2 + my/2 + diag(B)/2)
— i (X + BY — Bm1 /2 +ma/2 + diag(B) /2)(Y +m1/2))]
= [exp (— mi ‘m1 (X + BY)/2 + mi (—Bmi + mo + diag(B))Y/2)
x> exp(miZ[R—Y —ma /2] + 2mi "R(X + ma/2)
ReM(k,1,Z)
— i (X + ma/2)(Y +my/2))
x exp (miB[R — Y —m1 /2] + 2mi ‘R(BY — Bmy/2 + diag(B)/2)
— i (BY — Bmy/2 + diag(B)/2)(Y +m1/2))]
= [exp (—mi 'my (X 4+ BY)/2 4 mi (—Bmy + my + diag(B))Y/2)
X Z exp (mi(Z + B)[R—Y —my/2]
ReM(k,1,Z)
+27i "R(X + BY — Bmy /2 + my/2 + diag(B)/2)
x exp (i (R—Y —m1/2)B(R—Y —my/2)
+ 27i "R(BY — Bmy /2 + diag(B)/2)
— i (BY — Bmy/2 + diag(B)/2)(Y +m1/2))]
= [exp (— i 'my X /2 — mi ‘'m1 BY /2
— i 'm1BY /2 4 i 'maY /2 + 7i ‘diag(B)Y/2)

x 0(Z, X — Bmy /2 4+ my/2 + diag(B)/2,Y +my/2)]| {
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x Y exp(mi(Z+B)R-Y —m/2
ReM(k,1,7)

+ 21 'R(X + BY — Bm, /2 + my/2 + diag(B)/2)
x exp (i ‘RBR — mi 'RBY — mi ‘RBm /2
— 7 'Y BR + i 'Y BY + i 'Y Bmy /2
— i 'm1BR/2 + mi ‘'m1 BY /2 + mi 'my Bmy /4
+ 2mi "RBY — 2mi ‘RBm; /2 + 2mi ‘Rdiag(B) /2
— 7 'Y BY — i 'Y Bmy /2
+ i ‘my BY /2 + i ‘'my Bm, /4
— mi ‘diag(B)Y/2 — mi ‘diag(B)m1 /4)]
= [exp ( — i 'mi X /2 + i tng/2)
x exp (+ i my Bmy /2 — i tdiag(B)ml/Zl)
x Y exp(miZ[R—Y —my /2] + 2mi ‘R(X + my/2)
ReM(k,1,Z)
— i (X + ma/2)(Y +my/2))
X exp (m'(tRBR + ‘Rdiag(B)) — 2mi tRBml)]
= [exp (—mi 'my X /2 + i tng/2)
x exp (mi ‘myBmy /2 — i tdiaug(B)ml/él)
X Z exp (miZ[R—Y —my /2] + 2mi ‘R(X +ma/2)
ReM(k,1,Z)
—7rit(X—|—m2/2)(Y—|—m1/2))] (See Lemma 1.11.1)
= [exp ( — 7 tle/Z + i t7712)’/2)(9(Z,X +m2/2,Y +my/2)]
=T(m).

SN

= [exp ( — 7 tmQX/Z — tmly)tg(Z7X —m1/2,Y + m2/2)” [_1 1}

=[s(|_, 1] ,Z) L exp (= i 'maY /2 + i 'my X /2)

x0(—Z71Y —my /2, — X +my/2)]
= [exp (—mi ‘maY /2 4 mi tle/Z)

113
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x 0(Z, X —ma/2,Y —my/2)] (by Lemma 3.2.3)
= [exp (= mi (—=m1) X/2 + i (—m2)Y/2)0(Z, X — m2/2,Y —my/2)]
=T(—m)
=T(m).
This completes the proof. O

Corollary 3.2.6. Let k be a positive integer, and let Ty be the theta group, as
defined in sect. 1.11. Let ug be the group of all eighth roots of unity. There
exists a function x : T'g — pg such that

0(Z,X,Y) =x(g)s(g,Z)"'0(g- Z, AX + BY,CX + DY)
for Z € Hg, X,Y € M(k,1,C), and g = [4 B] € Ty.

Proof. Let g € T'y. By Theorem 3.2.5 we have T‘g =T. Evaluating at m =0 €
(Z./27)%F, we obtain:

02, X,Y)] = T(g{0})|g
=T(0)|g
=10(Z,X,Y)l|g
0(Z,X,Y)] =[s(9,2) *0(g - Z,AX + B,CX + D)].

It follows that there exists £ € ug such that
0(Z,X,Y)=¢s(9,Z2) " 0(g- Z, AX + B,CX + D)

for all Z € Hy, and X,Y € M(k,1,C). O

3.3 Application to general theta series

Lemma 3.3.1. Let m and n be positive integers. If A € M(m,C) and B €
M(n,C), then we define an element A ® B € M(mn,C) by

A@B=| : :
bp1A o bpnA

Let A, A’ € M(m,C) and B,B’" € M(m,C). Then

(A® B)(A' ® B') = AA' ® BB/, (3.7)
det(A ® B) = (det A)"(det B)™, (3.8)
A® B) ="'A® ‘B. (3.9)
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If A and B are invertible, then A ® B is invertible, and
(AeB)'=A"1@B " (3.10)

If A € Sym(m,R)* and B € Sym(n,R)™, then A® B € Sym(mn,R)™.

Proof. We write B = (b;j)1<i,j<n and B = (b;j)lgi,jgn- Then

(6114 - b,A LA b A
(A B)(A'®@B') = : : : :
1A o baad] (B4 o b
[0y bigbl ) AAT - (300 bl ) AA
L2t bl ) AAT e (307 bnjb)y, ) AA!
= AA' @ BB'.
Next,
det(A ® B)
— det((A® 1)1 © B))
=det(A® 1,) det(1,, ® B)
[ [b11 bin T
A b1 bin
= det( ) det( :
A bnl bnn
L bnl bnn i
= det(A)" det(B)™.
We have
b A binA
b1 A bn1 ‘A
bln tA bnn tA
='A® ‘B

Assume that A and B are invertible. Then

(A9 B)(A'®BY)=AA"'®BB™!
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=1,®1,

= lyn-

This implies that A® B is invertible and has inverse A~' ® B~!. Finally, assume
that A € Sym(m,R)* and B € Sym(n,R)*. Since (4 ® B) = 'A® ‘B = A® B,
it follows that A ® B is symmetric. By (1.5), there exist T' € GL(m,R) and S €
GL(n,R) such that T—1 = ‘T and =1 = 'S, and there exist Ay > 0,..., A\ > 0
and puy > 0,..., 4, > 0 such that

A1 M1
‘TAT = ., 'SBS = .
Am Hn
We have:
ToS)A9B)(T®S)=(T®"'S)(A® B)(T®S)
= 'TAT @ ‘SBS
[ 1
= S ® .
L >\m Nn
i -
,U/l)\m
,U“n)\l
L finAm ]
This equality implies that A ® B is positive-definite. O

Lemma 3.3.2. Let m and n be positive integers. Let F' € Sym(m,Z) be even
and invertible, and let N be the level of F'. Let

To(N) = {[C D} € Sp(2n,Z) : C =0 (mod N)}.

Define a function
t: Fo(N) — F9,2mn
by M =[4 B~ M, where
i A Bl [1,8A Fo®B
“|C D| |F'®C 1,®D|"

The function t is a well-defined homomorphism.
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Proof. We first verify that ¢ is well-defined. Let M = [4 B] € I'o(N). By
Lemma 1.9.2, we have

‘AC ='CA, '‘BD='BD, ‘AD-'CB=1,,

and to see that M € Sp(2mn, Z) it suffices to check that A, B, C, D are integral,
and

‘AC="'CA, 'BD="DB, 'AD-'CB=1mn.
It is clear that A, B and D are integral. Concerning C, we have:

C=F'leC=NF'gN'C.

