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Chapter 1

Background

1.1 Dirichlet characters

Let N be a positive integer. A Dirichlet character modulo N is a homomor-
phism

χ : (Z/NZ)× → C×.

If N is a positive integer and χ is a Dirichlet character modulo N , then we
associate to χ a function

Z −→ C,

also denoted by χ, by the formula

χ(a) =

{
χ(a+NZ) if (a,N) = 1,

0 if (a,N) > 1

for a ∈ Z. We refer to this function as the extension of χ to Z. It is easy to
verify that the following properties hold for the extension of χ to Z:

1. χ(1) = 1;

2. if a1, a2 ∈ Z, then χ(a1a2) = χ(a1)χ(a2);

3. if a ∈ Z and (a,N) > 1, then χ(a) = 0;

4. if a1, a2 ∈ Z and a1 ≡ a2 (mod N), then χ(a1) = χ(a2).

Let N be a positive integer, and let χ be a Dirichlet character modulo N .
We have χ(a)φ(N) = 1 for a ∈ Z with (a,N) = 1; in particular, χ(a) is a φ(N)-th
root of unity. Here, φ(N) is the number of integers a such that (a,N) = 1 and
1 ≤ a ≤ N .

If N = 1, then there exists exactly one Dirichlet character χ modulo N ; the
extension of χ to Z satisfies χ(a) = 1 for all a ∈ Z.

1



2 CHAPTER 1. BACKGROUND

Let N be a positive integer. The Dirichlet character η modulo N that sends
every element of (Z/NZ)× to 1 is called the principal character modulo N .
The extension of η to Z is given by

η(a) =

{
1 if (a,N) = 1,

0 if (a,N) > 1

for a ∈ Z.
Let f : Z → C be a function, let N be a positive integer, and let χ be a

Dirichlet character modulo N . We say that f corresponds to χ if f is the
extension of χ, i.e., f(a) = χ(a) for all a ∈ Z.

Let f : Z → C, and assume that there exists a positive integer N and a
Dirichlet character χ modulo N such that f corresponds to χ. Assume N > 1.
Then there exist infinitely many positive integers N ′ and Dirichlet characters χ′

modulo N ′ such that f corresponds to χ′. For example, let N ′ be any positive
integer such that N |N ′ and N ′ has the same prime divisors as N . Let χ′ be the
Dirichlet character modulo N ′ that is the composition

(Z/N ′Z)× −→ (Z/NZ)×
χ−→ C×,

where the first map is the natural surjective homomorphism. The extension
of χ′ to Z is the same as the extension of χ to Z, namely f . Thus, f also
corresponds to χ′.

Lemma 1.1.1. Let f : Z → C be a function and let N be a positive integer.
Assume that f satisifes the following conditions:

1. f(1) 6= 0;

2. if a1, a2 ∈ Z, then f(a1a2) = f(a1)f(a2);

3. if a ∈ Z and (a,N) > 1, then f(a) = 0;

4. if a ∈ Z, then f(a+N) = f(a).

There exists a unique Dirichlet character χ modulo N such that f corrsponds
to χ.

Proof. Assume that f satisfies 1, 2, 3, and 4. Since 1 = 1 · 1, we have f(1) =
f(1)f(1), so that f(1) = 1. Next, we claim that f(a1) = f(a2) for a1, a2 ∈ Z
with a1 ≡ a2 (mod N), or equivalently, if a ∈ Z and x ∈ Z then f(a + xN) =
f(a). Let a ∈ Z and x ∈ Z. Write x = εz, where ε ∈ {1,−1} and z is positive.
Then

f(a+ xN) = χ(ε(εa+ zN))

= f(ε)χ(εa+ zN)

= f(ε)χ(εa+N + · · ·+N︸ ︷︷ ︸
z

)
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= f(ε)χ(εa)

= f(a).

Now let a ∈ Z with (a,N) = 1; we assert that f(a) 6= 0. Since (a,N) = 1,
there exists b ∈ Z such that ab = 1 + kN for some k ∈ Z. We have 1 = f(1) =
f(1 + kN) = f(ab) = f(a)f(b). It follows that f(a) 6= 0. We now define a
function χ : (Z/NZ)× → C× by χ(a + NZ) = f(a) for a ∈ Z with (a,N) = 1.
By what we have already proven, α is a well-defined function. It is also clear
that χ is a homomorphism. Finally, it is evident that the extension of χ to Z is
f , so that f corresponds to χ. The uniqueness assertion is clear.

Let p be an odd prime. For m ∈ Z define the Legendre symbol by

(m
p

)
=

 0 if p divides m,
−1 if (m, p) = 1 and x2 ≡ m (mod p) has no solution x ∈ Z,

1 if (m, p) = 1 and x2 ≡ m (mod p) has a solution x ∈ Z.

The function
( ·
p

)
: Z→ C satisfies the conditions of Lemma 1.1.1 with N = p.

We will also denote the Dirichlet character modulo p to which
( ·
p

)
corresponds

by
( ·
p

)
. We note that

( ·
p

)
is real valued, i.e., takes values in {−1, 0, 1}.

Let β be a Dirichlet character modulo M . We can construct other Dirichlet
characters from β by forgetting information, as follows. Let N be a positive
multiple of M . Since M divides N , there is a natural surjective homomorphism

(Z/NZ)× −→ (Z/MZ)×,

and we can form the composition χ

(Z/NZ)× −→ (Z/MZ)×
β−→ C×.

Then χ is a Dirichlet character modulo N , and we say that χ is induced
from the Dirichlet character β modulo M . If N is a positive integer and χ is a
Dirichlet character modulo N , and χ is not induced from any Dirichlet character
β modulo M for a proper divisor M of N , then we say that χ is primitive.

Let N be a positive integer, and let χ be a Dirichlet character. Consider the
set of positive integers N1 such that N1|N and

χ(a) = 1

for a ∈ Z such that (a,N) = 1 and a ≡ 1 (mod N1). This set is non-empty
since it contains N ; we refer to the smallest such N1 as the conductor of χ
and denote it by f(χ).

Lemma 1.1.2. Let N be positive integer, and let χ be a Dirichlet character
modulo N . Let N1 be a positive integer such that N1|N and χ(a) = 1 for a ∈ Z
such that (a,N) = 1 and a ≡ 1 (mod N1). Then f(χ)|N1.
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Proof. We may assume that N > 1. Let M = gcd(f(χ), N1). We will prove
that χ(a) = 1 for a ∈ Z such that (a,N) = 1 and a ≡ 1 (mod M); by the
minimality of f(χ) this will imply that M = f(χ), so that f(χ)|N1. Let

N = pe11 · · · p
et
t

be the prime factorization of r(χ) into positive powers e1, . . . , et of the distinct
primes p1, . . . , pt. Also, write

f(χ) = p`11 · · · p
`t
t , N1 = pk1

1 · · · p
kt
t .

By definition,

M = p
min(`1,k1)
1 · · · pmin(`t,kt)

t .

Let a ∈ Z be such that (a,N) = 1 and a ≡ 1 (mod M). By the Chinese
remainder theorem, there exists an integer b such that

b ≡

{
1 (mod p`ii ) if `i ≥ ki,
a (mod pkii ) if `i < ki

for i ∈ {1, . . . , t}, and (b, r(χ)) = 1. Let c be an integer such that (c,N) = 1
and a ≡ bc (mod N). Evidently, b ≡ 1 (mod p`ii ) and c ≡ 1 (mod pkii ) for
i ∈ {1, . . . , t}, so that b ≡ 1 (mod f(χ)) and c ≡ 1 (mod N1). It follows that
χ(a) = χ(bc) = χ(b)χ(c) = 1.

Lemma 1.1.3. Let N be a positive integer, and let χ be a Dirichlet character
modulo N . Then χ is primitive if and only if f(χ) = N .

Proof. Assume that χ is primitive. By Lemma 1.1.2 f(χ) is a divisor of N . By
the definition of f(χ), the character χ is trivial on the kernel of the natural map

(Z/NZ)× −→ (Z/f(χ)Z)×.

This implies that χ factors through this map. Since χ is primitive, f(χ) is not
a proper divisor of N , so that f(χ) = N . The converse statement has a similar
proof.

Evidently, the conductor of
( ·
p

)
is also p, so that

( ·
p

)
is primitive.

Lemma 1.1.4. Let N1 and N2 be positive integers, and let χ1 and χ2 be Dirich-
let characters modulo N1 and N2, respectively. Let N be the least common mul-
tiple of N1 and N2. The function f : Z → C defined by f(a) = χ1(a)χ2(a) for
a ∈ Z corresponds to a unique Dirichlet χ character modulo N .

Proof. It is clear that f satisfies properties 1, 2 and 4 of Lemma 1.1.1. To see
that f satisfies property 3, assume that a ∈ Z and (a,N) > 1. We need to prove
that f(a) = 0. There exists a prime p such that p|a and p|N . Write a = pb for
some b ∈ Z. Since f(a) = f(p)f(b) it will suffice to prove that f(p) = 0, i.e,
χ1(p) = 0 or χ2(p) = 0. Since p|N , we have p|N1 or p|N2. This implies that
χ1(p) = 0 or χ2(p) = 0.
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Let the notation be as in Lemma 1.1.4. We refer to the Dirichlet character
χ modulo N as the product of χ1 and χ2, and we write χ1χ2 for χ.

Lemma 1.1.5. Let N1 and N2 be positive integers such that (N1, N2) = 1, and
let χ1 and χ2 be Dirichlet characters modulo N1 and modulo N2, respectively.
Let χ = χ1χ2, the product of χ1 and χ2; this is a Dirichlet character modulo
N = N1N2. The conductor of χ is f(χ) = f(χ1)f(χ2). Moreover, χ is primitive
if and only if χ1 and χ2 are primitive.

Proof. By Lemma 1.1.2 we have f(χ1)|N1 and f(χ2)|N2. Since N = N1N2,
we obtain f(χ1)f(χ2)|N . Assume that a ∈ Z is such that (a,N) = 1 and a ≡
1 (mod f(χ1)f(χ2)). Then (a,N1) = (a,N2) = 1, a ≡ 1 (mod f(χ1)), and a ≡
1 (mod f(χ2)). Therefore, χ1(a) = χ2(a) = 1, so that χ(a) = χ1(a)χ2(a) = 1.
By Lemma 1.1.2 it follows that we have f(χ)|f(χ1)f(χ2). Write f(χ) = M1M2

where M1 and M2 are relatively prime positive integers such that M1|f(χ1) and
M2|f(χ2). We need to prove that M1 = f(χ1) and M2 = f(χ2). Let a ∈ Z be
such that (a,N1) = 1 and a ≡ 1 (mod M1). By the Chinese remainder theorem,
there exists an integer b such that b ≡ a (mod M1), b ≡ 1 (mod f(χ2)), and
(b,N) = 1. Evidently, b ≡ 1 (mod f(χ)). Hence, 1 = χ(b) = χ1(b)χ2(b) =
χ1(a). By the minimality of f(χ1) we must now have M1 = f(χ1). Similarly,
M2 = f(χ2). The final assertion of the lemma is straightforward.

Lemma 1.1.6. Let p be an odd prime. The Legendre symbol
( ·
p

)
is the only

real valued primitive Dirichlet character modulo p. If e is a positive integer with
e > 1, then there exist no real valued primitive Dirichlet characters modulo pe.

Proof. We have already remarked that
( ·
p

)
is a real valued primitive Dirichlet

character modulo p. To prove the remaining assertions, let e be a positive
integer, and assume that χ is a real valued primitive Dirichlet character modulo
pe; we will prove that χ =

( ·
p

)
if e = 1 and obtain a contradiction if e > 1.

Consider (Z/peZ)×. It is known that this group is cyclic; let x ∈ Z be such that
(x, p) = 1 and x + peZ is a generator of (Z/peZ)×. Since χ has conductor pe,
and since x+ peZ is a generator of (Z/peZ)×, we must have χ(x) 6= 1. Since χ
is real valued we obtain χ(x) = −1. On the other hand, the function

( ·
p

)
is also

a real valued Dirichlet character modulo pe such that
(
a
p

)
= −1 for some a ∈ Z;

since x + peZ is a generator of (Z/peZ)×, this implies that
(
x
p

)
= −1, so that

χ(x) =
(
x
p

)
. Since x + peZ is a generator of (Z/peZ)× and χ(x) = −1 = χ′(x)

we must have χ =
( ·
p

)
. We see that if e = 1, then the Legendre symbol

( ·
p

)
is

the only real valued primitive Dirichlet character modulo p. Assume that e > 1.
It is easy to verify that the conductor of the Dirichlet character

( ·
p

)
modulo pe

is p; this is a contradiction since by Lemma 1.1.3 the conductor of χ is pe.

Lemma 1.1.7. There are no primitive characters modulo 2. There exists a
unique primitive Dirichlet character ε4 modulo 4 = 22 which is defined by

ε4(1) = 1,

ε4(3) = −1.
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There exist two primitive Dirichlet characters ε′8 and ε′′8 modulo 8 = 23 which
are defined by

ε′8(1) = 1,

ε′8(3) = −1,

ε′8(5) = −1,

ε′8(7) = 1,

and

ε′′8(1) = 1,

ε′′8(3) = 1,

ε′′8(5) = −1,

ε′′8(7) = −1.