Since NF~! and N~1C are integral, by the definition of the level of N and as
C =0 (mod N), it follows that C' is integral. Now

AC = (1, ® A)(F 12 C)
=(1n®@"AFT20)
=Fl®'AC
=Fle'cA
= (F'e'C)(1, ® A)
— (F'®'0)1,, ® A)
= (F1'0C) (1, ® A)

t~ ~

= CA.
A similar calculation shows that ‘BD = 'DB. Next,

"AD - 'CB = (1, ® *A)(1,, ® D) — (‘F' ® 'O)(F ® B)
=1, ®'AD - 1,, ® 'CB
=1, ®("AD - 'CB)
=1,,@1,
= lmn-

It follows that M € Sp(2mn,Z). To now prove that M e g mn it suffices to
prove that

diag(A tB) =0 (mod 2) and diag(C tD) =0 (mod 2).
We have

diag(A tB) = diag((1,, ® A) (F ® B) (mod 2)
= diag(F ® A'B) (mod 2)
=0 (mod 2),
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by the definition of ®, and because diag(F) =0 (mod 2). And

diag(C ‘D) = diag((F' ® C) (1,, ® D)) (mod 2)
= diag(F~! ® C''D) (mod 2)
= diag(NF~' @ N~'C'D) (mod 2)
=0 (mod 2)

by the definition of ®, diag(NF~!) = 0 (mod 2), and N~'C ‘D € M(n,Z).

Finally, we verify that t is a homomorphism. Let [‘éi gﬂ, [‘éi gﬂ € To(N).

Then
C1 Dyl |Cqy Dy C1Ay + D1Cy C1By+ DDy
:t( 1m®(A1A2+Bng) F®<AlBQ+BlD2) )
1 ®(01A2+D102) 1m®(C1BQ+D1D2)
t([(lm ® A1)(1m @ Ag) + (F @ B)(F~' ® Cy)

T OMFTT@C)(1m ® A2) + (1@ D1)(F~1 @ Cy)
(1 ® A1)(F @ Bz) + (F ® B1)(1m @ Do) )

1m®A F®B|[l.®A F®Bs

F1@C 1,®D| |[F'®Cy 1, D,

| e )

This completes the proof. O

Lemma 3.3.3. Let m and n be positive integers, and let F € Sym(m,R)*. For
Z e H, andY € M(m,n,C) define
Y1
Z=F®Z  Y=|:
Y,
where Y = [Y1---Y,] with Y1,...,Y, € M(m,1,C). We have
Z € Hynn,
X € M(mn, 1,C),
21¥] = w(ZFIY)),
XY = tr(*XY),
M-Z=M-Z,
AX + BY = XA+ FY 'B,
CX+DY =F1X'C1+Y'D,
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for Z € H,, X,Y € M(m,n,C), and M € Sp(2n,Z). Moreover, for every
M € Sp(2n,Z) there exists € € {£1} such that

s(M,Z) =es(M, Z)™
for Z € H,.
Proof. Let Z € H,, and X,Y € M(m,n,C). We have ‘7 =7 by Lemma 3.3.1.
Write Z = U4V with U,V € Sym(n,R) and V > 0. Then Z = F® (U+iV) =
(FeU)+i(F®V). By Lemma 3.3.1 we have F®V > 0. It follows that Z € H,,,,.

Next,
t

i1 [z11F - -z1.F] [Vh
ZlY]= | : : :
Yol |z - zonF'| | Ya

211 FY1 + -+ 21, FY,
—[% - ) ;
21 FY1 + -+ 2on FY,

i=1j=1
And:
tr(ZF[Y)) = tr(Z 'Y FY)
=u(z'[v Y,|F vy Y,])
iy
=t(Z | |F[n Ya])
tYn
iy
=tr(Z [Yl Yn])
|V, F
21 - oz [ViFYT - 'YiFY,
=tr(| : : : : )
Zni o Zan| |VaFYD oo Y, FY,

n n
>z, YiFY;.
i=1 j=1

It follows that Z[Y] = tr(ZF[Y]). Next, we have:
t

X1 [

Xn| |Yn
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Y,
=[x W]
Y.
= XY
i=1
And:
tr("XY) = tr(* [ X, X,] [V Y.))
o,
_tXn
'xX,v; - Xy,
=tr(| )
XY XY,

= zn: 'X,Y;.
i=1

It follows that XV = tr(*XY). Let M = [A B] € Sp(2n,Z). Then

i 5= [1m®A F®B

Fl®C 1,®D
= (I ®@AFRZ)+FOB)(F'@C)(F®Z)+1,,®D)"*
=(FRAZ+F®B)(1,,®CZ 4+ 1, @ D)™*

= (F®(AZ + B))(1,, ® (CZ + D))~}
=(F®(AZ+B)(1,,®(CZ+ D))
F®(AZ+B)(CZ+D)™!

FeoM-Z

]~(F®Z)

Now

a11ly, 0 apl,| [ X0 bt F' - b | [N

anl lm e CLnnlrn Xn ban e bnnF Yn
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S anX; S buFY;
= : + :
Z?:1 i X Z?:l b F'Y;

And:
XtA/‘:_EYtB:[Xl Xn]tA/_:_E[Yl Yn]tB
=X anXs o Y X + F [0 0uYs e 300 b
i a1 X S b FY;
— N + M

Z?:l aniXi Z?:l anFY;

Hence, AX + BY = X tA/—i—\fY ‘B. The proof of CX + DY = F*lX/ta:— Y 'D
is similar. Finally, let M € Sp(2n,Z). For Z € H,, we have
s(M,Z)? = det(CZ + D)

=det(F'®C)(F®Z)+ (1, ® D))

=det(1,, ® CZ +1,, ® D)

=det(1,, ® (CZ + D))
=det(CZ+ D)™
= s(M, Z)*™.

It follows that for each Z € H, there exists e(Z) € {1} such that s(M,Z) =
e(Z)s(M, Z)™. The function on H,, that sends Z to £(Z) is continuous and takes
values in {£1}. Since H, is connected (see Proposition 1.10.3), the intermediate
value theorem (see Theorem 6 on page 90 of [18]) implies now that this function
is constant, which completes the proof of the lemma. O

Lemma 3.3.4. Let m and n be positive integers, and let F € Sym(m,R)*. For
Z e H,, X,Y € M(m x n,C), define

OF,Z,X,Y)= > exp(rite(ZF[R - Y]) + 2mitr('RX) — witr('XY)).
ReM(mxn,Z)

By Lemma 3.1.8, this series converges absolutely and uniformly on compact
subsets of H,, x M(m,n,C) x M(m,n,C) and defines an analytic function on
this set. With the notation of Lemma 3.3.3, we have

0F,Z,X,Y)=0(Z,X,Y). (3.11)
Proof. By definition,

0(Z,X,Y) = Z exp (m'Z[R/ — Y]+ 2mi ‘RX —ni tf(f/)
R'€M(k,1,Z)
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The map M(m,n,Z) — M(k,1,Z) defined by R + R is an isomorphism of
groups. Using this, and Lemma 3.3.3,

0(Z,X,Y) = Z exp (WlZ[R—Y/] + 271 ‘RX — mi tf(f/)
R’ eM(m,n,Z)
= Z exp (mitr(ZF[R - Y]) + omitr(‘RX) — m’tr(tXY))
ReM(m,n,Z)

0(Z,X,Y)=0(F,Z,X,Y).
This completes the proof. O

Theorem 3.3.5. Let m and n be positive integers, and let F € Sym(m,Z)" be
even. Let N be the level of F. For Z € H,,, X, Y € M(m x n,C), define

OF,2,X,Y)= Y exp(nitr(ZF[R-Y]) + 2ritr(‘RX) — witr(‘XY)).
ReM(mxn,Z)
By Lemma 3.1.8, this series converges absolutely and uniformly on compact
subsets of H,, x M(m,n,C) x M(m,n,C) and defines an analytic function on
this set. Let pug be the group of eighth roots of unity. There exists a function
X : To(N) — pg such that
x(M)O(F, 2, X,Y)
=s(M,Z)"™0(F,M - Z,X'A+ FY 'B,F'X'C+Y "'D)
for M =[AB]eTy(N), Z€H,, and X,Y € M(m,n,C).
Proof. Let k = mn. By Corollary 3.2.6 there exists a function p : I'y — ug such
that
WM, X', Y)
=s(M',Z"Y oM - Z' AX' +BY' ,C'X'+ DY) (3.12)

for Z' € Hy, X',Y' € M(k,1,C), and M’ = [4, B)] € Ty ;. Here,

02, X' Y)= > exp(miZ'[R —Y']+2mi RX —7i'X'Y")
R'eM(k,1,Z)
for Z' € Hy, X', Y' € M(k,1,C). Let M = [4B] € T4(N), Z € H,, and
X,Y € M(m,n,C). To prove the theorem we will substitute M for M’, Z for

Z'. X for X’ and Y for Y’ in both sides of (3.12); note that M € Ty or by
Lemma 3.3.2. Substituting in the left hand side, we have, by (3.11),

0(Z,X,Y)=0(F,Z,X,Y).

Substituting M for M’, Z for Z', X for X’ and Y for Y’ in the right hand side
of (3.12), using Lemma 3.3.3 again, and also (3.11), we get:

s(M',ZNtoMm' -2 AX' + B'Y',C'X' + D'Y")
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=s(M,Z)"'0(M - Z,AX + BY,CX + DY)
— es(M,2)""0(M - Z, X "A + FY 'B, F-1X 'C + Y 'D)
—es(M,Z)"™0(F,M - Z,X'A+ FY 'B,F'X'C +Y 'D).

Here, ¢ depends only on M. The theorem is proven. O

3.4 The multiplier

In this section we compute the multiplier x (M) from Theorem 3.3.5 in the case
that m is even.

Lemma 3.4.1. Let m and n be positive integers, and assume that m is even.
Let F € Sym(m,Z)" be even, and let N be the level of F. Let x : To(N) — g
be as in Theorem 3.3.5. Then x is a character.

Proof. Let My, My € Tg(N). By Theorem 3.3.5, if Z € H,,, then:
X(MiM2)0(F, Z) = s(MiMa, Z)"™0(F, (M1 Mz) - Z)
= j(My My, Z)""20(F, My - (M5 - Z))
= §(My, My - Z)"™/%§(My, Z)~™/?
x X(My)s(My, Mz - Z)™0(F, M2 - Z)
= j(My, My - Z)"™/2§(My, Z)~™/?
X x(My)j(My, My - Z)™20(F, My - Z)
[(Ma, 2) 72X (M1)8(F, Ma - Z)
(Ma, Z)~™X(My)x(Mz)s(Ma, Z)™0(F, Z)
(Mg, Z)~™/x(My)x(Ma)j(Ms, Z2)™/*6(F, 2)
X(M1)x(M2)0(F, Z).
Since §(F,-) is not zero, we obtain x(M;Ms) = x(M;)x(M2). O

1
R

Lemma 3.4.2. Let m and n be positive integers. Assume that m is even. Let
F € Sym(m,R)*. Then

O(F, Z,X,Y) = det(F) ™"/ det(—iZ)"™/2(F~',—Z7'Y, - X)
for T € Sym(n,R)™ and X,Y € M(m,n,C).
Proof. Let k = mn. From the proof of Lemma 3.2.3 we have
0T, X', Y") = det(T")"/20(—(T") "1, V', —X") (3.13)

for T" € Sym(k,R)* and X', Y’ € M(k,1,C). Let T € Sym(n,R)" and X,Y €
M(m,n,C). To prove the lemma we will substitute 7" = F ® T, X’ = X and
Y=Y in (3.13). Now

O(i(FRT),X,Y)=0(F2il,X,Y)



124 CHAPTER 3. CLASSICAL THETA SERIES ON Hy

=0T, X,Y)
=0(F,iT, X,Y). (use Lemma 3.3.4)
And
O(—(i(FeT)™"Y,-X)
=0(F'® (- G0™),Y,-X)
=0(F ', —(T)™',Y,-X).  (use Lemma 3.3.4 with F~1)
Finally,

det(F @ T) = det(F)" det(T)™.
The equality (3.13) now implies that
O(F,iT, X,Y) = det(F)~"/? det(T)"™/20(F~, —(iT)"",Y, - X),
or equivalently,
O(F,iT, X,Y) = det(F)~"/2 det((—4)iT) "™/ ?0(F~*, —(iT) ™', Y, - X).
The assertion of the lemma follows now from Lemma 1.10.5. O

Lemma 3.4.3. Let m and n be positive integers. Let M, N € M(m,n,C),
E € Sym(n,C), and F € Sym(m,C). Then

tr(E ‘MFN) = tr(E‘NFM).
Proof. Let E = (e;5), M = [My---M,)], and N = [Ny, --- M,]. We have

€11 cct €1n t1\4-11:’]\71 tMlFNn
tr(E'MFN) = tr(| : : : : )
eni - emnl| |'M,FNy --- *M,FN,

7,

>3 e
Z:L:JZ i 'N.F M,

‘NyFM; - ‘NyFM,

‘N, FMy -+ ‘N,FM,
=tr(F ‘NF M).
This completes the proof. O

Lemma 3.4.4. Let m and n be positive integers, and let F € Sym(m,R)". Let
R € M(m,n,R). Then tr(F[R]) > 0, and tr(F[R]) = 0 if and only if R = 0.
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Proof. Write R = [Ry -+ R,]. Then

o
tr(FIR) =tr(| : | F[R R,))
tRn
T
=tr(| : | [FR FR,])
t R,
[‘R1F R, ‘RiFR,
= tr( : : )
'R, FR, ‘R, FR,

= ZF[R,-].

Since F' is positive-definite, we have F[R;] > 0 for 1 < ¢ < n. It follows that
tr(F[R]) > 0. Assume that tr(F[R]) = 0. Then F[R;] =0 for 1 <1i < n. Since
F is positive-definite, Ry = --- = R, = 0. O

Lemma 3.4.5. Let m and n be positive integers. Let F' € Sym(m,Z) be even.
IfW e M(n,Z) and N € M(m,n,Z), then tr(WF[N]) = tr(F[N]W) is an even
integer.

Proof. Write W = (w;;) and N = [Ny --- N,]. Then

wir o win] ["NyENy -+ °NyFN,
tr(WF[N]) = tr(| : : : : )
W1 Wan| |'N,FN; -+ °N,FN,
=>_ > wij ‘N;FN;
i=1 j=1

= Z Wij thFNi+Zwii tNiFNi
i,je{1,...,n}, i—1
i#£]

i,5€{1,...,n}, i=1
i<j
=0 (mod 2)
because F' is an even integral symmetric matrix (see Lemma 1.5.1). O

Lemma 3.4.6. For every positive integer £, let

fo:M(m,n,Z) — C
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be a function, and assume that the limit imy_,o fo(N) exists for every N €
M(m,n,C). Define f: M(m,n,Z) — C by
f(N) = lim f,(N)
£— 00
for N € M(m,n,Z). Suppose that g : M(m,n,Z) — Rxq is a function such that
[fe(N) < g(N)
for every £ € Z" and N € M(m,n,Z), and Y NeM(mon,z) 9(IV) converges. Then
Z f(N) and Z fe(N)  for e Z*
NeM(m,n,Z) NeM(m,n,Z)

converge absolutely, and

im Y fuN)= Y f(N)

{— 00
NeM(m,n,Z) NeM(m,n,Z)

Proof. This is an application of Lebesgue’s dominated convergence theorem (see
the theorem on p. 26 of [24]). O

Lemma 3.4.7. Letm and n be positive integers, and assume that m is even. Let
F € Sym(m,Z)" be even, and let N be the level of F. Let M = [A B] € To(N).
Assume that D is invertible, and let d be a non-zero integer such that dD~"' is
integral. Let x(M) be as in Theorem 3.3.5. Then

X(M) = d~"" det(D)™/? > exp (mitr(BD~'F[R])).
ReM(m,n,Z/dZ)

Proof. For every positive integer ¢, we define
T,=0"1,.
Evidently, T, € Sym(n,R)™ for £ € Z*. Let £ € Z™. By Theorem 3.3.5
x(M)O(F,Z,X,Y)

=s(M,Z)"™0(F,M - Z,X'A+ FY 'B,F'X'C+Y 'D) (3.14)

for Z € H,, and X,Y € M(m,n,C). Since m is even, we have
s(M,Z)™™ = det(CZ 4+ D)~™/?
for Z € H,,. Let Z =iT, and X =Y =0 in (3.14), we obtain
X(M)O(F,iTy) = det(iCT, + D)~™/20(F, M - iTy) (3.15)

where we write §(F, Z) = 0(F, Z,0,0) for Z € H,,. Multiplying this equation by
det(T,)™/?, we obtain:
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det(T,)™ 2 x(M)O(F,iT})
= det(Ty)™/? det(iCT, + D)™/ 20(F, M -iT,). (3.16)

To prove the lemma we will determine the limits of both sides of (3.16) as
¢ — oo. Using Lemma 3.4.2, the left-hand side of (3.16) can be computed as:

LHS of (3.16) = det(T,)™?x(M)0(F,iTy)
= det(T})™/?x (M) det(F)~"/2 det(T,)~™/20(F ", —(iT,)™")
= X(M) det(F)""/20(F~", —(iT,)7").