There exist no real valued primitive Dirichlet characters modulo pe for e ≥ 4.

Proof. We have (Z/2Z)× = {1}. It follows that the unique Dirichlet character
modulo 2 has conductor conductor 1; by Lemma 1.1.3, this character is not
primitive.

We have (Z/4Z)× = {1, 3}. Hence, there exist two Dirichlet characters
modulo 4. The non-principal Dirichlet character modulo 4 is ε4; since ε4(1+2) =
−1, it follows that the conductor of ε4 is 4. By Lemma 1.1.3, ε4 is primitive.

We have
(Z/8Z)× = {1, 3, 5, 7} = {1, 3} × {1, 5}

The non-principal Dirichlet characters modulo 8 are ε′8, ε
′′
8 and ε′8ε

′′
8 . Since

ε′8(1 + 4) = ε′′8(1 + 4) = −1 we have f(ε′8) = f(ε′′8) = 8. Since (ε′8ε
′′
8)(1 + 4) = 1

we have f(ε′8ε
′′
8) = 4. Hence, by Lemma 1.1.3, ε′8 and ε′′8 are primitive, and ε′8ε

′′
8

is not primitive.
Finally, assume that e ≥ 4 and let χ be a real valued Dirichlet character

modulo pe. Let n ∈ Z be such that (n, 2) = 1 and n ≡ 1 (mod 8). It is known
that there exists a ∈ Z such that n ≡ a2 (mod pe). We obtain χ(n) = χ(a2) =
χ(a)2 = 1 because χ(a) = ±1 (since χ is real valued). By Lemma 1.1.2 the
conductor f(χ) divides 8. By Lemma 1.1.3, χ is not primitive.

1.2 Fundamental discriminants

Let D be a non-zero integer. We say that D is a fundamental discriminant
if

D ≡ 1 (mod 4) and D is square-free,

or

D ≡ 0 (mod 4), D/4 is square-free, and D/4 ≡ 2 or 3 (mod 4).

We say that D is a prime fundamental discriminant if

D = −8 or D = −4 or D = 8,

or

D = −p for p a prime such that p ≡ 3 (mod 4),

or

D = p for p a prime such that p ≡ 1 (mod 4).
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it is clear that if D is a prime fundamental discriminant, then D is a fundamental
discrimiant.

Lemma 1.2.1. Let D1 and D2 be relatively prime fundamental discriminants.
Then D1D2 is a fundamental discriminant.

Proof. The proof is straightforward. Note that since D1 and D2 are relatively
prime, at most one of D1 and D2 is divisible by 4.

Lemma 1.2.2. Let D be a fundamental discriminant such that D 6= 1. There
exist prime fundamental discriminants D1, . . . , Dk such that

D = D1 · · ·Dk

and D1, . . . , Dk are pairwise relatively prime.

Proof. Assume that D < 0 and D ≡ 1 (mod 4). We may write D = −p1 · · · pt
for a non-empty collection of distinct primes p1, . . . , pt. Since D is odd, each of
p1, . . . , pt is odd and is hence congruent to 1 or 3 mod 4. Let r be the number
of the primes p from p1, . . . , pt such that p ≡ 3 (mod 4). We have

1 ≡ D (mod 4)

≡ (−1)3r (mod 4)

1 ≡ (−1)r+1 (mod 4).

It follows that r is odd. Hence,

D = −
∏

p∈{p1,...,pt}

p

= −
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

p
)

D =
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case.

Assume that D < 0 and D ≡ 0 (mod 4). If D = −4, then D is a prime
fundamental discriminant. Assume thatD 6= −4. We may writeD = −4p1 · · · pt
for a non-empty collection of distinct primes p1, . . . , pt such that −p1 · · · pt ≡ 2
or 3 (mod 4). Assume first that −p1 · · · pt ≡ 2 (mod 4). Then exactly one
of p1, . . . , pt is even, say p1 = 2. Let r be the number of the primes p from
p2, . . . , pt such that p ≡ 3 (mod 4). We have

D = −4
∏

p∈{p1,...,pt}

p
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D = −8
∏

p∈{p2,...,pt}

p

= −8
( ∏
p∈{p2,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p2,...,pt},
p≡3 (mod 4)

p
)

D = ((−1)r+18)×
( ∏
p∈{p2,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p2,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case. Now assume that −p1 · · · pt ≡ 3 (mod 4).
Then p1, . . . , pt are all odd. Let r be the number of the primes p from p1, . . . , pt
such that p ≡ 3 (mod 4). We have

3 ≡ −p1 · · · pt (mod 4)

−1 ≡ (−1)3r (mod 4)

1 ≡ (−1)r (mod 4).

It follows that r is even. Hence,

D = −4
∏

p∈{p1,...,pt}

p

= −4
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

p
)

D = (−4)×
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case.

Assume that D > 0 and D ≡ 1 (mod 4). Since D 6= 1 by assumption, we
have D = p1 · · · pt for a non-empty collection of distinct odd primes p1, . . . , pt.
Let r be the number of the primes p from p1, . . . , pt such that p ≡ 3 (mod 4).
We have

1 ≡ D (mod 4)

≡ 3r (mod 4)

1 ≡ (−1)r (mod 4).

We see that r is even. Therefore,

D =
∏

p∈{p1,...,pt}

p

=
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

p
)
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D =
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case.

Finally, assume that D > 0 and D ≡ 0 (mod 4). We may write D = 4p1 · · · pt
for a non-empty collection of distinct primes p1, . . . , pt such that p1 · · · pt ≡ 2
or 3 (mod 4). Assume first that p1 · · · pt ≡ 2 (mod 4). Then exactly one of
p1, . . . , pt is even, say p1 = 2. Let r be the number of the primes p from
p2, . . . , pt such that p ≡ 3 (mod 4). We have

D = 4
∏

p∈{p1,...,pt}

p

D = 8
∏

p∈{p2,...,pt}

p

= 8
( ∏
p∈{p2,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p2,...,pt},
p≡3 (mod 4)

p
)

D = ((−1)r8)×
( ∏
p∈{p2,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p2,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
which proves the lemma in this case. Now assume that p1 · · · pt ≡ 3 (mod 4).
Then p1, . . . , pt are all odd. Let r be the number of the primes p from p1, . . . , pt
such that p ≡ 3 (mod 4). We have

3 ≡ p1 · · · pt (mod 4)

−1 ≡ 3r (mod 4)

−1 ≡ (−1)r (mod 4)

1 ≡ (−1)r+1 (mod 4)

It follows that r is odd. Hence,

D = 4
∏

p∈{p1,...,pt}

p

= 4
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

p
)

D = (−4)×
( ∏
p∈{p1,...,pt},
p≡1 (mod 4)

p
)
×
( ∏
p∈{p1,...,pt},
p≡3 (mod 4)

−p
)
.

Each of the factors in the last equation is a prime fundamental discriminant,
proving the lemma in this case.
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The fundamental discriminants between −1 and −100 are listed in Table A.1
and the fundamental discriminants between 1 and 100 are listed in Table A.2.

Let D be a fundamental discriminant. We define a function

χD : Z −→ C

in the following way. First, let p be a prime. We define

χD(p) =


(D
p

)
if p is odd,

1 if p = 2 and D ≡ 1 (mod 8),
−1 if p = 2 and D ≡ 5 (mod 8),
0 if p = 2 and D ≡ 0 (mod 4).

Note that since D is a fundamental discriminant, we have D 6≡ 3 (mod 8) and
D 6≡ 7 (mod 8). If n is a positive integer, and

n = pe11 · · · p
et
t

is the prime factorization of n, where p1, . . . , pt are primes, then we define

χD(n) = χD(p1)e1 · · ·χD(pt)
et . (1.1)

This defines χD(n) for all positive integers n. We also define

χD(−n) = χD(−1)χD(n)

for all positive integers n, where we define

χD(−1) =

{
1 if D > 0,
−1 if D < 0.

Finally, we define

χD(0) =

{
0 if D 6= 1,

1 if D = 1.

We note that if D = 1, then χ1(a) = 1 for a ∈ Z. Thus, χ1 is the unique
Dirichlet character modulo 1 (which has conductor 1, and is thus primitive).

Lemma 1.2.3. Let D1 and D2 be relatively prime fundamental discriminants.
Then

χD1D2
(a) = χD1

(a)χD2
(a)

for all a ∈ Z.

Proof. It is easy to verify that χD1D2
(p) = χD1

(p)χD2
(p) for all primes p,

χD1D2(−1) = χD1(−1)χD2(−1), and χD1D2(0) = 0 = χD1(0)χD2(0). The as-
sertion of the lemma now follows from the definitions of χD, χD1 and χD2 on
composite numbers.
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Lemma 1.2.4. Let D be a fundamental discriminant. The function χD corre-
sponds to a primitive Dirichlet character modulo |D|.

Proof. By Lemma 1.2.2 we can write

D = D1 · · ·Dk

where D1, . . . , Dk are prime fundamental discriminants and D1, . . . , Dk are pair-
wise relatively prime. By Lemma 1.2.3,

χD(a) = χD1(a) · · ·χDk(a)

for a ∈ Z. Lemma 1.1.4 and Lemma 1.1.5 now imply that we may assume that
D is a prime fundamental discriminant. For the following argument we recall
the Dirichlet characters ε4, ε′8 and ε′′8 from Lemma 1.1.7.

Assume first that D = −8 so that |D| = 8. Let p be an odd prime. Then

χ−8(p) =
(−8

p

)
=
(−2

p

)3

=
(−2

p

)
=
(−1

p

)(2

p

)
= (−1)

p−1
2 (−1)

p2−1
8

=

{
1 if p ≡ 1, 3 (mod 8)

−1 if p ≡ 5, 7 (mod 8)
.

Also,
χ−8(2) = 0.

We see that χ−8(p) = ε′′8(p) for all primes p. Also, χ−8(−1) = −1 = ε′′8(−1)
and χ−8(0) = 0 = ε′′8(0). Since χ−8 and ε′′8 are multiplicative, it follows that

χ−8 = ε′′8 ,

so that χ−8 corresponds to a primitive Dirichlet character mod | − 8| = 8.
Assume that D = −4 so that |D| = 4. Let p be an odd prime. Then

χ−4(p) =
(−4

p

)
=
(−1

p

)(2

p

)2

=
(−1

p

)
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= (−1)
p−1

2

=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Also, χ−4(2) = 0, χ−4(−1) = −1, and χ−4(0) = 0. We see that χ−4(p) = ε4(p)
for all primes p. Also, χ−4(−1) − 1 = ε4(−1) and χ−4(0) = 0 = ε4(0). Since
χ−4 and ε4 are multiplicative, it follows that

χ−4 = ε4,

so that χ−4 corresponds to a primitive Dirichlet character mod | − 4| = 4.
Assume that D = 8. Let p be an odd prime. Then

χ8(p) =
(8

p

)
=
(2

p

)3

=
(2

p

)
= (−1)

p2−1
8

=

{
1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

Also, χ8(2) = 0, χ8(−1) = 1, and χ8(0) = 0. We see that χ8(p) = ε′8(p) for all
primes p. Also, χ8(−1) = 1 = ε′8(−1) and χ8(0) = 0 = ε′8(0). Since χ8 and ε′8
are multiplicative, it follows that

χ8 = ε′8,

so that χ8 corresponds to a primitive Dirichlet character mod |8| = 8.
Assume that D = −q for a prime q such that q ≡ 3 (mod 4). Let p be an

odd prime. Then

χD(p) =
(−q
p

)
=
(−1

p

)(q
p

)
= (−1)

p−1
2 (−1)

p−1
2

q−1
2

(p
q

)
= (−1)

p−1
2 ((−1)

q−1
2 )

p−1
2

(p
q

)
= (−1)

p−1
2 (−1)

p−1
2

(p
q

)
= (−1)p−1

(p
q

)
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=
(p
q

)
.

Also,

χD(2) =

{
1 if −q ≡ 1 (mod 8),

−1 if −q ≡ 5 (mod 8)

=

{
1 if q ≡ 7 (mod 8),

−1 if q ≡ 3 (mod 8)

= (−1)
q2−1

8

=
(2

q

)
,

and

χD(−1) = −1

= (−1)
q−1

2

=
(−1

q

)
.

Since
( ·
q

)
and χD are multiplicative, it follows that

(
a
q

)
= χD(a) for all a ∈

Z. Since
( ·
q

)
is a primitive Dirichlet character modulo q, it follows that χD

corresponds to a primitive Dirichlet character modulo q = | − q| = |D|.
Assume that D = q for a prime q such that q ≡ 1 (mod 4). Let p be an odd

prime. Then

χD(p) =
(q
p

)
= (−1)

p−1
2

q−1
2

(p
q

)
= (−1)

p−1
2 ·2

(p
q

)
=
(p
q

)
.

Also,

χD(2) =

{
1 if q ≡ 1 (mod 8),

−1 if q ≡ 5 (mod 8)

= (−1)
q2−1

8

=
(2

q

)
,

and

χD(−1) = 1
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= (−1)
q−1

2

=
(−1

q

)
.

Since
( ·
q

)
and χD are multiplicative, it follows that

(
a
q

)
= χD(a) for all a ∈

Z. Since
( ·
q

)
is a primitive Dirichlet character modulo q, it follows that χD

corresponds to a primitive Dirichlet character modulo q = |q| = |D|.

From the proof of Lemma 1.2.4 we see that if D is a prime fundamental
discriminant with D > 1, then

χD =



ε′′8 if D = −8,

ε4 if D = −4,

ε′8 if D = 8,( ·
p

)
if D = −p is a prime with p ≡ 3 (mod 4),( ·

p

)
if D = p is a prime with p ≡ 1 (mod 4).

(1.2)

Proposition 1.2.5. Let N be a positive integer, and let χ be a Dirichlet charac-
ter modulo N . Assume that χ is primitive and real valued (i.e., χ(a) ∈ {0, 1,−1}
for a ∈ Z). Then there exists a fundamental discriminant D such that |D| = N
and χ = χD.

Proof. If N = 1, then χ is the unique Dirichlet character modulo 1; we have al-
ready remarked that χ1 is also the unique Dirichlet character modulo 1. Assume
that N > 1. Let

N = pe11 · · · p
et
t

be the prime factorization of N into positive powers e1, . . . , et of the distinct
primes p1, . . . , pt. We have

(Z/NZ)×
∼−→ (Z/pe11 Z)× × · · · × (Z/pett Z)×

where the isomorphism sends x+NZ to (x+ pe11 Z, . . . , x+ pett Z) for x ∈ Z. Let
i ∈ {1, . . . , t}. Let χi be the character of (Z/peii Z)× which is the composition

(Z/peii Z)× ↪→ (Z/pe11 Z)× × · · · × (Z/pett Z)×
∼−→ (Z/NZ)×

χ−→ C×,

where the first map is inclusion. We have

χ(a) = χ1(a) · · ·χt(a)

for a ∈ Z. By Lemma 1.1.5 the Dirichlet characters χ1, . . . , χt are primitive.
Also, it is clear that χ1, . . . , χt are all real valued. Again let i ∈ {1, . . . , t}.
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Assume first that pi is odd. Since χi is primitive, Lemma 1.1.6 implies that
ei = 1, and that χi =

( ·
pi

)
, the Legendre symbol. By (1.2), χi = χDi where

Di =

{
pi if pi ≡ 1 (mod 4),

−pi if pi ≡ 3 (mod 4).

Evidently, | − Di| = peii . Next, assume that pi = 2. By Lemma 1.1.7 we see
that ei = 2 or ei = 3 with χi = ε4 if ei = 2, and χi = ε′8 or ε′′8 if ei = 3. By
(1.2), χi = χDi , where

Di =


−4 if ei = 2,

8 if ei = 3 and χi = ε′8,

−8 if ei = 3 and χi = ε′′8 .

Clearly, |−Di| = peii . To now complete the proof, we note that by Lemma 1.2.1
the product D = D1 · · ·Dt is a fundamental discriminant, and by Lemma 1.2.3
we have χD = χD1

· · ·χDt . Since χD1
· · ·χDt = χ1 · · ·χt = χ and |D| = N , this

completes the proof.

1.3 Quadratic extensions

Proposition 1.3.1. The map

{quadratic extensions K of Q} ∼−→ {fundamental discriminants D, D 6= 1}

that sends K to its discriminant disc(K) is a well-defined bijection. Let K be a
quadratic extension of Q, and let p be a prime. Then the prime factorization of
the ideal (p) generated by p in oK is given as follows:

(p) =

 p2 (p is ramified) if χD(p) = 0,
p · p′ (p splits) if χD(p) = 1,
p (p is inert) if χD(p) = −1.

Here, in the first and third case, p is the unique prime ideal of oK lying over
(p), and in the second case, p and p′ are the two distinct prime ideals of oK
lying over (p).

Proof. Let K be a quadratic extension of Q. There exists a square-free integer
d such that K = Q(

√
d). Let oK be the ring of integers of K. It is known that

oK =

Z · 1 + Z ·
√
d if d ≡ 2, 3 (mod 4),

Z · 1 + Z · 1 +
√
d

2
if d ≡ 1 (mod 4).



16 CHAPTER 1. BACKGROUND

By the definition of disc(K), we have

disc(K) =



det(

[
1
√
d

1 −
√
d

]
)2 if d ≡ 2, 3 (mod 4),

det(

1
1 +
√
d

2

1
1−
√
d

2

)2 if d ≡ 1 (mod 4)

=

{
4d if d ≡ 2, 3 (mod 4),

d if d ≡ 1 (mod 4).

It follows that the map is well-defined, and a bijection. For a proof of the
remaining assertion see Satz 1 on page 100 of [29], or Theorem 25 on page 74
of [16].

Lemma 1.3.2. Let D be a fundamental discriminant such that D 6= 1. Let
K = Q(

√
D), so that K is a quadratic extension of Q. Then disc(K) = D.

Proof. Assume that D ≡ 1 (mod 4). Then D is square-free. From the proof of
Proposition 1.3.1 we have disc(K) = D. Assume that D ≡ 0 (mod 4). Then
K = Q(

√
D/4), with D/4 square-free and D/4 ≡ 2, 3 (mod 4). From the proof

of Proposition 1.3.1 we again obtain disc(K) = 4 · (D/4) = D.

1.4 Kronecker Symbol

Let ∆ be a non-zero integer such that ∆ ≡ 0, 1 or 2 (mod 4). We define a
function, (∆

·

)
: Z −→ C

called the Kronecker symbol, in the following way. First, let p be a prime.
We define

(∆

p

)
=



(∆

p

)
(Legendre symbol) if p is odd,

0 if p = 2 and ∆ is even,

1 if p = 2 and ∆ ≡ 1 (mod 8),

−1 if p = 2 and ∆ ≡ 5 (mod 8).

Note that, since by assumption ∆ ≡ 0, 1 or 2 (mod 4), the cases ∆ ≡ 3 (mod 8)
and ∆ ≡ 7 (mod 8) do not occur. We see that if p is a prime, then p|∆ if and
only if

(
∆
p

)
= 0. If n is a positive integer, and

n = pe11 · · · p
et
t
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is the prime factorization of n, where p1, . . . , pt are primes, then we define(∆

n

)
=
(∆

p1

)e1
· · ·
(∆

pt

)et
.

This defines
(

∆
n

)
for all positive integers n. We also define( ∆

−n

)
=
( ∆

−1

)(∆

n

)
for all positive integers n, where we define( ∆

−1

)
=

{
1 if ∆ > 0,
−1 if ∆ < 0.

Finally, we define (∆

0

)
=

{
0 if ∆ 6= 1,

1 if ∆ = 1.

We note that if ∆ = 1, then
(

∆
a

)(
1
a

)
= 1 for a ∈ Z. Thus,

(
1
·
)

is the unique
Dirichlet character modulo 1. It is straightfoward to verify that(∆

ab

)
=
(∆

a

)(∆

b

)
for a, b ∈ Z. Also, we note that

(
∆
a

)
= 0 if and only if (a,∆) > 1.

Lemma 1.4.1. Let D be a non-zero integer such that D ≡ 1 (mod 4) or D ≡
0 (mod 4). There exists a unique fundamental discriminant Dfd and a unique
positive integer m such that

D = m2Dfd.

Proof. We first prove the existence of m and Dfd. We may write D = 2ea2b,
where e is a positive non-negative integer, a is a positive integer, and b is an
odd square-free integer.

Assume that e = 0. Then D ≡ 1 (mod 4). Since a is odd, a2 ≡ 1 (mod 4);
therefore, b ≡ 1 (mod 4). It follows that D = m2Dfd with m = a and Dfd = b
a fundamental discriminant.

The case e = 1 is impossible because D ≡ 1 (mod 4) or D ≡ 0 (mod 4).
Assume that e ≥ 2 and e is odd. Write e = 2k + 1 for a positive integer k.

Then D = m2Dfd with m = 2k−1a and Dfd = 8b a fundamental discriminant.
Assume that e ≥ 2 and e is even. Write e = 2k for a positive integer k. If

b ≡ 1 (mod 4), then D = m2Dfd with m = 2ka and Dfd = b a fundamental
discriminant. If b ≡ 3 (mod 4), then D = m2Dfd with m = 2k−1a and Dfd = 4b
a fundamental discriminant. This completes the proof the existence of m and
Dfd.

To prove the uniqueness assertion, assume that m and m′ are positive inte-
gers and Dfd and D′fd are fundamental discriminants such that D = m2Dfd =
(m′)2D′fd. Assume first that Dfd = 1. Then m2 = (m′)2D′fd. This implies
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that D′fd is a square; hence, D′fd = 1. Therefore, m2 = (m′)2, implying that
m = m′. Now assume that Dfd 6= 1. Then also D′fd 6= 1, and D is not a square.

Set K = Q(
√
D). We have K = Q(

√
Dfd) = Q(

√
D′fd). By Lemma 1.3.2,

disc(K) = Dfd and disc(K) = D′fd, so that Dfd = D′fd. Since this holds we also
conclude that m = m′.

Proposition 1.4.2. Let ∆ be a non-zero integer with ∆ ≡ 0, 1 or 2 (mod 4).
Define

D =

{
∆ if ∆ ≡ 0 or 1 (mod 4),

4∆ if ∆ ≡ 2 (mod 4).

Write D = m2Dfd with m a positive integer, and Dfd a fundamental discrimi-
nant, as in Lemma 1.4.1. The Kronecker symbol

(
∆
·
)

is a Dirichlet character
modulo |D|, and is the Dirichlet character induced by the mod |Dfd| Dirichlet
character χDfd

.

Proof. Let α be the Dirichlet character modulo |D| induced by χDfd
. Thus, α

is the composition

(Z/|D|Z)× −→ (Z/|Dfd|Z)×
χfd−→ C×,

extended to Z. Since α and
(

∆
·
)

are multiplicative, to prove that α =
(

∆
·
)

it
will suffice to prove that these two functions agree on all primes, on −1, and on
0. Let p be a prime.

Assume first that p is odd. If p|D, then also p|∆, so that α(p) and
(

∆
·
)

evaluated at p are both 0. Assume that (p,D) = 1. Then also (p,∆) = 1. Then(∆

·

)
evaluated at p =

(∆

p

)
(Legendre symbol)

=


(∆

p

)
if ∆ ≡ 0 or 1 (mod 4),(2

p

)2(∆

p

)
if ∆ ≡ 2 (mod 4),

=


(∆

p

)
if ∆ ≡ 0 or 1 (mod 4),(4∆

p

)
if ∆ ≡ 2 (mod 4),

=
(D
p

)
=
(m2Dfd

p

)
=
(Dfd

p

)
= χDfd

(p)

= α(p).
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Assume next that p = 2. If 2|D, then also 2|∆, so that α(2) and
(

∆
·
)

evaluated at 2 are both 0. Assume that (2, D) = 1, so that D is odd. Then
D = ∆, and in fact D ≡ 1 (mod 4). This implies that ∆ ≡ 1 or 7 (mod 8).
Also, as D ≡ 1 (mod 4), and D = m2Dfd, we must have Dfd ≡ D (mod 8)
(since a2 ≡ 1 (mod 8) for any odd integer a). Therefore,

(∆

·
)

evaluated at 2 =

{
1 if D ≡ 1 (mod 8),
−1 if D ≡ 5 (mod 8),

=

{
1 if Dfd ≡ 1 (mod 8) ,
−1 if Dfd ≡ 5 (mod 8) ,

= χDfd
(2)

= α(2).

To finish the proof we note that(∆

·
)

evaluated at −1 = sign(∆)

= sign(D)

= sign(Dfd)

= χDfd
(−1)

= α(−1).

Since ∆ = 1 if and only if Dfd = 1, the evaluation of
(
D
·
)

at 0 is χDfd
(0) =

α(0).

Lemma 1.4.3. Assume that ∆1 and ∆2 are non-zero integers that satisfy the
congruences ∆1 ≡ 0, 1 or 2 (mod 4) and ∆2 ≡ 0, 1 or 2 (mod 4). Then we have
∆1∆2 ≡ 0, 1 or 2 (mod 4), and(∆1

a

)(∆2

a

)
=
(∆1∆2

a

)
(1.3)

for all integers a.

Proof. It is easy to verify that ∆1∆2 ≡ 0, 1 or 2 (mod 4), and that if ∆1 = 1 or
∆2 = 1, then (1.3) holds. Assume that ∆1 6= 1 and ∆2 6= 1. Since

(
∆1

·
)
,
(

∆2

·
)
,

and
(

∆1∆2

·
)

are multiplicative, it suffices to verify (1.3) for all odd primes, for
2, −1 and 0. These cases follows from the definitions.

1.5 Quadratic forms

Let f be a positive integer, which will be fixed for the remainder of this section.
In this section we regard the elements of Zf as column vectors.

Let A = (ai,j) ∈ M(f,Z) be a integral symmetric matrix, so that ai,j = aj,i
for i, j ∈ {1, . . . , f}. We say that A is even if each diagonal entry ai,i for
i ∈ {1, . . . , f} is an even integer.
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Lemma 1.5.1. Let A ∈ M(f,Z), and assume that A is symmetric. Then A is
even if and only if

t
yAy is an even integer for all y ∈ Zf .

Proof. Let y ∈ Zf , with
t
y = (y1, . . . , yf ). Then

t
yAy =

n∑
i,j=1

ai,jyiyj

=

f∑
i=1

ai,iy
2
i +

∑
1≤i<j≤f

2ai,jyiyj .