We claim that
lim O(F~', —(iT,) ') = 1. (3.17)

{—00

To prove this, we first note that

OF ', —(iT)™" )= > exp (mite(—(iTy) " F~'[R]))
ReM(m,n,Z)
= Z exp ( — mltr(F~'[R])).
ReM(m,n,Z)

Since F~! is positive-definite, it follows that for R € M(m,n,Z) we have
tr(F~Y[R]) > 0 with tr(F~![R]) = 0 if and only if R = 0 (see Lemma 3.4.4). It
follows that
0 ifR#0
li — nttr(F~YR])) = ’
Jim exp (= mlox(FHR]) {1 if R=0.
We also have
|exp (— mltr(F~1[R]))| = exp ( — wltr(F[R])) < exp ( — ntr(F~'[R]))

for R € M(m,n,Z), and the series

Z exp (— wtr(F~[R]))

ReM(m,n,Z)

converges absolutely by Proposition 3.1.8 (with A = F~1, Z = il,, and X =
Y =0). Lemma 3.4.6 now implies that

lim O(F~, —(iT,)™") = lim > exp(—wltr(F'[R]))

{— 00 {— 00
ReM(m,n,Z)

= Z lim exp ( — mltr(F~'R]))

£— 00
ReM(m,n,Z)

5 0 if R#0,
1 ifR=0

ReM(m,n,Z)

=1.
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It follows that
Jim LHS of (3.16) = x(M) det(F)~"/2, (3.18)
— 00

We now consider the right-hand side of (3.16). We first rewrite M - iTp. Let
Z € H,,, and define
W ="'D"'z(CZ+ D).

We claim that
M-Z=BD '+ W. (3.19)

To see this, we calculate:

BD '+ W =BD'+'D'z(CZ+ D)™*
= (BD"YCZ + D)+ 'D'2)(CZ + D)}
=(BD'CZ+B+"'D"'2)(CZ+ D)™*
(BD™'C+'D™HZ+B)(CZ+ D)™ !
(BD™'C'D+1)'D"'Z + B)(CZ + D)~
((
(
(

BD7'D'C+1)'D'Z+ B)(CZ+ D)™}
(B'C+1)'D7'Z + B)(CZ + D)™ *
=(A'D'D'Z+B)(CZ+ D)}
= (AZ+ B)(CZ + D)}
=M-Z.

In this calculation we used Lemma 1.9.2. We now define
T; = "D, (C(iTy) + D) "
Multiplying by %, we obtain
iTy = ‘D7(iT,)(C(iTy) + D)~ .
By the general identity (3.19) we have
M -iT, = BD™' 44T}.

Since BD~! € Sym(n,R) by Lemma 1.9.2, and since M -iT; € H,,, it follows
that 7, € H,,. We now have:

O(F,M-iTy)= Y exp (rwite((M -iT;)F[R]))
ReM(m,n,Z)
= Y exp(rite((BD™' +iT})F[R)))
ReM(m,n,Z)

= > > exp(mite((BD™' +4Ty)F[R + NJ))
ReM(m,n,Z/dZ) NedM(m,n,Z)
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= > > exp (mitr((BD™' +iT})F[R + dN]))
ReM(m,n,Z/dZ) NeM(m,n,Z)
= Z Z exp (mitr(BD™' +4T})

ReM(m,n,Z/dZ) NeM(m,n,Z)
x (FIR]+d'NFR+d'RFN + d’F[N))))
> > exp (nitr(BD™'F[R]) — mtx(T{ F[R]))
ReM(m,n,Z/dZ) NEM(m,n,Z)
x exp ( — wdtr(T) ‘NFR) — wdtr(T) ‘RFN) — nd*tr(T,;F[N)))
x exp (mitr(BdD ™' ('NFR + 'RFN)) exp (ridtr(BdD ™' F[N]))
> > exp (nitr(BD™'F[R]) — mtx(T{ F[R]))
ReM(m,n,Z/dZ) NEM(m,n,Z)
x exp ( — 2mdtr(T) ‘NFR) — wd*tr(T,; F[N)))
X exp (27ritr(BdD_1(tNFR)) exp (midtr(BdD ™' F[N]))
> > exp (nitr(BD7'F[R]) — mtx(T{ F[R]))
ReM(m,n,Z/dZ) NEM(m,n,Z)
x exp ( — 2mdtr(T, ‘NFR) — nd*tr(T; F[N)))
x exp (midtr(BdD ™' F[N])).

For the last two equalities we used Lemma 3.4.3, along with the fact that the
matrix BdD~! is integral (by the definition of d) and symmetric (by Lemma
1.9.2). By Lemma 3.4.5 we also have exp (widtr(BdD~*F[N])) = 1. Hence,

O(F, M -iT,) = > > exp (witr(BD™' F[R]) — ntr(T;F[R]))
ReM(m,n,Z/dZ) NeM(m,n,Z)
x exp ( — 2ndtr(T; ‘NFR) — nd*tx(T,;F[N)))
> exp (mitr(BD ™' F[R]) — wtr(T/F[R]))
ReM(m,n,Z/dZ)
> exp (- 2ndtr(T] ‘NFR) — nd’tx(T;F[N]))
NeM(m,n,Z)
= > exp (mitt(BD'F[R]) — ntr(T, F[R]))
ReM(m,n,Z/dZ)
> exp (mitr(id’T;F[N]) + 2ritr(‘"NdFR(iT})))
NeM(m,n,Z)
= > exp (mitt(BD'F(R]) — ntr(T,F|[R]))
ReM(m,n,Z/d7Z)
x O(F,id*T,,dFR(iT}),0)
O(F, M -iT,) = > exp (mitt(BD'F[R]))
ReM(m,n,Z/dZ)
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exp ( — mtr(T)F[R)))0(F,id*T;, dF R(iT}), 0). (3.20)
Let R € M(m,n,Z). By Lemma 3.4.2 we have:

O(F,id*T,,dF R(iT}),0)
= det(F) ™™/ det(d*T))"™/20(F ', —(id®T}) 1,0, —dFR(iT})). (3.21)

Now

O(F~', —(id*T))~*,0, —dF R(iT}))
— Z exp (mitr(—(id*T}) "' F~'[N + dFR(iT})))).
NeM(m,n,Z)

Let N € M(m,n,Z). Then

exp (witr(—(id*T;) "' F '[N + dFR(iT})]))
=exp (—md” 2tr T,V (N + dFRiT)F~Y(N + dF RiT})))
= exp (— nd 2te(T; (‘N + diT} ‘RF)(F~'N + diRT})))
=exp (— nd " *tr((T;"* 'N +di '‘RF)(F~'N + diRT})))
= exp (— nd 2tr(T; ' F~'[N] + diT,' ‘NRT] + di ‘RN — d* 'RFRT}))
=exp (— md *tr(T; ' F[N])) exp ( — 2mid~"tr("RN))
x exp (mtr(T,F[R]))
exp (— md~2tx((CiTy + D)T, ' 'DF'[N])) exp ( — 2mid~'tr(‘RN))
x exp (mtr(T; F[R]))
=exp (— wd *tr({(it"*C + D) tDF_l[N})) exp (— 2m’d_1tr(tRN))
x exp (mtr(T,F[R]))
exp (— mid2tr(C "DF~*[N])) exp ( — md~*¢tx(D "DF ' [N]))
x exp (— 2mid~'tr(‘RN)) exp (tr(TF[R)))
= exp ( — mid " *tr(C tDF_l[N])) exp ( — nd ™ *tr(F'[ND]))
x exp (— 2mid~'tr(‘RN)) exp (rtr(T}F[R))).