It is clear that if A is even, then
t
yAy is an even integer for all y ∈ Zf . Assume

that
t
yAy is an even integer for all y ∈ Zf . Let i ∈ {1, . . . , f}. Let yi ∈ Zf be

defined by
t
yi = (0, . . . , 0, 1, 0, . . . , 0)

where 1 occurs in the i-th position. Then
t
yiAyi = ai,i. This is even, as

required.

Suppose that A is an even integral symmetric matrix. To A we associate the
polynomial

Q(x1, . . . , xf ) =
1

2

f∑
i,j=1

ai,jxixj ,

and we refer to Q(x1, . . . , xf ) as the quadratic form determined by A. Evi-
dently,

Q(x) =
1

2
t
xAx

with

x =

x1

...
xf

 .
Since ai,i is even for i ∈ {1, . . . , f}, the quadratic form Q(x) can also be written
as

Q(x1, . . . , xf ) =
∑

1≤i≤j≤f

bi,jxixj

where

bi,j =

{
ai,j for 1 ≤ i < j ≤ f ,

ai,i/2 for 1 ≤ i ≤ f

is an integer. We denote the determinant of A by

D = D(A) = det(A).
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and the discriminant of A by

∆ = ∆(A) = (−1)k det(A), f =

{
2k if f is even,

2k + 1 if f is odd.

For example, suppose that f = 2. Then every even integral symmetric matrix
has the form

A =

[
2a b
b 2c

]
where a, b and c are integers, and the associated quadratic form is:

Q(x1, x2) = ax2
1 + bx1x2 + cx2

2.

For this example we have

D = 4ac− b2, ∆ = b2 − 4ac.

Lemma 1.5.2. Let A ∈ M(f,Z) be an even integral symmetric matrix, and let
D = D(A) and ∆ = ∆(A). If f is odd, then ∆ ≡ D ≡ 0 (mod 2). If f is even,
then ∆ ≡ 0, 1 (mod 4).

Proof. Let A = (ai,j) with ai,j ∈ Z for i, j ∈ {1, . . . , f}. By assumption,
ai,j = aj,i and ai,i is even for i, j ∈ {1, . . . , f}.

Assume that f is odd. For σ ∈ Sf (the permutation group of {1, . . . , f}, let

t(σ) = sign(σ)a1,σ(1) · · · af,σ(f) = sign(σ)
∏

i∈{1,...,n}

ai,σ(i)

We have

det(A) =
∑
σ∈Sf

t(σ)

=
∑
σ∈X

t(σ) +
∑

σ∈Sf−X
t(σ).

Here, X is the subset of σ ∈ Sf such that σ 6= σ−1. Let σ ∈ Sf . Then

t(σ−1) = sign(σ−1)
∏

i∈{1,...f}

ai,σ−1(i)

= sign(σ)
∏

i∈{1,...f}

aσ(i),σ−1(σ(i))

= sign(σ)
∏

i∈{1,...f}

aσ(i),i

= sign(σ)
∏

i∈{1,...f}

ai,σ(i)
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= t(σ).

Since the subset X is partitioned into two element subsets of the form {σ, σ−1}
for σ ∈ X, and since t(σ) = t(σ−1) for σ ∈ Sf , it follows that∑

σ∈X
t(σ) ≡ 0 (mod 2).

Let σ ∈ Sf −X, so that σ2 = 1. Write σ = σ1 · · ·σt, where σ1, . . . , σt ∈ Sf are
cycles and mutually disjoint. Since σ2 = 1, each σi for i ∈ {1, . . . , t} is a two
cycle. Since f is odd, there exists i ∈ {1, . . . , f} such that i does not occur in
any of the two cycles σ1, . . . , σt. It follows that σ(i) = i. Now ai,σ(i) = ai,i; by
hypothesis, this is an even integer. It follows that t(σ) is also an even integer.
Hence, ∑

σ∈Sf−X
t(σ) ≡ 0 (mod 2),

and we conclude that ∆ ≡ D ≡ 0 (mod 2).
Now assume that f is even, and write f = 2k. We will prove that ∆ ≡

0, 1 (mod 4) by induction on f . Assume that f = 2, so that

A =

[
2a b
b 2c

]
where a, b and c are integers. Then ∆ = b2 − 4ac ≡ 0, 1 (mod 4). Assume
now that f ≥ 4, and that ∆(A1) ≡ 0, 1 (mod 4) for all f1 × f1 even integral
symmetric matrices A1 with f1 even and f > f1 ≥ 2. Clearly, if all the off-
diagonal entries of A are even, then all the entries of A are even, and ∆(A) ≡
0 (mod 4). Assume that some off-diagonal entry of A, say a = ai,j is odd with
1 ≤ i < j ≤ f . Interchange the first and the i-th row of A, and then the first and
the i-th column of A; the result is an even integral symmetric matrix A′ with
a in the (1, j) position and det(A′) = det(A). Next, interchange the second
and the j-th column of A′, and then the second and the j-th row of A′; the
result is an even integral symmetric matrix A′′ with a in the (1, 2)-position and
det(A′′) = det(A′) = det(A). It follows that we may assume that (i, j) = (1, 2).
We may write

A =

[
A1 B
t
B A2

]
,

where A2 is an (f − 2)× (f − 2) even integral symmetric matrix,

A1 =

[
a1,1 a1,2

a1,2 a2,2

]
,

and B is a 2× (f − 2) matrix with integral entries. Let

adj(A1) =

[
a2,2 −a1,2

−a1,2 a1,1

]
,
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so that
A1 · adj(A1) = adj(A1) ·A1 = det(A1) · 12.

Now[
12

− t
B · adj(A1) det(A1) · 1f−2

] [
A1 B
t
B A2

]
=

[
A1 B

− t
B · adj(A1) ·B + det(A1)A2

]
. (1.4)

Consider the (f − 2)× (f − 2) matrix − t
B · adj(A1) ·B. This matrix clearly has

integral entries. If y ∈ Zf−2, then By ∈ Zf−2 and

t
(y)(− t

B · adj(A1) ·B)y = − t
(By) · adj(A1) · (By);

since adj(A1) is even, by Lemma 1.5.1 this integer is even. Since the last dis-
played integer is even for all y ∈ Zf−2, we can apply Lemma 1.5.1 again to
conclude that − t

B · adj(A1) ·B is even. It follows that

A3 = − t
B · adj(A1) ·B + det(A1)A2

is an (f − 2)× (f − 2) even integral symmetric matrix. Taking determinants of
both sides of (1.4), we obtain

det(A1)f−2 · det(A) = det(A1) · det(A3)

det(A1)f−2 · (−1)k det(A) = (−1) det(A1) · (−1)k−1 det(A3)

det(A1)f−2 ·∆(A) = ∆(A1) ·∆(A3).

By the induction hypothesis, ∆(A1) ≡ 0, 1 (mod 4), and ∆(A3) ≡ 0, 1 (mod 4).
Hence,

det(A1)f−2 ·∆(A) ≡ 0, 1 (mod 4).

By hypothesis, a1,2 is odd; since f − 2 is even, this implies that det(A1)f−2 ≡
1 (mod 4). We now conclude that ∆(A) ≡ 0, 1 (mod 4), as desired.

Let A ∈ M(f,R). The adjoint of A is the f × f matrix adj(A) with entries

adj(A)i,j = (−1)i+j det
(
A(j|i)

)
for i, j ∈ {1, . . . , n}. Here, for i, j ∈ {1, . . . , n}, A(j|i) is the (f − 1) × (f − 1)
matrix that is obtained from A by deleting the j-th row and the i-th column.
For example, if

A =

[
a b
c d

]
,

then

adj(A) =

[
d −b
−c a

]
.
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We have
adj(A) ·A = A · adj(A) = det(A) · 1f .

Thus,

A = det(A)adj(A)−1,

adj(A) = det(A) ·A−1,

A−1 = det(A)−1 · adj(A),

adj(A)−1 = det(A)−1 ·A,
det
(
adj(A)

)
= det(A)f−1.

We let Sym(f,R) be the set of all symmetric elements of M(f,R). Let A ∈
Sym(f,R). We say that A is positive-definite if the following two conditions
hold:

1. If x ∈ Rf , then Q(x) = 1
2

t
xAx ≥ 0;

2. if x ∈ Rf and Q(x) = 1
2

t
xAx = 0, then x = 0.

We will also write A > 0 to mean that A is positive-definite. We say that A
is positive semi-definite if the first condition holds; we will write A ≥ 0 to
indicate that A is positive semi-definite. Since A is symmetric with real entries,
there exists a matrix T ∈ GL(f,R) such that

t
TT = T

t
T = 1 (so that T−1 =

t
T )

and

t
TAT = T−1AT =


λ1

λ2

λ3

. . .

λf

 (1.5)

for some λ1, . . . , λf ∈ R (see the corollary on p. 314 of [9]). The symmetric
matrix A is positive-definite if and only if λ1, . . . , λf are all positive, and A is
positive semi-definite if and only if λ1, . . . , λf are all non-negative. It follows
that if A is positive-definite, then det(A) > 0, and if A is positive semi-definite,
then det(A) ≥ 0. Assume that A is positive semi-definite, and that T and
λ1, . . . , λf are as in (1.5); in particular, λ1, . . . , λf are all non-negative real
numbers. Let

B = T



√
λ1 √

λ2 √
λ3

. . . √
λf

T−1. (1.6)

The matrix B is evidently symmetric and positive semi-definite, and we have

A =
t
BB = BB = B2. (1.7)

Also, it is clear that if A is positive-definite, then so is B.
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Lemma 1.5.3. Assume f is even. Let A ∈ M(f,Z) be a positive-definite even
integral symmetric matrix. The matrix adj(A) is a positive-definite even integral
symmetric matrix.

Proof. We have adj(A) = det(A) ·A−1. Therefore,
t
adj(A) = det(A) · t

(A−1) =
det(A) · (t

A)−1 = det(A) · A−1 = adj(A), so that adj(A) is symmetric. To see
that adj(A) is positive-definite, let T ∈ GL(f,R) and λ1, . . . , λf be positive real
numbers such that (1.5) holds. Then

t
(
t
T )adj(A)

t
T = det(A) · TA−1 t

T

=


det(A)λ−1

1

det(A)λ−1
2

det(A)λ−1
3

. . .

det(A)λ−1
f

 .

This equality implies that adj(A) is positive-definite. It is clear that adj(A) has
integral entries. To see that adj(A) is even, let i ∈ {1, . . . , f}. Then adj(A)i,i =
det
(
A(i|i)

)
. The matrix A(i|i) is an (f − 1)× (f − 1) even integral symmetric

matrix. Since f − 1 is odd, by Lemma 1.5.2 we have det
(
A(i|i)

)
≡ 0 (mod 2).

Thus, adj(A)i,i is even.

Let A ∈ M(f,Z) be an even integral symmetric matrix with det(A) non-zero.
The set of all integers N such that NA−1 is an even integral symmetric matrix
is an ideal of Z. We define the level of A, and its associated quadratic form, to
be the unique positive generator N(A) of this ideal. Evidently, the level N(A) of
A is smallest positive integer N such that NA−1 is an even integral symmetric
matrix.

Proposition 1.5.4. Assume f is even. Let A ∈ M(f,Z) be a positive-definite
even integral symmetric matrix. Define

G = gcd(



adj(A)1,1

2
adj(A)1,2 adj(A)1,3 · · · adj(A)1,f

adj(A)1,2
adj(A)2,2

2
adj(A)2,3 · · · adj(A)2,f

adj(A)1,3 adj(A)2,3
adj(A)3,3

2
· · · adj(A)3,f

...
...

...
. . .

...

adj(A)1,f adj(A)2,f adj(A)3,f · · · adj(A)f,f
2


)

Then G divides det(A), and the level of A is

N =
det(A)

G
.

The positive integers N and det(A) have the same set of prime divisors.
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Proof. The integer G divides every entry of adj(A). Therefore, Gf divides
det
(
adj(A)

)
. Since det

(
adj(A)

)
= det(A)f−1, Gf divides det(A)f−1. This

implies that G divides det(A). Now by definition, G is the largest integer g such
that

1

g
adj(A) is even.

Since adj(A) = det(A)A−1, we therefore have that

det(A)

G
A−1 is even.

This implies that det(A)G−1 is in the ideal generated by the level N of A, i.e.,
N divides det(A)G−1; consequently,

GN ≤ det(A).

On the other hand, NA−1 is even. Using A−1 = det(A)−1adj(A), this is equiv-
alent to

1

det(A)N−1
adj(A) is even.

Since det(A)N−1 is a positive integer (we have already proven that N divides
det(A)), the definition of G implies that G ≥ det(A)N−1, or equivalently,

GN ≥ det(A).

We now conclude that GN = det(A), as desired.
To see that N and det(A) have the same set of prime divisors, we first note

that (since N divides det(A)) every prime divisor of N is a prime divisor of
det(A). Let p be a prime divisor of det(A). If p does not divide G, then p divides
N (because NG = det(A)). Assume that p divides G. Write det(A) = pjd
and G = pkg with k and j positive integers and d and g integers such that
(d, p) = (g, p) = 1. From above, Gf divides det(A)f−1. This implies that
(f − 1)j ≥ fk. Therefore,

j ≥ f

f − 1
k > k.

This means that p divides N = det(A)/G.

Corollary 1.5.5. Let f be an even positive integer, let A ∈ M(f,Z) be a
positive-definite even integral symmetric matrix and let N be the level of A.
Then N = 1 if and only if det(A) = 1.

Proof. By Proposition 1.5.4, N and det(A) have the same set of prime divisors.
It follows that N = 1 if and only if det(A) = 1.

Corollary 1.5.6. Let A be a 2× 2 even integral symmetric matrix, so that

A =

[
2a b
b 2c

]
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where a, b and c are integers. Then A is positive-definite if and only if det(A) =
4ac− b2 > 0, a > 0, and c > 0. Assume that A is positive-definite. The level of
A is

N =
4ac− b2

gcd(a, b, c)
.

Proof. Assume that A is positive-definite. We have already pointed out that
det(A) > 0. Now

Q(1, 0) =
1

2

t[
1
0

] [
2a b
b 2c

] [
1
0

]
= a,

Q(0, 1) =
1

2

t[
0
1

] [
2a b
b 2c

] [
0
1

]
= c.

Since A is positive-definite, these numbers are positive. Assume that det(A) =
4ac− b2 > 0, a > 0, and c > 0. For x, y ∈ R we have

Q(x, y) = ax2 + bxy + cy2

=
1

a
(ax+

b

2
y)2 +

4ac− b2

4a
y2

=
1

a
(ax+

b

2
y)2 +

det(A)

4a
y2.

Clearly, we have Q(x, y) ≥ 0 for all x, y ∈ R. Assume that x, y ∈ R are such
that Q(x, y) = 0. Then since det(A) > 0 and a > 0 we must have ax+ b

2y = 0
and y = 0; hence also x = 0. It follows that A is positive-definite. The final
assertion follows from

adj(A) =

[
2c −b
−b 2a

]
and Proposition 1.5.4.

Corollary 1.5.7. Let f be an even positive integer, let A ∈ M(f,Z) be a
positive-definite even integral symmetric matrix and let N be the level of A.
Let c be a positive integer. Then the level of the positive-definite even integral
symmetric matrix cA is cN .

Proof. This follows from the formula for level from Proposition 1.5.4.

Lemma 1.5.8. Let f be an even positive integer, let A ∈ M(f,Z) be a positive-
definite even integral symmetric matrix and let N be the level of A. Define
the integral quadratic form Q(x) by Q(x) = 1

2
t
xAx. Let h ∈ Zf be such that

Ah ≡ 0 (mod N). Then Q(h) ≡ 0 (mod N). Also, if n ∈ Zf is such that
n ≡ h (mod N), then Q(n) ≡ Q(h) (mod N2) and Q(n) ≡ 0 (mod N).

Proof. Since Ah ≡ 0 (mod N), there exists m ∈ Zf such that Ah = Nm. We
have

Q(q) =
1

2
t
hAh
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=
1

2
t
(Ah)A−1(Ah)

= N · 1

2
t
m(NA−1)m.

By the definition of N , NA−1 is an even symmetric integral matrix. Therefore,
by Lemma 1.5.1,

t
m(NA−1)m is an even integer. Hence 1

2
t
m(NA−1)m is an

integer, so that Q(h) ≡ 0 (mod N). Next, let n ∈ Zf be such that n ≡
h (mod N). Let b ∈ Zf be such that n = h+Nb. Then

2Q(n) =
t
(h+Nb)A(h+Nb)

= (
t
h+N

t
b)A(h+Nb)

=
t
hAh+ 2N

t
bAh+N2 t

bAb

≡ t
hAh (mod 2N2)

≡ 2Q(h) (mod 2N2).

Here
t
bAh ≡ 0 (mod N) because Ah ≡ 0 (mod N) and

t
bAb ≡ 0 (mod 2)

because A is even. It follows that Q(n) ≡ Q(h) (mod N2). Finally, since
Q(h) ≡ 0 (modN) andQ(n) ≡ Q(h) (modN2), we haveQ(n) ≡ 0 (modN).

1.6 The upper half-plane

Let GL(2,R)+ be the subgroup of σ ∈ GL(2,R) such that det(σ) > 0. We define
and action of GL(2,R)+ on the upper half-plane H1 by

σ · z =
az + b

cz + d

for z ∈ H1 and σ ∈ GL(2,R)+ such that

σ =

[
a b
c d

]
. (1.8)

We define the cocycle function

j : GL(2,R)+ ×H1 −→ C

by
j(σ, z) = cz + d

for z ∈ H1 and σ ∈ GL(2,R)+ as in (1.8). We have

j(αβ, z) = j(α, β · z)j(β, z)

for α, β ∈ GL(2,R)+ and z ∈ H1. Let F : H1 → C be a function, and let ` be
an integer. Let σ ∈ GL(2,R)+. We define

F |` : H1 −→ C
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by the formula (
F |`σ

)
(z) = det(σ)`/2(cz + d)−`F

(az + b

cz + d

)
= det(σ)`/2j(σ, z)−`F (σ · z)

for z ∈ H1. We have (
F |`α

)
|`β = F |`(αβ)

for α, β ∈ GL(2,R)+.

1.7 Congruence subgroups

Let N be a positive integer. The principal congruence subgroup of level N
is defined to be

Γ(N) = {
[
a b
c d

]
∈ SL(2,Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)}.

The Hecke congruence subgroup of level N is defined to be

Γ0(N) = {
[
a b
c d

]
∈ SL(2,Z) : c ≡ 0 (mod N)}.

If Γ is a subgroup of SL(2,Z), then we say that Γ is a congruence subgroup
of SL(2,Z) of SL(2,Z) if there exists a positive integer N such that Γ(N) ⊂ Γ.

1.8 Modular forms

Let N be a positive integer, and let R > 0 be positive number. Let

H(N,R) = {z ∈ H1 : Im(z) >
N log(1/R)

2π
}

and
D(R) = {q ∈ C : |q| < R}.

The function
H(N,R) −→ D(R)

defined by
z 7→ q(z) = e2πiz/N

is well-defined. We have q(z +N) = q(z) for z ∈ H(N,R).

Lemma 1.8.1. Let f : H1 → C be an analytic function, and let N be a positive
integer such that f(z + N) = f(z) for z ∈ H1. Assume that there exists a real
number such that 0 < R < 1 and a complex power series

∞∑
n=0

a(n)qn
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that converges for q ∈ D(R) such that

f(z) =

∞∑
n=0

a(n)e2πinz/N

for z ∈ H(N,R). If M is another positive integer such that f(z + M) = f(z)
for z ∈ H1, then there exists a real number such that 0 < T < 1 and a complex
power series

∞∑
k=0

b(k)qk

that converges for q ∈ D(T ) such that(
F
∣∣
k
σ
)
(z) =

∞∑
k=0

b(k)e2πikz/M

for z ∈ H(M,T ).

Proof. For z ∈ H(N,R),

f(z) = f(z +M)

=

∞∑
n=0

a(n)e2πin(z+M)/N

∞∑
n=0

a(n)e2πinz/N =

∞∑
n=0

a(n)e2πinM/N · e2πinz/N .

It follows that
a(n) = a(n)e2πinM/N

for all non-negative integers n. Hence, for every non-negative integer n, if
a(n) 6= 0, then nM/N is an integer, or equivalently, if nM/N is not an integer,
then a(n) = 0. Let z ∈ H(N,R). Then

f(z) =

∞∑
n=0

a(n)e2πinz/N

=

∞∑
n=0

a(n)e2πi(nM/N)z/M

=

∞∑
k=0

b(k)(e2πiz/M )k

where

b(k) =

{
a(kN/M) if kN/M is an integer,

0 if kN/M is not an integer.

Because the series
∑∞
n=0 a(n)e2πinz/N converges for z ∈ H(N,R), the above

equalities imply that the power series
∑∞
k=0 b(k)qk converges for q ∈ D(RN/M ).

Since H(M,RN/M ) = H(N,R), the proof is complete.
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Definition 1.8.2. Let k be a non-negative integer, and let Γ be a congruence
subgroup of SL(2,Z). Let F : H1 → C be a function on the upper-half plane
H1. We say that F is a modular form of weight k with respect to Γ if the
following conditions hold:

1. For all α ∈ Γ we have
f
∣∣
k
α = f.

2. The function F is analytic on H1.

3. If σ ∈ SL(2,Z), then there exists a positive integer N such that Γ(N) ⊂ Γ,
a real number R such that 0 < R < 1, and a complex power series

∞∑
n=0

a(n)qn

that converges for q ∈ D(R), such that(
F
∣∣
k
σ
)
(z) =

∞∑
n=0

a(n)q(z)n =

∞∑
n=0

a(n)e2πinz/N

for z ∈ H(N,R).

The third condition of Definition 1.8.2 is often summarized by saying that F
is holomorphic at the cusps of Γ. We say that F is a cusp form if the three
conditions in the definition of a modular form hold, and in addition it is always
the case that a(0) = 0; this additional condition is summarized by saying that
F vanishes at the cusps of Γ. The set of modular forms of weight k with
respect to Γ is a vector space over C, which we denote by Mk(Γ). The set of
cusp forms of weight k with respect to Γ is a subspace of Mk(Γ), and will be
denoted by Sk(Γ).

1.9 The symplectic group

Let R be a commutative ring with identity 1, and let n be a positive integer.
As usual, we define

GL(2n,R) = {g ∈ M(2n,R) : det(g) ∈ R×}.

Then GL(2n,R) is a group under multiplication of matrices; the identity of
GL(2n,R) is the 2n× 2n identity matrix 1 = 12n. Let

J =

[
1n

−1n

]
.

We note that
J2 = −1, J−1 = −J.

We define
Sp(2n,R) = {g ∈ GL(2n,R) :

t
gJg = J}.

We refer to Sp(2n,R) as the symplectic group of degree n over R.
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Lemma 1.9.1. If R is a commutative ring with identity and n is a positive
integer, then Sp(2n,R) is a subgroup of GL(2n,R). If g ∈ Sp(2n,R), then
t
g ∈ Sp(2n,R).

Proof. Evidently, 1 ∈ Sp(2n,R). Also, it is easy to see that if g, h ∈ Sp(2n,R),
then gh ∈ Sp(2n,R). To complete the proof that Sp(2n,R) is a subgroup of
GL(2n,R) it will suffice to prove that if g ∈ Sp(2n,R), then g−1 ∈ Sp(2n,R).
Let g ∈ Sp(n,R). Then

t
gJg = J . This implies that g−1 = J−1 t

gJ = −J t
gJ .

Now

t
(g−1)Jg−1 =

t
Jg

t
JJJ

t
gJ

= JgJJJ
t
gJ

= −JgJ t
gJ

= −JgJ · t
gJg · g−1

= −JgJJg−1

= J.

Next, suppose that g ∈ Sp(2n,R). Then

gJ
t
g = gJ

t
gJgg−1J−1

= gJJg−1J−1

= −J−1

= J.

This implies that g ∈ Sp(2n,R).

Lemma 1.9.2. Let R be a commutative ring with identity and let n be a positive
integer. Let

g =

[
A B
C D

]
∈ GL(2n,R).

Then g ∈ Sp(2n,R) if and only if

t
AC =

t
CA,

t
BD =

t
DB,

t
AD − t

CB = 1.

If g ∈ Sp(2n,R), then

g−1 =

[ t
D − t

B
− t
C

t
A

]
,

and
A

t
B = B

t
A, C

t
D = D

t
C, A

t
D −B t

C = 1.

Proof. The first assertion follows by direct computations from the definition of
Sp(2n,R). To prove the second assertion, assume that g ∈ Sp(2n,R). Then[ t

D − t
B

− t
C

t
A

] [
A B
C D

]
=

[t
DA− t

BC
t
DB − t

BD
t
AC − t

CA
t
AD − t

CB

]
= 1
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by the first assertion. It follows that g−1 has the indicated form. But we also
have

1 =

[
A B
C D

] [ t
D − t

B
− t
C

t
A

]
=

[
A

t
D −B t

C B
t
A−A t

B
C

t
D −D t

C D
t
A− C t

B.

]
This implies the remaining claims.

Lemma 1.9.3. Let R be a commutative ring with identity. Then Sp(2, R) =
SL(2, R).

Proof. Let g ∈ GL(2, R), and write

g =

[
a b
c d

]
for some a, b, c, d ∈ R. A calculations shows that

t
gJg =

[
ad− bc

−(ad− bc)

]
= det(g) · J.

It follows that g ∈ Sp(2, R) if and only if det(g) = 1, i.e., g ∈ SL(2, R).

Lemma 1.9.4. Let R be a commutative ring with identity, and let n be a positive
integer. The following matrices are contained in Sp(2n,R):

J =

[
1

−1

]
,

[
−1

−1

]
,[

A
t
A−1

]
, A ∈ GL(n,R),[

1 X
1

]
, X ∈ M(n,R),

t
X = X,[

1
Y 1

]
, Y ∈ M(n,R),

t
Y = Y.

Proof. These assertions follow by direct computations.

Lemma 1.9.5. Let R be a commutative ring with identity, and let n be a positive
integer. The sets

P = {
[
A B
C D

]
∈ Sp(2n,R) : C = 0},

M = {
[
A

t
A−1

]
: A ∈ GL(n,R)},

U = {
[
1 X

1

]
: X ∈ M(n,R),

t
X = X}

are subgroups of Sp(2n,R). The subgroup M normalizes U , and P = MU =
UM .
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Proof. These assertions follow by direct computations.