It follows that

exp (— wtr(T,F[R)))0(F ', —(id*T;)~",0, —dF R(iT})) (3.22)
= Z exp (— wid *tr(C tDF_l[N]))
NeM(m,n,Z)

x exp ( — 2mid~"tr("RN)) exp ( — md " 20tr(F~'[ND])).  (3.23)
We claim that

Jim exp (= mte(T;F[R))O(F ', —(id°T))~",0,—dFR(iT})) = 1.  (3.24)
—00
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To prove this we use (3.23) and Lemma 3.4.6. Since F'~! is positive-definite we
have, for N € M(m,n,Z), tr(F~'[ND]) > 0, and tr(F~*[ND]) = 0 if and only
if ND = 0, that is, if and only N = 0 (see Lemma 3.4.4. This implies that for
N e M(m,n,Z),

hm exp ( — mid~*tr(C tDF*I[N]))

£—00

x exp ( — 2mid~"tr("RN)) exp ( — md~20tr(F '[N D]))

= exp ( — mid"*tr(C 'DF~'[N])) exp ( — 2mid'tr(‘RN)) (3.25)
X Zli}rgo exp ( — nd™tr(F'[NDJ))
_ {1 N =0, (3.26)
0 if N#O0.

We also have

lexp (— mid " *tr(C tDF_l[N})) exp (— 27rid_1tr(tRN))

x exp (— md 2 ltr(F ))
< exp ( — md 2 0tr(F ))
Sexp(—ﬁd 2tr ),

and the series

Z exp ( — md”*tr(F~'[ND]))

NeM(m,n,Z)
converges by Proposition 3.1.8. We now may apply Lemma 3.4.6 and conclude
that (3.24) holds. Going back, we have
RHS of (3.16) = det(T})™? det(iCT; + D)"™/20(F, M -iT})
= det(T;)™/? det(iCT; + D)~™/2 det(F) ™2 det(d*T})~™/?
Z exp (mitr(BD™'F[R]))
ReM(m,n,Z/dZ)
exp (— mtr(T,F[R))0(F ", —(id*T}) "', 0, —dF R(iT}))
= det(F)~™/2d=™" det(iCTy + D)~™/? det(T,T,~*)™/?
Z exp (mitr(BD™'F[R]))
ReM(m,n,Z/dZ)
exp (— mtr(T,F[R)))0(F ", —(id*T}) "', 0, —dF R(iT}))
= det(F)™"/2d=™" det(il~*C 4+ D)""™/? det((i¢"*C + D) *D)"™/?
Z exp (mitr(BD™'F[R]))
ReM(m,n,Z/dZ)
exp (— mtr(T,F[R))0(F ", —(id*T}) "', 0, —dF R(iT}))
= det(F)~"/2d=™" det(D)™/?
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> exp (mitt(BD™'F([R]))
ReM(m,n,Z/dZ)

exp (— mtr(T,F[R))0(F ", —(id*T;) ™", 0, —dF R(iT})).
By (3.26) we now have
lim RHS of (3.16)
£— 00

= det(F)~"/2d=™" det(D)"™/? > exp (mitt(BD'F[R])). (3.27)
ReM(m,n,Z/dZ)

A comparison of (3.18) and (3.27) completes the proof. O

Let n and N be positive integers. We have the subgroup I'o(N) of Sp(2n, Z).
Sometimes, to indicate the dependence of I'o(N) we will write Fg") (N) for

['o(N). Let K be the subgroup of I‘é”)(N) generated by the matrices of the
form

-1

U} , U € SL(n,Z), (3.28)
1 ﬂ . SeSym(n,2), (3.29)
111 J , T € Sym(n,Z) and T =0 (mod N). (3.30)

Let My, M5 € Fén)(N). We will say that M; and My are equivalent, and write
My ~ My, if there exist k1, ko € K such that kyMiks = M,. Clearly, ~ is an
equivalence relation on I'y" (V).

Lemma 3.4.8. Let n and N be positive integers with N > 1. Let k € K. Then
x(k) = 1.

Proof. Since x is a character by Lemma 3.4.1, we may assume that k is of the
form (3.28), (3.29), or (3.30). We now use the formula from Lemma 3.4.7 to
conclude that y(k) = 1. O

Lemma 3.4.9. Let n and N be positive integers with N > 1. Let

Ay Bl:| M2:{A2 By

Ml:[cl D C, D,

} € To(N) C Sp(2n,Z).

If My ~ My, then det(D;) = det(D2) (mod N).

Proof. Let g be one of the generators for K, so that g is of the form (3.28),
(3.29), or (3.30). It suffices to verify that if gM; = My or Mg = M, then
det(D;) = det(D2) (mod N). This follows by direct computations. O
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Lemma 3.4.10. Let n and N be positive integers with N > 1. Let M €
an)(N). Then M is equivalent to

1

(3.31)

for some [2 4] € M (v).

Proof. We will prove the lemma by induction on n. If n = 1, the lemma is
trivially true. Assume that n > 2 and that the lemma hold for n — 1; we will
prove that it holds for n.
We will first prove the following claim: The element M is equivalent to an
element of the form
A B
e

where D has the form

1

da
. dolds, ..., dp_yldy. (3.32)

dn

To begin the proof of the claim, let M = [4 B]. Since N > 1 and ‘AD—"CB = 1
(see Lemma 1.9.2), we have "AD =1 (mod N); this implies that D is non-zero.
By the theorem on elementary divisors, Theorem 1.12.1, there exist g1,92 €
SL(n,Z), and positive integers dy, ..., d, such that

di|da, dol|ds, ..., dn,|dn

and
dy
da
g1Dga =

dn

Moreover, d; is the greatest common divisor of the entries of D. It follows that

[tgl_l }M [t92—1 } _ |:A1 Bl:|
g1 92 Cy Dy
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where
dy
D, =
dn
Since
t 1 t —1
[91 } 7 [92 ] cK
g1 g2
we have N
1 B
M~ { & DJ |

By Lemma 1.9.2 we have A, ‘D, — B, 'Cy = 1. Taking the transpose of this
equation, and letting A; = (a;5), B1 = (bi;), C1 = (¢i;), we obtain:

1=D; A, —C, 'By

dy aixz 0 Gl €11 - Cin bin - bna
dn, Aip  *°° Qpn Cn1 ** Cpn bin -+ bpn
_|dia11 —ci1bin — - —cipbin  *
* %
Thus,
1= d1a11 — 011b11 — e — Clnbln- (333)
This equation implies that one of ¢11, ..., ¢y, is non-zero; let ¢ be their common

divisor. Equation (3.33) also implies that d; and ¢ are relatively prime. Let
S1,---,8p be integers such that

¢ =cC1181 + -+ CipSn.

Define S € Sym(n,Z) by

S1
S1 So “e Sn
S = ,
Sn
and define
A2 BQ o Al Bl 1 S
Cy Do| |Ci Dy 1
Since S
1
[ 1] €K
we have

Al Bl A2 BQ
Cl D1 02 D2 '
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Moreover,
A2 BQ o A1 AlS + Bl
CQ D2 o Cl 015 + Dl
with
Dy = C1S+ D,
[d, fcin -+ e s i; s,
= +
L dn [Cn1 " Cnn Sn
. _dl + c1281 C >I<_
1 * * k|

Since d; and c are relatively prime, and c is the greatest common divisor of
€11,C12,- . ,Cln, it follows that di + ci2s1 and c¢ are relatively prime. As a
consequence of this, the greatest common divisor of the entries of Dy is 1. An
application of the theorem on elementary divisors to Dy similar to the first
application above then proves that

A2 By Ag Bg
02 Do 03 Dg

where D3 has the form (3.32); the key point is that the greatest common divisor
of the entries of Dy is 1. This proves the claim.