Let R be a commutative ring with identity. Assume further that R is a
domain. We say that R is Euclidean domain if there exists a function | · | :
R→ Z satisfying the following three properties:

1. If a ∈ R, then |a| ≥ 0.

2. If a ∈ R, then |a| = 0 if and only if a = 0.

3. If a, b ∈ R and b 6= 0, then there exist x, y ∈ R such that a = bx+ y with
|y| < |b|.

Any field F is an Euclidean domain with the definition |a| = 1 for a ∈ F with
a 6= 0 and |0| = 0. Also, Z is an Euclidean domain with the usual absolute
value.

Theorem 1.9.6. Let R be an Euclidean domain, and let n be a positive integer.
The group Sp(2n,R) is generated by the elements

J =

[
1

−1

]
,

[
1 X

1

]
for X ∈ M(n,R) with

t
X = X.

Proof. See Satz A 5.4 on page 326 of [5].

Corollary 1.9.7. Let R be an Euclidean domain, and let n be a positive integer.
If g ∈ Sp(2n,R), then det(g) = 1.

Proof. This follows from Theorem 1.9.6.

Theorem 1.9.8. Let F be a field, and let n be a positive integer. Assume that
the pair (2n, F ) is not (2,Z/2Z), (2,Z/3Z) or (4,Z/2Z). Then the only normal
subgroups of Sp(2n, F ) are {1}, {1,−1}, and Sp(2n, F ).

Proof. See Theorem 5.1 of [3].

1.10 The Siegel upper half-space

Let n be a positive integer. We define Hn to be the subset of M(n,C) consisting
of the matrices Z = X + iY with X,Y ∈ M(n,R) such that

t
X = X,

t
Y = Y ,

and Y is positive-definite. We refer to Hn as the Siegel upper half-space of
degree n.

Lemma 1.10.1. Let n be a positive integer. The set Sym(n,R)+ is open in
Sym(n,R).
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Proof. For 1 ≤ k ≤ n and V ∈ Sym(n,R), let V (k × k) = (Vij)1≤i,j≤k. An
element V ∈ Sym(n,R) is positive-definite if and only if detV (k × k) > 0 for
1 ≤ k ≤ n. Consider the function

f : Sym(n,R) −→ Rn, f(V ) = (detV (1× 1), . . . ,detV (n× n)).

The function f is continuous, and therefore f−1((R>0)n) is an open subset of
Sym(n,R); since f−1((R>0)n) is exactly Sym(n,R)+, the proof is complete.

Proposition 1.10.2. Let n be a positive integer. The set Hn is an open subset
of Sym(n,C).

Proof. There is a natural homeomorphism Sym(n,C) ∼= Sym(n,R)×Sym(n,R).
Under this homeomorphism, Hn ∼= Sym(n,R)×Sym(n,R)+. By Lemma 1.10.1,
the set Sym(n,R)+ is open in Sym(n,R). It follows that Hn is an open subset
of Sym(n,C).

Proposition 1.10.3. Let n be a positive integer. Let Z1, Z2 ∈ Hn. Then
(1−t)Z1+tZ2 ∈ Hn for all t ∈ [0, 1]. Therefore, Hn is convex, and in particular,
connected.

Proof. Write Z1 = U1 + iV1 and Z2 = U2 + iV2. Then (1 − t)Z1 + tZ2 =
(1 − t)U1 + tU2 + i((1 − t)V1 + tV2) for t ∈ [0, 1]. Since (1 − t)U1 + tU2 ∈
Sym(n,R) for t ∈ [0, 1], to prove the proposition it will suffice to prove that
f(t) = (1 − t)V1 + tV2 ∈ Sym(n,R)+ for t ∈ [0, 1]. Write V1 = W 2 where
W ∈ Sym(n,R)+ (see (1.7)). Then W−1f(t)W−1 = (1− t) · 1n + tW−1V2W

−1

for t ∈ [0, 1]. We have W−1V2W
−1 ∈ Sym(n,R)+, and for each t ∈ [0, 1],

W−1f(t)W−1 ∈ Sym(n,R)+ if and only if f(t) ∈ Sym(n,R). It follows that
we may assume that V1 = 1. Let t ∈ [0, 1]; we need to prove that A = f(t) is
positive-definite. It is clear that A is positive semi-definite. If B ∈ M(n,R), and
k ∈ {1, . . . , n}, then we define B(k) = (Bij)1≤i,j≤k. Since A is positive semi-
definite, by Sylvester’s Criterion for positive semi-definite matrices, we have
det(A(k)) ≥ 0 for k ∈ {1, . . . , n}; by Sylvester’s Criterion for positive-definite
matrices, we need to prove that det(A(k)) > 0 for k ∈ {1, . . . , n}. Assume that
there exists k ∈ {1, . . . , n} such that det(A(k)) = 0. Then

det
(
(1− t)1k + V2(k)

)
= 0,

so that
det
(
(t− 1)1k − V2(k)

)
= 0.

It follows that t − 1 is an eigenvalue for V2(k); this implies that t − 1 is an
eigenvalue for V2. This is a contradiction since all the eigenvalues of V2 are
positive, and t− 1 ≤ 0.

Corollary 1.10.4. Let n be a positive integer. The topological space Hn is
simply connected.

Lemma 1.10.5. Let k be positive integer. Let f : Hk → C be an analytic
function. If f(iU) = 0 for all U in an open subset S of Sym(k,R)+, then f = 0.
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Proof. By Proposition 1.10.3, the open subset Hk of Sym(k,C) is connected.
By Proposition 1 on page 3 of [19] it suffices to prove that f vanishes on a
non-empty open subset of Hk. Let U be any element of S. Since f is analytic
at iU and Hk is an open subset of Sym(k,C), there exists ε > 0 such that

D = {Z ∈ Sym(n,C) : |Zij − iUij | < ε, 1 ≤ i ≤ j ≤ k} ⊂ Hk,

and a power series ∑
α∈Zk≥0

cα(Z − iU)α

that converges absolutely and uniformly on compact subsets of D, such that
this power series converges to f(Z) for Z ∈ D. Evidently, iU ∈ D. Define

D′ = {Y ∈ Sym(n,R) : |Yij − Uij | < ε, 1 ≤ i ≤ j ≤ k}.

Then U ∈ D′. We may assume that D′ ⊂ S. If Y ∈ D′, then iY ∈ D. Define
h : D′ → C by h(Y ) = f(iY ). We have

h(Y ) =
∑
α∈Zk≥0

cα(iY − iU)α =
∑
α∈Zk≥0

i|α|cα(Y − U)α

for Y ∈ D′. The function h is C∞, and we have

i|α|cα =
1

α!
(Dαh)(U).

Since by assumption f(iY ) = 0 for Y ∈ S, we have h = 0. This implies that
cα = 0 for α ∈ Zk≥0, which in turn implies that f vanishes on the open subset
D ⊂ Hk.

Lemma 1.10.6. Let n be a positive integer. Let

g =

[
A B
C D

]
∈ Sp(2n,R)

and Z ∈ Hn. Then CZ +D is invertible, and

(AZ +B)(CZ +D)−1 ∈ Hn.

Proof. We follow the argument from [13]. Write Z = X + iY with X,Y ∈
M(n,R). Define

P = AZ +B, Q = CZ +D.

We will first prove that Q is invertible. Assume that v ∈ Cn is such that Qv = 0;
we need to prove that v = 0. We then have:

t
PQ− t

QP = (Z
t
A+

t
B)(CZ +D)− (Z

t
C +

t
D)(AZ +B)

= Z
t
ACZ + Z

t
AD +

t
BCZ +

t
BD
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− Z t
CAZ − Z t

CB − t
DAZ − t

DB

= Z − Z (cf. Lemma 1.9.2)

= 2iY. (1.9)

It follows that

t
v
( t
PQ− t

QP
)
v = 2i

t
vY v

t
v

t
PQv − t

v
t
QPv = 2i

t
vY v

t
v

t
PQv − t

(Qv)Pv = 2i
t
vY v

0 = 2i
t
vY v

0 =
t
vY v.

Write v = v1 + iv2 with v1, v2 ∈ Rn. Then

0 =
t
vY v =

t
v1Y v1 +

t
v2Y v2.

Since Y is positive-definite, the real numbers
t
v1Y v1 and

t
v2Y v2 are both non-

negative; since the sum of these two numbers is zero, both are zero. Again,
since Y is positive-definite, this implies that v1 = v2 = 0 so that v = 0. Hence,
Q is invertible. Now we prove that PQ−1 is symmetric. Evidently, PQ−1 is
symmetric if and only if

t
PQ =

t
QP . Now

t
PQ− t

QP =
t
(AZ +B)(CZ +D)− t

(CZ +D)(AZ +B)

= (
t
Z

t
A+

t
B)(CZ +D)− (

t
Z

t
C +

t
D)(AZ +B)

=
t
Z

t
ACZ +

t
Z

t
AD +

t
BCZ +

t
BD

− t
Z

t
CAZ − t

Z
t
CB − t

DAZ − t
DB

= 0 (cf Lemma 1.9.2)

as desired. It follows that PQ−1 is symmetric. Write PQ−1 = X ′ + iY ′ where
X ′, Y ′ ∈ M(n,R) with

t
X ′ = X ′ and

t
Y ′ = Y ′. To complete the proof of the

lemma we need to show that Y ′ is positive-definite. Now

Y ′ =
1

2i

(
(X ′ + iY ′)− (X ′ + iY ′)

)
=

1

2i

(
PQ−1 − PQ−1

)
=

1

2i

( t
(PQ−1)− PQ−1

)
=

1

2i

( t
Q−1 t

P − PQ−1
)

=
1

2i

t
Q−1

( t
PQ− t

QP
)
Q−1

=
1

2i

t
Q−1

(
2iY

)
Q−1 (cf. (1.9))

=
t
Q−1Y Q−1.
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Using that Y is positive-definite, it is easy to verify that Y ′ =
t
Q−1Y Q−1 is

positive-definite.

Lemma 1.10.7. Let n be a positive integer. For g = [A B
C D ] ∈ Sp(2n,R) and

Z ∈ Hn we define

g · Z = (AZ +B)(CZ +D)−1, j(g, Z) = det(CZ +D).

We have

(gh) · Z = g · (h · Z),

j(gh, Z) = j(g, h · Z)j(h, Z)

for g, h ∈ Sp(2n,R) and Z ∈ Hn.

Proposition 1.10.8. Let n be a positive integer, and let

g =

[
A B
C D

]
.

There exists an analytic function

s(g, ·) : Hn −→ C

such that
s(g, Z)2 = det(CZ +D)

for Z ∈ Hn. Moreover, there exists an eighth root of unity ξ such that

s(

[
1

−1

]
, iU) = ξ det(U)1/2

for all U ∈ Sym(n,R)+. Here, det(U)1/2 is the positive square root of the
positive number det(U) for U ∈ Sym(n,R)+.

Proof. We follow an idea from [5], page 19. Define a function

α : [0, 1]×Hn −→ C

by

α(t, Z) = det
(

(1− t)(C(i1n) +D) + t(CZ +D)
)

= det
(
C
(
(1− t)(i1n) + tZ

)
+D)

)
for t ∈ [0, 1] and Z ∈ Hn. Here, given Z ∈ Hn, the pointsW (t) = (1−t)(i1n)+tZ
for t ∈ [0, 1] are the points on the line between iIn and Z; by Proposition 1.10.3,
all these points are in Hn, and by Lemma 1.10.6, det(CW (t) + D) is non-zero
for t ∈ [0, 1]. Thus, α actually takes values in C − {0}. Evidently, for fixed
Z ∈ Hn, the α(·, Z) is a polynomial in t, and hence α(·, Z) : [0, 1] → C − {0}
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is a piecewise C1 curve (see [17], page 75. Also, for fixed t ∈ [0, 1], α(t, ·) is
a function on Hn that is a polynomial in each entry of Z ∈ Hn, and is hence
analytic in each variable. Define

H : Hn −→ C

by the contour integral (see [17], page 76)

H(Z) =

∫
α(·,Z)

1

w
dw,

or more concretely,

H(Z) =

1∫
0

α′(t, Z)

α(t, Z)
dt,

for Z ∈ Hn. Here, the derivative is taken with respect to t ∈ [0, 1] for fixed
Z ∈ Hn. We claim that eH(Z) = det(−iZ) for Z ∈ Hn. To see this, fix
Z ∈ Hn. Since |α(·, Z)| is continuous, [0, 1] is compact, and |α(t, Z)| > 0 for
t ∈ [0, 1], the number ε = inf({|α(t, Z)| : t ∈ [0, 1]} is positive (see Theorem 5
on page 88 of [18]). The function α(·, Z) : [0, 1] → C is uniformly continuous
(see Theorem 7 on page 92 of [18]). Hence, there exists a positive integer n
such that if t1, t2 ∈ [0, 1] and |t1 − t2| ≤ 1/n, then |α(t1, Z) − α(t2, Z)| < ε/2.
Let k ∈ {0, 1, 2, . . . , n − 1}. If t ∈ [k/n, (k + 1)/n], then α(t, Z) lies in the disc
Dk = {w ∈ C : |α(k/n, Z) − w| < ε/2}. By the definition of ε, the disc Dk

does not contain 0. Therefore, there exists θk ∈ [0, 2π) such that none of the
points on the ray R(θk) = {reiθk : r ∈ [0,∞)} lie in Dk. For θ ∈ [0, 2π), let
logθ : C−R(θ)→ C be the branch of the logarithm function given by

logθ(z) = log(|z|) + iargθ(z),

where z ∈ C−R(θ) and θ < argθ(z) < θ+ 2πi. The function logθ is analytic in
its domain, and we have

d

dz
(logθ)(z) =

1

z

for z ∈ C−R(θ). Now using Theorem 4 on page 83 of [17],

H(Z) =

∫
α(·,Z)

1

z
dz

=

n−1∑
k=0

(k+1)/n∫
k/n

α′(t, Z)

α(t, Z)
dt

=

n−1∑
k=0

logθk(α((k + 1)/n, Z))− logθk(α(k/n, Z)).
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For each k ∈ {0, . . . , n− 1}, logθk(α((k+ 1)/n, Z)) = logθk+1
(α((k+ 1)/n, Z) +

2πim for some integer m. It follows that

H(Z) = logθn−1
(α(1, Z))− logθ0(α(0, Z)) + 2πiN

for some integer N . Therefore,

eH(Z) = e
logθn−1

(α(1,Z))−logθ0 (α(0,Z))+2πiN

= α(1, Z)α(0, Z)−1

= det(CZ +D) det(C(i1n) +D)−1.

Next, we claim that H : Hn → C is an analytic function on Hn. To see this, we
note that the function sending (t, Z) ∈ [0, 1]×Hn to

α′(t, Z)

α(t, Z)

is continuous, and for fixed t ∈ [0, 1], is analytic on Hn. We thus may differenti-
ate under the integral sign in the definition of H (see 2. on page 324 of [18]), and
use the Cauchy-Riemann equations criterion (see Theorem 19 on page 48 of [17])
to see that H is analytic on Hn. Fix w ∈ C× such that w2 = det(C(i1n) +D).
We now define s(g, ·) : Hn → C by

s(g, Z) = weH(Z)/2.

Then for Z ∈ Hn we have

s(g, Z)2 = w2eH(Z)

= det(C(i1n) +D) det(CZ +D) det(C(i1n) +D)−1

= det(CZ +D).

To prove the uniqueness statement, we first note that

s(

[
1

−1

]
, iU)2 = det((−1)iU) = (−i)n det(U)

for U ∈ Sym(n,R)+. Fix ζ ∈ C× such that ζ2 = (−i)n. Then ζ is an eighth
root of unity. It follows that for every U ∈ Sym(n,R)+ there exists ε(U) ∈ {±1}
such that

s(

[
1

−1

]
, iU) = ε(U)ζ det(U)1/2

for U ∈ Sym(n,R)+. Consider the function Sym(n,R)+ → R defined by U 7→

s(

[
1

−1

]
, iU)/det(U)1/2 for U ∈ Sym(n,R)+. This function is continuous

and defined on the connected set Sym(n,R)+. Since this function takes values
in the eighth roots of unity, it follows from the intermediate value theorem (see
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Theorem 6 on page 90 of [18]) that this function is constant. Hence, there exists
an eighth root of unity ξ such that

s(

[
1

−1

]
, iU) = ξ det(U)1/2

for all U ∈ Sym(n,R)+.

Corollary 1.10.9. Let n be a positive integer. Let s : Sp(2n,R) × Hn → C
be the function from Proposition 1.10.8. If g, h ∈ Sp(2n,R), then there exists
ε ∈ {±1} such that

s(gh, Z) = εs(g, h · Z)s(h, Z)

for all Z ∈ Hn.

Proof. Let g, h ∈ Sp(2n,R). If Z ∈ Hn, then

s(gh, Z)2 = j(gh, Z)

= j(g, h · Z)j(h, Z) (see Lemma 1.10.7)

= s(g, h · Z)2s(h, Z)2

=
(
s(g, h · Z)s(h, Z)

)2
.

It follows that for each Z ∈ Hn there exists ε(Z) ∈ {±1} such that s(gh, Z) =
ε(Z)s(g, h · Z)s(h, Z). The function on Hn that sends Z to ε(Z) is continuous
and takes values in {±1}. Since Hn is connected (see Proposition 1.10.3), the
intermediate value theorem (see Theorem 6 on page 90 of [18]) implies now that
this function is constant.

1.11 The theta group

Let k be a positive integer, and let M ∈ M(k,C). We define an element of
M(k, 1,C) by

diag(M) =

m11

...
mkk

 .
Lemma 1.11.1. Let k be a positive integer, Assume that M ∈ M(k,Z) and
X ∈ Sym(k,Z). Then

diag(MX
t
M) ≡Mdiag(X) (mod 2).

Proof. If A is a k × k matrix, and i, j ∈ {1, . . . , k}, then we let Aij be the
(i, j)-th entry of A. Let i ∈ {1, . . . , k}. Then the i-th entry of diag(MX

t
M) is:

k∑
`=1

Mi`(X
t
M)`i =

k∑
`=1

Mi`

k∑
j=1

X`j(
t
M)ji
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=

k∑
`=1

k∑
j=1

Mi`MijX`j

=
∑

`,j∈{1,...,k}
`=j

Mi`MijX`j +
∑

`,j∈{1,...,k}
` 6=j

Mi`MijX`j

=
∑

j∈{1,...,k}

M2
ijXjj +

∑
`,j∈{1,...,k}

`<j

(Mi`MijX`j +MijMi`Xj`)

=
∑

j∈{1,...,k}

M2
ijXjj +

∑
`,j∈{1,...,k}

`<j

2Mi`MijX`j

≡
∑

j∈{1,...,k}

M2
ijXjj (mod 2)

≡
∑

j∈{1,...,k}

MijXjj (mod 2).

Since
∑k
j=1MijXjj is the i-th entry of Mdiag(X), the proof is complete.

For the next proposition, we follow Lemma 7.6 from p. 457 of [7].

Proposition 1.11.2. Let n be a positive integer. Define a function

Sp(2n,Z)× (Z/2Z)2n → (Z/2Z)2n

by

g{m} =
t
g−1m+

[
diag(C

t
D)

diag(A
t
B)

]
,

for g = [A B
C D ] ∈ Sp(2n,Z) and m ∈ (Z/2Z)2n. Then this function is an action,

i.e.,
g{h{m}} = (gh){m}

for g, h ∈ Sp(2n,Z) and m ∈ (Z/2Z)2n.

Proof. Let g, h ∈ Sp(2n,Z) with

g =

[
A B
C D

]
∈ Sp(2n,Z),

and let m ∈ (Z/2Z)2n. To prove that g{h{m}} = (gh){m} we may assume that
h is a generator for Sp(2n,Z) as described in Theorem 1.9.6. Assume first that
h has the form

h =

[
1 X

1

]
for some X ∈ Sym(n,Z). Then

(gh){m} ≡
[
A AX +B
C CX +D

]
{m} (mod 2)
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≡ t
(gh)−1m+

[
diag(C

t
(CX +D))

diag(A
t
(AX +B))

]
(mod 2)

≡ t
(gh)−1m+

[
diag(CX

t
C + C

t
D)

diag(AX
t
A+A

t
B)

]
(mod 2)

≡ t
(gh)−1m+

[
diag(CX

t
C) + diag(C

t
D)

diag(AX
t
A) + diag(A

t
B)

]
(mod 2),

And

g{h{m}} ≡ g{t
h−1m+

[
diag(X)

]
} (mod 2)

≡ t
g−1 t

h−1m+
t
g−1

[
diag(X)

]
+

[
diag(C

t
D)

diag(A
t
B)

]
(mod 2)

≡ t
(gh)−1m+

[
D −C
−B A

] [
diag(X)

]
+

[
diag(C

t
D)

diag(A
t
B)

]
(mod 2)

≡ t
(gh)−1m+

[
−C · diag(X) + diag(C

t
D)

A · diag(X) + diag(A
t
B)

]
(mod 2).

The equality g{h{m}} = (gh){m} follows now from Lemma 1.11.1. Next, as-
sume that

h =

[
1

−1

]
.

Then

(g

[
1

−1

]
){m} ≡ t

g−1
t[

1
−1

]
−1m+

[
diag(−D t

C)
diag(−B t

A)

]
(mod 2)

≡ t
g−1

t[
1

−1

]
−1m+

[
diag(D

t
C)

diag(B
t
A)

]
(mod 2).

And

g{h{m}} ≡ g{
t[

1
−1

]
−1m} (mod 2)

≡ t
g−1

t[
1

−1

]
−1m+

[
diag(C

t
D)

diag(A
t
B)

]
(mod 2).

Because g ∈ Sp(2n,Z), the matrices C
t
D and A

t
B are symmetric; this now

implies that (gh){m} = g{h{m}}.

Let n be a positive integer. By Proposition 1.11.2, the group Sp(2n,Z) acts
on (Z/2Z)2n. We define the theta group Γθ to be the stabilizer of the point
0 in (Z/2Z)2n. When we need to indicate that Γθ is contained in Sp(2n,Z) we
will write Γθ,2n for Γθ. The definition of this action implies that the theta group
is the subset of all [A B

C D ] ∈ Sp(2n,Z) such that diag(A
t
B) ≡ 0 (mod 2) and

diag(C
t
D) ≡ 0 (mod 2). Let g = [A B

C D ] ∈ Sp(2n,Z). Then

g−1 =

[ t
D − t

B
− t
C

t
A

]
.
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Since Γθ is a group, we have g ∈ Γθ if and only if g−1 ∈ Γθ. Thus, for [A B
C D ] ∈

Sp(2n,Z),

diag(A
t
B) ≡ 0 (mod 2)

diag(C
t
D) ≡ 0 (mod 2)

⇐⇒ g ∈ Γθ

⇐⇒ g−1 ∈ Γθ ⇐⇒
diag(

t
BD) ≡ 0 (mod 2)

diag(
t
CA) ≡ 0 (mod 2)

.

1.12 Elementary divisors

Theorem 1.12.1 (Theorem on elementary divisors). Let n be a positive inte-
ger. Let M ∈ M(n,Z). There exist a non-negative integer k, positive integers
d1, . . . , dk and g1, g2 ∈ SL(n,Z) such that k ≤ n,

g1Mg2 =



d1

d2

d3

. . .

dk
0

. . .

0


and

d1

∣∣d2, d2

∣∣d3, . . . , dk−1|dk.

If M is non-zero, then the greatest common divisor of the entries of M is d1.

Proof. For the first assertion see Proposition 2.11 on p. 339 of [10], or p. 8 of
[4]. Assume that M is non-zero. If X ∈ M(n,Z) is non-zero, then let I(X) be
the ideal of Z generated by X. If X ∈ M(n,Z) is non-zero, then the greatest
common divisor of the entries of X is the positive generator of I(X). Since
g1, g2 ∈ SL(n,Z) we have I(M) = I(g1Mg2) = (d1); thus, the greatest common
divisor of the entries of M is d1.



Chapter 2

Classical theta series on H1

2.1 Definition and convergence

Lemma 2.1.1. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix, and for x ∈ Rf let

Q(x) =
1

2
t
xAx.

For z ∈ H1, define

θ(A, z) =
∑
m∈Zf

eπiz
tmAm =

∑
m∈Zf

e2πizQ(m)

For every δ > 0, this series converges absolutely and uniformly on the set

{z ∈ H1 : Im(z) ≥ δ}.

The function θ(A, ·) is an analytic function on H1.

Proof. Since A is positive-definite, the function defined by x 7→
√
Q(x) defines a

norm on Rf . All norms on Rf equivalent; in particular, this norm is equivalent
to the standard norm ‖ · ‖ on Rf . Hence, there exists ε > 0 such that

ε‖x‖ ≤
√
Q(x),

or equivalently,
ε2‖x‖2 = ε2(x2

1 + · · ·x2
f ) ≤ Q(x)

for x =
t
(x1, . . . , xf ) ∈ Rf .

Now let δ > 0, and let z ∈ H1 be such that Im(z) ≥ δ. Let m =
t
(m1, . . . ,mf ) ∈ Zf . Then

|e2πizQ(m)| = e−2πIm(z)Q(m)

45
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≤ e−2πδQ(m)

≤ e−2πδε2‖m‖2

= q‖m‖
2

= qm
2
1+···+m2

f .

where q = e−2πδε2 . Since 0 < q < 1, the series∑
n∈Z

qn
2

converges absolutely. This implies that the series

(
∑
n∈Z

qn
2

)f =
∑
m∈Zf

qm
2
1+···+m2

f =
∑
m∈Zf

q‖m‖
2

converges absolutely. It follows from the Weierstrass M -test that our series∑
m∈Zf

e2πizQ(m)

converges absolutely and uniformly on {z ∈ H1 : Im(z) ≥ δ} (see, for example,
[17], p. 160). Since for each m ∈ Zf the function on H1 defined by z 7→ e2πizQ(m)

is an analytic function, and since our series converges absolutely and uniformly
on every closed disk in H1, it follows that θ(A, ·) is analytic on H1 (see [17], p.
162).