Thanks to the claim, we may assume that M = [4 B] with D having the
form (3.32). Define

—bii —bar -+ —bm —Ci1 —Ci2 -+ —Cin
—boy —C12
S = . and T =
_bnl —Cin
Let
Ay By |1 S|[A B||1
Cy Di| 1{|C D||T 1|°
Since
1 S 1
DA e
we have
A B A B
C D Ci Dy
Explicitly,

A, Byl [A+S8C+BT+SDT B+ SD
c, Dy|~ C+ DT D |
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By the choice of S and T and the fact that D as the form (3.32), the first column
of By is zero, and the first row of C is zero; of course, D1 = D, so that D; has
the form (3.32). By Lemma 1.9.2 we have ‘DiB; = '‘B1D; and C, "Dy = D, 'Cy.
Therefore, letting By = (b;5),

B L o
9 b%Q bl.n ] _b(1)2 dn(;nQ
0 dnéang dni)nn_ bm dnz:),m

This equality implies that the first row of B is also zero. Similarly, the first
column of C is zero, so that B; and C; have the form

0 0 0 0
Bl:[o BQ]’ Cl:[o CJ

for some By € M(n — 1,Z) and Co € NM(n — 1,Z). By Lemma 1.9.2 we have
1= A, 'D; — B; 'Cy. Writing this in terms of matrices, we find that A; has the

form
1 0
A = [0 AQ]
for some Az € M(n — 1,Z). Clearly, D; has the form
1 0
p=l p)

for some Dy € M(n — 1,Z). We now have

1 00 o
0 Ay |0 By
M~ 11 0
0 Cy |0 Dy

By Lemma 1.9.2, the matrix [é; gz] is contained in Sp(2(n — 1),Z); since

Cy =0 (mod N) we have

[Az By

(n—1)
Oy D2]6F0 (N).

Applying the induction hypothesis to [éj gz] now completes the proof. O
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Theorem 3.4.11. Let m and n be positive integers, and assume that m is
even. Let F € Sym(m,Z)" be even, and let N be the level of F. Let x :
To(N) — ug be as in Theorem 3.3.5. If N = 1, then x is the trivial character
of To(N) = Sp(2n,Z). Assume that N > 1. We recall from Lemma 1.5.4
that N divides det(F), and that det(F) and N have the same set of prime
divisors. Let A = A(F) = (—=1)™/2det(F) be the discriminant of F. Let (£)
be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo
det(F) by Proposition 1.4.2 and Lemma 1.5.2. Define xr : Z — C as in Lemma
2.7.7; by this lemma, xr is a Dirichlet character modulo N. The function x
takes values in {£1}, and the diagram

(Z/ det(A)Z)* (Z/NZ «— Ty(N)
{£1}
commutes. Here, the map To(N) — (Z/NZ)* is defined by [& B] — det(D).
Consequently,
A B A (—1)% det(F)
({C D]) (det(D)) - ( det(D) ) (3.34)

for [& Bl € To(N).

Proof. Assume first that N = 1. By Lemma 1.5.4 we have det(F) = 1. By
Theorem 3.3.5 we have

X(M)O(F, Z) = s(M, Z)"™0(F, M - Z) (3.35)
for M € Sp(2n,Z) and Z € H,,. In particular, for Z € H,,
1 10 o 1
|y owa s, oamen] L, 2
x( {_1 1} VO(F, Z) = det(—2Z)~™/20(F,—Z71). (3.36)
On the other hand, by Lemma 3.4.2 we have
O(F, Z) = det(—iZ) ™/ 29(F~', -2 1)

for Z € H,,. Now for Z € H,,,

9(F',2) > exp (wite(FT'[N]Z)

ReM(m,n,Z)

= Z exp (m’tr(tNFleZ)
ReM(m,n,Z)

= > exp(rite('NF'FF'NZ)
ReM(m,n,Z)
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= Y exp(nite(F'NF(F'N)Z)
ReM(m,n,Z)
= Z exp (m‘tr(tNFNZ))
ReM(m,n,Z)
= 0(F, 7).
Therefore,
O(F, Z) = det(—iZ)"™/?0(F, -2z~ ") (3.37)
for Z € H,,. Comparing (3.36) and (3.37), we obtain

N

By Proposition 2.5.1, m is divisible by 8. This implies that i~"*/2 = 1. Hence,

x([_1 1]) =1 (3.38)

Next, by (3.35), we have for Z € H,,,

| R | ] R R T e R

— i F ﬂ \Z)"™0(F, 7 + B)

—0(F,Z + B)

= Z exp (mitr(F[N](Z + B)))
ReM(m,n,Z)

= Z exp (witr(F[N]Z)) exp (witr(F[N]B))
ReM(m,n,Z)

= Z exp (ritr(F[N]Z))
ReM(m,n,Z)

=0(F,Z).

Here, the penultimate step follows from Lemma 3.4.5. It follows that

X( [l ﬂ) =L (3.39)

We now have x(M) =1 for all M € Sp(2n,Z) by Theorem 1.9.6.

Next, assume that N > 1. The commutativity of the left side of the diagram
was proven in Lemma 2.7.9. To prove the commutativity of right side of the
diagram, let
A B

M:{O D

} € ['o(N).
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By Lemma 3.4.10, M is equivalent to

1

M,

c d

for some [ 4] € F((jl)(N). By Lemma 3.4.8 we have x(M) = x(M;). Also, by

Lemma 3.4.9, we have det(D) = d (mod N). Define the function « : Fél)(N) —
C as in (2.19) and (2.20). We claim that

X0 =xom) =t

Assume first that d > 0. By Lemma 3.4.7,
x(M) = x (M) = d—mmntm/2 Z exp (mtr(bd_lF[Rn])),
ReM(m,n,Z/dZ)
where we write R = [Ry - -+ R,] for R € M(m,n,Z/dZ). Hence,

X (M) = g=mntm/zmn—m Z exp (mitr(bd™ " Flg]))
qEM(m,1,2/dZ)

— g2 Z exp (Witr(bd_lF[Q]))
qEM(m,1,Z/dZ)

:a([i Z]).

Assume next that d < 0. We have M7 = My Mjs, where

1

Mo
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and

—c —d

The formula from Lemma 3.4.7 implies that y(Ms) = (—1)™/2, and by an
argument as in the case d > 0, we have

Then

where the last step follows from the definition of « (see (2.20)). Next, by (2.22),
we have

a b
o[t oh =@,
where yp is the Dirichlet character mod N defined in Lemma 2.7.7. Since

det(D) = d (mod N), we obtain

x(M) = xr(det(D)).

This proves the commutativity of the right side of the diagram. Finally, by
Lemma 2.7.9 we have

xr(det(D)) = (M)

det(D)
This completes the proof. O

3.5 Spherical harmonics

Lemma 3.5.1. Let m and n be positive integers. Assume that 1 < n < m. Let
n € M(m,n,C) be such that

t

mm = 0.
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Let &0 for 1 <a <m and 1 < g < n be variables. Define & = ({up), and let
0 = (0/06up). Define
L = det('nd).

We have
L ( exp (mitr(P ‘€& +2'Q¢ + R)))
= det(2mi(P '€ + 'Q)n)" exp (mitr(P €€ +2'Q¢ + R))  (3.40)
for positive integers r, R € M(n,C), P € Sym(n,C), and @ € M(m,n,C).

Proof. Let a € {1,...,m} and 8 € {1,...,n}. We begin by proving

e (P 6€ +2'Q6) = 2(€P + Qs a1
élafﬁ@wP%5+2@®)o ify # (3.42)
¥ 7
0 0 if v #£ «

(3.43)

(@P+th={

3575 Pg(g = P(;g if Y= O

Write f = [fl e fn]; P = (PL]) and Q = (Q”) Then

Py PR 4]
tr(P ¢ +2'Q) = tr(| : : G e &)
P,y - P, tgn_
Qun - Qmi]| [&1 - &
+2 : ] : : ] )
Qin -+ Qmnl [&m1  &mn
Py P [G6 - G,
=tr(| : : : )
Pnl e Pnn t€n§1 to tﬁnﬁn]
Y Q& - *
con(| D
* e 2 Qinkin
Y P& * ]
= tr( : : )
* o Y0 Pag tn
Yoy Qi - *
+ 2tr( : : )
* o o Qinkin
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= Z Z-sz tgjgi Z Z mgij

i—1 j—1 ==
= ZZZPz’jﬁmﬁkj ZZ Qij&ij-
i=1 j=1 k=1 j=1i=1

It follows that:

O (ipiee ot
5 (P g +2'Q¢)

i=1 j=1k=1
n m a
j=1i=1 «
NN Pisbar itk =a, =5,
_ZZZ({ ’ 0 ifk;éaorj#ﬁ}
=1 j=1 k=1
+{ Pﬁjgaj ifk:a77;:B7 })
0 ifk#aori#p
n m a
+2ZZQ” (g’bj)
j=11i=1 08

2Pgglap ifk=0a,i=j=0p,
-3 vy Pgjlaj ifk=oa,i=p,7#P5,
: - Piﬁgai 1fk::a,27567]:6
0 ifk#aorpé¢{ij}

2Pgplap ifi=7=10,
-y Pgjka; ifi=p,j#8,
-Piﬁgozi lfl#ﬁ,]:ﬁ
0 B¢{ij}
2QaB

Z zﬁfaz + Z Pﬁjfaj + 2Qa/3

Jj=1

=2 Z St Pog +2Qap
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= 2(§P + Q)aﬂ'

This proves (3.41). Since we proved above that

8? p (tr(P €€ +2'Q8)) =2 Puglar +2Qup
“ =1

we also see that (3.42) holds. Finally, (3.43) follows from the identity

(EP+Q)ap = Y Prglar + Qap
(=1

which we have already noted.

Let I be the set of all n-tuples G = (g1, ..., 9n) where g1, ..., g, are integers
such that 1 < g1 < go <--- < gn, <m. Let G =(g1,...,9n) € I, and let X be
an m X n matrix with entries from some commutative ring R. Write

X
X=1:
Xm
where each X; € M(1,n, R). Then
Xgl
Xgn
is an n X n matrix, and we define
X.‘h
Xg=det(| - |).
Xg.,

By the Cauchy-Binet formula, we have
det("0) = Y neda.
Gel
We may further write, for G € I,
0 0
Fgotar)  Fguotan)’

Og = Z sign(o)

where o ranges over the permutations of the set {g1,...,¢,}. The differential
operator L is now given by the following formula:

L= Z e Z sign(o) o 0

Gel o 36910(91) 8€gna(gn) '
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It follows that:
L((exp (mitr(P '€ +2'Q¢ + R)))

=3 e Y sien(o)

Gel o

0 9 ' t t
8 9g10(q1) Oy, 0(am) (exp (mitr(P €€+ 2'Q¢ + R)))

= 2mi Z e Z sign(o 9

Gel o a£g10(91) 8§gn,_20(gn_2)

0 . t t
m ((SP + Q) g, (g, exp (mitr(P €6 +2'QE + R)))

where we have used (3.41). Next, taking into account that g,—1 # gn, using
(3.42), and also (3.41) again, we have by the product rule:

L(exp (mitr(P te+2'Qe+ R)))

(2mi) Z nG Z sign(o 85(]10 = e

Gel o

0
8€gn720(gn—2)

(6P + Qg sotn ) (EP + Q)00 exp (mite(P g€ +2'Q¢ + R)) ).

Continuing, we obtain:
L(exp (ritr(P 6 +2'Q¢ + R)))

(27i) ”anzmgn H EP 4+ Q)yg,0(q,)

Gel o
X exp (mtr(P €6 +2"Q¢ + R))
= (2m1)" exp (m'tr(P ‘ee +2'Q¢ + R))

x Y na Y sign(0) [TEP + Q)00

Gel o j=1
= (2mi)" exp (mitr(P €€+ 2'Q€ + R)) Y _ na(€P + Q)
Gel
= (2mi)" exp (mitr(P ‘€€ + 2'Q¢ + R)) det('n(EP + Q))
= det(2mi ‘(EP + Q)) exp (mitr(P €€ + 2 Q¢ + R))
= det(2mi(P ¢ + 'Q)n) exp (mwitr(P €€ + 2 Q¢ + R)).

This proves (3.40) in the case r = 1. To prove that (3.40) holds for all positive
integers 7 it will suffice to prove that if f : M(m, n,C) — C is a smooth function,
then

L(det((P '€ +'Qm)f(©)) = det(P '€+ 'QmL(f(€)).  (3.44)
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We first assert that if 8,v,u, A € {1,...,n}, then

() _mi
; 585” 0

To see this, we calculate as follows:

m

(EP+ Q)eunen) = 0. (3.45)
1

m

Zmﬁ 76 (D (6P + Q)epmen) ZZ MiBTA 77— 657 ((EP+Q)ey)
=1 10=1 v

3

= Z nigNexPy, (by (3.43))

i=1

=Py, Z niB7ix
i=1
w(tm?)m
=0
because tnn = 0 by assumption. We may write L as:
L = det(‘nd)
= Z sign(a)(tna)g(l)l e (tn(‘))g(n)n

gESy

Z sign(o H 778 o ()i

gESy

Z Sign HZ w(g) ag

gESy j=1

We will apply this expression for L to det((P '€+ ‘Q)n) f(£). To do this, we note
first that det((P ¢ 4+ ‘Q)n) is a sum of products of terms of the form

D (P + Q)eunen
=1

for A\, p € {1,...,n}. By (3.45), any such term is annihilated by

for any 8,7 € {1,...,n}. By this fact, and the product rule, we have

(3ot ) (det(P e+ Q1 (€)
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= det((P ¢+ 'Q)ny (an(j 5, ) f(9).

We now find that
L(det((P QM)

=det((P'¢+'Q)n) > sign(a) ([ D miows asw 7&)

o€S, j=11i=1
= det((P ¢ + Q) L(f(£))-
This proves (3.44), and thus completes the proof. O

Let m and n be positive integers, let  be a non-negative integer, and let
F € Sym(m,R)*. For r a non-negative integer, we let H,. ,(F') be the C vector
space spanned by the polynomials

det(*XF¢)"
where X is an m X n matrix of variables, and ¢ € M(m,n,C) is such that
‘CF¢ =0.

We refer to the elements of H,. ,(F’) as spherical functions of degree n and weight
r with respect to F'.

Lemma 3.5.2. Let m andn be positive integers, let r be a non-negative integer,
and let F' € Sym(m,R)*. If n > m, then H,,(F) =0.

Proof. Assume that m > n. Let ¢ € M(m,n,C) be such that 'CF¢ = 0. It will
suffice to prove that the function M(m,n,C) — C defined by X + det(‘X F¢)"
is identically zero. Let X € M(m,n,C). The product X F( is the matrix of the

composition
t

X
cr S Lo e
Since n > m, the first operator in the composition is has a non-trivial ker-
nel; hence, the composition also has a non-trivial kernel. This implies that
det(*XF¢) = 0. 0

Theorem 3.5.3. Let m and n be positive inters, let r be a non-negative integer,
and let F' € Sym(m,Z)" be even. Let ® € H, ,(F). For Z € H,, define

O(F,Z,®) = > ®(N)exp (mitr(ZF[N])).
M(m,n,Z)

If D is a product of closed disks in C such that D C H,,, then the series O(F, Z, )
converges absolutely and uniformly on D. The resulting function on H, is an-
alytic in each complexr variable, and satisfies the equation

det(CZ + D) "s(M,Z)"™0(F,M - Z,®) = x(M)0(F, Z, D)

for Z € H,, and M = [& B] € To(N). Here, x : I'o(N) — ps is as in Theorem
3.3.5.



3.5. SPHERICAL HARMONICS 147

Proof. By Lemma 3.5.2 we may assume that m > n. We may also assume
that ®(X) = det("XF¢)" for some ¢ € M(m,n,C) such that ‘CF¢ = 0. Let
E € Sym(m,R)*t be such that E2 = F. Define n = EC. Then ‘ny = CE*¢ =
‘CF¢ = 0. Also,

O(X) = det("XF¢)"

= det("XFE ')
®(X) = det("XEn). (3.46)

By Theorem 3.3.5 we have
O(F,M-Z, XA+ FY 'B,F~'X'C +Y 'D)
= x(M)s(M, Z)™0(F, Z,X,Y)

] € To(N). Let £ € M(m,n,C)
and M = [4 B] € T'o(N). Letting X = 0 and Y = E~!¢ in the last equation

yields

for X,Y € M(m,n,C), Z € H,, and M = [4 B
A d
c

O(F,M - Z, E¢ ‘B, E~¢ ‘D) = x(M)s(M, Z)™0(F, Z,0, E~1¢). (3.47)
We consider each side of this equation. First of all,

O(F,M - Z,E¢ ‘B, E~'¢ 'D)

= Y exp(mitr((M-Z)FIN — E7'¢'D))
NeM(m,n,Z)
+ 2ritr(‘NE€ 'B) — mitr((B¢ ‘B)E~1¢ 'D))

= Y exp(mitr((M-Z)FIN — E7'¢'D))
NeM(m,n,Z)
+2tr("NE¢ 'B) — tr(B '¢¢ *D))

= > exp(ritr((M-2) (N - ET'¢'D)F(N — E'¢ D))
NeM(m,n,Z)
+ 2ritr("N E€ 'B) — mitr(B €€ ‘D))

= Y exp(mite(M-Z)('NFN — 'NE¢'D — D'€EN + D '¢¢'D))
NeM(m,n,Z)
+ 2ritr("N E€ 'B) — mitr(B €€ ‘D))

= Z exp (mitr((M - Z)D ‘¢ 'D) — mitr(B ‘¢ 'D)
NeM(m,n,Z)
— witr(M - Z) *"NE€E 'D) — witr((M - Z)D '€EN) + 2rnitr(‘NE¢ 'B)
+ mitr(M - Z) 'NFN))

= Y exp(mite("D(M - Z)D "¢¢) — mitr("DB '¢€)
NeM(m,n,Z)
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— mitr(*D(M - Z) ‘N E¢) — witr (‘N E¢ *D(M - Z)) + 2ritr(‘B *N E€)
+ mitr(M - Z) 'NFN))

= Y exp(mitr(("D((M - Z)D — B) '€¢)
NeM(m,n,Z)
—nitr(*D(M - Z) "NE¢€) — nitr(*D(M - Z) "N E€) + 2mitr(‘B *N E€)
+ 7itr(M - Z) 'NFN))

= > exp(rite(("D((M - Z)D - B) ¢€)

NeM(m,n,Z)
—2ritr((*D(M - Z) — 'B) "N E€) + mitr((M - Z) 'NFN)).
Now
‘D(M - Z)D - B)="D(M - Z)D — ‘DB
='D(AZ+ B)(CZ +D)"'D - ‘BD
= ('D(AZ + B)(CZ+ D)™ - 'B)D
= ('D(AZ + B) - '‘B(CZ + D))(CZ +D)™'D
= (‘DAZ +'DB - 'BCZ — 'BD)(CZ + D)™ 'D
= ((‘DA-"BC)Z +'DB - 'BD)(CZ + D)™'D
=Z(CZ+ D)™'D.
We also note that Z(CZ + D)~'D is symmetric because it is equal to the
symmetric matrix ‘D(M - Z)D — ‘DB. And
‘DM -Z)—"'B="D(AZ +B)(CZ+D)™' -'B
= ('D(AZ + B) - '‘B(CZ + D))(CZ + D)™*
= ('DAZ +'DB - 'BCZ — 'BD)(CZ + D)™*
=Z(CZ+ D).

It follows that
O(F,M - Z,E¢ ‘B, E~'¢ 'D)

= Y exp(mite(Z(CZ+D)"'D'¢)

NeM(m,n,Z)

—2mitr(Z(CZ + D)~ 'NE€) + mitr(M - Z) 'NFN))
Z exp (witr(Z(CZ + D)™'D fee

NeM(m,n,Z)

—2Z(CZ+ D) ''NE¢+ (M - Z) 'NFN)).

Next,

0(F,Z,0,E~1¢)
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= Y exp(mitr(ZF[N — E7'¢)))
NeM(m,n,Z)
= > exp(mitr(2'¢— Z'NE¢ - Z'¢EN + Z'NFN))
NeM(m,n,Z)
= Z exp (ritr(Z '€€) — mitr(Z "N E€) — wite(Z €EN)
NeM(m,n,Z)
+ 7itr(Z ‘NFN))
= Z exp (ritr(Z '¢€) — mitr(Z "N E€) — mitr(‘CEN Z)
NeM(m,n,Z)
+ 7itr(Z ‘NFN))
= Z exp (mitr(Z '€€) — mitr(Z "N E€) — witr(Z *N E€)
NeM(m,n,Z)
+ 7itr(Z ‘NFN))
= > exp(mitr(Z'¢—2Z'NES+ Z'NFN)).
NeM(m,n,Z)
We will now apply the differential operator L" from Lemma 3.5.1 to both sides
of (3.47). Because of the convergence properties of Proposition 3.1.8 we may

exchange differentiation and summation (see p. 162 of [17]). By Lemma 3.5.1
we have

L (H(F, M. Z E¢'B,E'¢ tD))

= Z L ( exp (mitr(Z(CZ + D)™'D'%¢
NeM(m,n,Z)
—22(CZ + D)~  'NE¢ + (M - Z) tNFN)))

= > det(2mi(Z(CZ+D)"'D'¢ - Z(CZ + D)~ 'NE)n)"
NeM(m,n,Z)
x exp (mitr(Z(CZ + D)~'D '¢¢
—2Z(CZ+ D) ' 'NE¢+ (M - Z) 'NFN)).

Evaluating at £ = 0, we get

L7 (6(F, M - 2, B¢ ‘B, B¢ D) ) |e—o

= Y det(2mi(-Z(CZ+ D)~ 'NE)p)"
NeM(m,n,Z)
x exp (mitr((M - Z) ‘NFN))
=det(-2miZ(CZ+D)~")" > det('NEn)"
NeM(m,n,Z)
x exp (mitr((M - Z)F[N])).
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And
L7 (6(F.2,0,E7¢))
- ¥ LT(eXp (ritr(Z '¢¢ — 22 'NE¢ + Z tNFN)))
NeM(m,n,Z)

= ) det(2mi(Z'¢— Z'NE))"
NeM(m,n,Z)

x exp (mitr(Z '¢¢ — 2Z 'NE¢ + Z 'NFN)).

Evaluating at & = 0, we obtain:

L (o(F, 7,0, E’lﬁ)) le—o

= Z det(27i(—Z ‘N E)n)" exp (mitr(Z tNFN))
NeM(m,n,Z)
= det(—2miZ)" Z det(*NEn)" exp (mitr(ZF[N])).
NeM(m,n,Z)

By (3.47) we now have
det(—2miZ(CZ+ D))" > det('NEn)" exp (witr((M - Z)F[N]))
NeM(m,n,Z)

= det(—2miZ)"x(M)s(M,Z)™ > det('NEn)" exp (witr(ZF[N]))
NeM(m,n,Z)

so that by (3.46),
> ®(N)exp (witr((M - Z)F[N]))
NeM(m,n,Z)

=X(M)det(CZ + D)'s(M,Z)™ > ®(N)exp (nitr(ZF[N])).
NeM(m,n,Z)

This proves the theorem. O
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Some tables

A.1 Tables of fundamental discriminants

—3=-3
—4=—4
—T=-7
—8=-8
—11=-11
—15=(=3)-5
~19=-19
—20=(—4)-5
—923 =23
—24 = (-3)-8
—31=-31

—35=(=T7)-5
—39=(-3)-13
—40 = (-8) -5
—43 = —43
—A7 = —47
—51=(-3)-17
—52=(—4)-13
—55=(—11)-5
—56 = (—7)-8
—59 = —59
—67 = —67

—68 = (—4)-17
—71=-T71

—79 = —179

—83=-83
—84=(—4)-(=3)- (-7
—87 = (—3)-29

—88 = (—11)-8

—91 = (-7)-13
—95=(-19)-5

Table A.1: Negative fundamental discriminants between —1 and —100, factored
into products of prime fundamental discriminants.
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1=1

5=1

8 =28

12 = (~4)(-3)
13=13
17=17

21 = (~3)(~7)
24— (—8)(=3)
28 = (—4)(~7)
29 =29

33 =33

Table A.2: Positive fundamental discriminants between 1 and 100, factored into

APPENDIX A. SOME TABLES

37 =37
40=8-5
41 =41

44 = (—4) - (-11)
53 = 53

56 = (=8) - (=7)
57 =57

60 = (—4)-(=3)-5
61 = 61

65 = (=8) - (=7)
69 = (—3)(—23)

products of prime fundamental discriminants.

73 =73
76 = (—4) - (—19)
77 = (=7) - (—11)
85=5-15

88 = (—8) - (—11)
89 = 89

92 = (—4) - (—23)
93 = (—3) - (—31)
97 =97
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