Proposition 2.1.2. Let f be a positive integer. Let ε be a real number such
that 0 < ε < 1. Let K1 be a compact subset of H1, and let K2 be a compact
subset of Cf . Then there exists a positive real number R > 0 such that

Im
(
z · t

(w + g)(w + g)
)
≥ ε Im

(
z · t

gg
)
,

or equivalently

−Im
(
z · t

(w + g)(w + g)
)
≤ −ε Im

(
z · t

gg
)
,

for z ∈ K1, w ∈ K2 and g ∈ Rf such that ‖g‖ ≥ R.

Proof. Let M > 0 be a positive real number such that

M ≥ |Re(z)|, |Im(z)|, ‖Re(w)‖, ‖Im(w)‖

for z ∈ K1 and w ∈ K2. Let δ > 0 be such that

Im(z) ≥ δ > 0

for z ∈ K1. Let R > 0 be such that if x ∈ R and x ≥ R, then

0 ≤ (1− ε)δx2 − 4M2x− 4M3,
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or equivalently,
4M2(x+M) ≤ (1− ε)δx2.

Now let z ∈ K1, w ∈ K2, and let g ∈ Rf with ‖g‖ ≥ R. Write z = σ + it
for some σ, t ∈ R with t > 0. Also, write w = a + bi with a, b ∈ Rf . Then
calculations show that

2 · Im
(
z

t
wg
)

= 2t
t
ag + 2σ

t
bg,

Im
(
z

t
ww
)

= σ(
t
aa− t

bb)− 2t
t
ab.

It follows that

− 2 · Im
(
z

t
wg
)
− Im

(
z

t
ww
)

≤ |2 · Im
(
z

t
wg
)
|+ |Im

(
z

t
ww
)
|

≤ 2t| tag|+ 2|σ|| tbg|+ |σ|| taa|+ |σ|| tbb|+ 2t| tab|
≤ 2t‖a‖‖g‖+ 2|σ|‖b‖‖g‖+ |σ|‖a‖2 + |σ|‖b‖2 + 2t‖a‖‖b‖
≤ 2M2‖g‖+ 2M2‖g‖+M3 +M3 + 2M3

= 4M2‖g‖+ 4M3

= 4M2(‖g‖+M)

≤ (1− ε)δ‖g‖2

≤ (1− ε)t‖g‖2

= (1− ε)Im
(
z · t

gg
)
.

Therefore,

−2 · Im
(
z

t
wg
)
− Im

(
z

t
ww
)
≤ (1− ε)Im

(
z · t

gg
)

εIm
(
z · t

gg
)
≤ Im

(
z · t

gg
)

+ 2 · Im
(
z

t
wg
)

+ Im
(
z

t
ww
)

εIm
(
z · t

gg
)
≤ Im

(
z · t

(w + g)(w + g)
)
.

This is the desired inequality.

Corollary 2.1.3. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix. Let ε be real number such that 0 < ε < 1. Let K1

be a compact subset of H1, and let K2 be a compact subset of Cf . For x ∈ Cf ,
define

Q(x) =
1

2
t
xAx.

Then there exists a positive real number R > 0 such that

Im
(
z ·Q(w + g)

)
≥ ε Im

(
z ·Q(g)

)
,

or equivalently,
−Im

(
z ·Q(w + g)

)
≤ −ε Im

(
z ·Q(g)

)
,

for z ∈ K1, w ∈ K2, and all g ∈ Rf such that ‖g‖ ≥ R.
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Proof. Since A is a positive-definite symmetric matrix, there exists a positive-
definite symmetric matrix B ∈ M(f,R) such that A =

t
BB = BB (see (1.7)).

The set B(K2) is a compact subset of Cf . By Proposition 2.1.2 there exists a
positive real number T > 0 such that

Im
(
z · t

(w′ + g′)(w′ + g′)
)
≥ ε Im

(
z · t

g′g′
)

for z ∈ K1, w′ ∈ B(K2), and g′ ∈ Rf with ‖g′‖ ≥ T . We may regard the matrix
B−1 as a operator from Rf to Rf ; as such, B−1 is bounded. Hence,

‖B−1(g)‖ ≤ ‖B−1‖‖g‖

for g ∈ Rf . Define R = ‖B−1‖T . Let z ∈ K1, w ∈ K2 and g ∈ Rf with
‖g‖ ≥ R. Then w′ = Bw ∈ B(K2), and:

‖B−1
(
B(g)

)
‖ ≤ ‖B−1‖‖B(g)‖

‖g‖ ≤ ‖B−1‖‖B(g)‖
R ≤ ‖B−1‖‖B(g)‖

‖B−1‖−1R ≤ ‖B(g)‖
T ≤ ‖B(g)‖.

Therefore, with g′ = B(g),

Im
(
z · t

(w′ + g′)(w′ + g′)
)
≥ ε Im

(
z · t

g′g′
)

Im
(
z · t

(Bw +Bg)(Bw +Bg)
)
≥ ε Im

(
z · t

(Bg)Bg
)

Im
(
z · t

(w + g)
t
BB(w + g))

)
≥ ε Im

(
z · t

g
t
BBg

)
Im
(
z · t

(w + g)A(w + g))
)
≥ ε Im

(
z · t

gAg
)

Im
(
z ·Q(w + g))

)
≥ ε Im

(
z ·Q(g)

)
This completes the proof.

Proposition 2.1.4. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix, and for x ∈ Rf let

Q(x) =
1

2
t
xAx.

For z ∈ H1 and w =
t
(w1, . . . , wf ) ∈ Cf , define

θ(A, z, w) =
∑
m∈Zf

eπiz
t(m+w)A(m+w) =

∑
m∈Zf

e2πizQ(m+w).

Let D be a closed disk in H1, and let D1, . . . , Df be closed disks in Cf . Then
θ(A, z, w1, . . . , wf ) converges absolutely and uniformly on D × D1 × · · · × Df .
The function θ(A, z, w1, . . . , wf ) on H1 × Cf is analytic in each variable.
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Proof. We apply Corollary 2.1.3 with ε = 1/2, K1 = D and K2 = D1×· · ·×Df .
By this corollary, there exists a finite set X of Zf such that for m ∈ Zf − X,
z ∈ K1 and w ∈ K2 we have:

|e2πizQ(m+w)| = eRe
(

2πizQ(m+w)
)

= e−2πIm
(
zQ(m+w)

)
≤ e−2π·(1/2)·Im

(
zQ(m)

)
= e−2πQ(m)Im(z/2)

≤ e−2πδQ(m)

= |e2πi(δi)Q(m)|.

Here, δ > 0 is such that δ ≤ Im(z/2) for z ∈ D. By Lemma 2.1.1 the series∑
m∈Zf

|e2πi(δi)Q(m)|

converges. The Weierstrass M -test (see [17], p. 160) now implies that the series

θ(A, z, w) =
∑
m∈Zf

e2πizQ(m+w)

converges absolutely and uniformly on D × D1 × · · · × Df . Since for each
m ∈ Zf the function on H1×Cf defined by (z, w) 7→ e2πizQ(m+w) is an analytic
function in each variable z, w1, . . . , wf , and since our series converges absolutely
and uniformly on all products of closed disks, it follows that θ(A, z, w1, . . . , wf )
is analytic in each variable (see [17], p. 162).

2.2 The Poisson summation formula

Let f be a positive integer. Let g : Rf → C be a function, and write g = u+ iv,
where u, v : Rf → R are functions. We say that g is smooth if u and v are both
infinitely differentiable. Assume that g is smooth. Let (α1, . . . , αf ) ∈ Zf>0. We
define

Dαg =
( ∂α1

∂xα1
1

· · · ∂
αf

∂x
αf
f

)
g.

We say that f is a Schwartz function if

sup
x∈Rf

|P (x)(Dα)(x)|

is finite for all P (X) = P (X1, . . . , Xf ) ∈ C[X1, . . . , Xf ] and α ∈ Zf>0. The set
S(Rf ) of all Schwartz functions is a complex vector space, called the Schwartz



50 CHAPTER 2. CLASSICAL THETA SERIES ON H1

space on Rf . If g ∈ S(Rf ), then we define the Fourier transform of g to be
the function Fg : Rf → C defined by

(Fg)(x) =

∫
Rf

g(y)e−2πi txy dy

for x ∈ Rf . If g ∈ S(Rf ), then the integral defining Fg converges absolutely for
every x ∈ Rf . In fact, if g ∈ S(Rf ), then Fg ∈ S(Rf ), and a number of other
properties hold; see, for example, chapter 7 of [23], or chapter 13 of [15].

Lemma 2.2.1. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix, and for x ∈ Rf let

Q(x) =
1

2
t
xAx.

Let w ∈ Cf . The function g : Rf → C defined by

g(x) = e−2πQ(x+w) = e−π
t(x+w)A(x+w)

for x ∈ Rf is in the Schwartz space S(Rf ).

Proof. We begin with some simplifications. Also, there exists a positive-definte
symmetric matrix B ∈ GL(f,R) such that A =

t
BB = BB (see (1.7)). The

function g is in S(Rf ) if and only if g ◦B−1 in in S(Rf ). Now

g(B−1x) = e−π
t
(B−1x+w)A(B−1x+w)

= e−π
t
(B−1x+w) tBB(B−1x+w)

= e−π
t(x+Bw)(x+Bw).

It follows that we may assume that A = 1. Next, let w = u+iv where u, v ∈ Rf .
Since g is in S(Rf ) if and only if the function defined by x 7→ g(x−u) for x ∈ Rf
is in S(Rf ), we may also assume that u = 0. Now

g(x) = e−π
t(x+iv)(x+iv)

= e−π
txx−2πi txv+π tvv

= eπ
tvve−π

txx−2πi txv.

Since eπ
tvv is a constant, it suffices to prove that the function h : Rf → C

defined by
h(x) = e−π

txx−2πi txv

for x ∈ Rf is contained in S(Rf ). Let α = (α1, . . . , αf ) ∈ Zf≥0. Then there
exists a polynomial Qα(X1, . . . , Xf ) ∈ C[X1, . . . , Xf ] such that

(Dαh)(x) = Qα(x)e−π
txx−2πi txv
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for x ∈ Rf . Hence, if P (X1, . . . , Xf ) ∈ C[X1, . . . , Xf ], then

|P (x)(Dαh)(x)| = |P (x)Qα(x)e−π
txx−2πi txv|

= |P (x)Qα(x)e−π
txx|

for x ∈ Rf . This equality implies that it now suffices to prove that the function
defined by x 7→ e−π

txx for x ∈ Rf is contained in S(Rf ). This is a well-known
fact that can be proven using L’Hôpital’s rule.

Lemma 2.2.2. Let f be a positive integer. If w ∈ Cf , then∫
Rf

e−π
t(y+w)(y+w) dy =

∫
Rf

e−π
tyy dy.

Proof. By Fubini’s theorem∫
Rf

e−π
t(y+w)(y+w) dy =

∫
Rf

e−π(y1+w1)2−···−π(yf+wf )2

dy

=

∫
Rf

e−π(y1+w1)2

· · · e−π(yf+wf )2

dy

= (

∫
R

e−π(y1+w1)2

dy1) · · · (
∫
R

e−π(yf+wf )2

dyf ).

It thus suffices to prove the lemma when f = 1. Write w = u+ iv with u, v ∈ R.
Then ∫

R

e−π(y+u+iv)2

dy =

∫
R

e−π(y+iv)2

dy.

To complete the proof we will use Cauchy’s theorem. Assume, say, v > 0. Let
a > 0, and let γ = γ1 + γ2 + γ3 + γ4 be the closed piecewise smooth curve as
below:

−a a

−a+ iv a+ iv

γ1

γ3

γ2γ4

By Cauchy’s theorem (see chapter 2 of [17]) applied to the analytic function

z 7→ e−πz
2

we have

0 =

∫
γ

e−πz
2

dz =

∫
γ1

e−πz
2

dz +

∫
γ2

e−πz
2

dz +

∫
γ3

e−πz
2

dz +

∫
γ4

e−πz
2

dz.
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Using the definitions of these contour integrals, this is:

0 =

∫ a

−a
e−πy

2

dy +

∫
γ2

e−πz
2

dz −
∫ a

−a
e−π(y+iv)2

dy +

∫
γ4

e−πz
2

dz,

or equivalently,∫ a

−a
e−π(y+iv)2

dy =

∫ a

−a
e−πy

2

dy +

∫
γ2

e−πz
2

dz + +

∫
γ4

e−πz
2

dz. (2.1)

On the curves γ2 and γ4 the function z 7→ e−πz
2

is bounded by e−πa
2+πv2

.
Therefore (see Theorem 3 on page 81 of [17]),

|
∫
γ2

e−πz
2

dz| ≤ ve−πa
2+πv2

, |
∫
γ3

e−πz
2

dz| ≤ ve−πa
2+πv2

.

These bounds imply that

lim
a→∞

∫
γ2

e−πz
2

dz = lim
a→∞

∫
γ4

e−πz
2

dz = 0.

Letting a→∞ in (2.1), we thus obtain∫ ∞
−∞

e−π(y+iv)2

dy =

∫ ∞
−∞

e−πy
2

dy.

This is the desired result. If v < 0, then there is a similar proof.

Lemma 2.2.3. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix, and for x ∈ Rf let

Q(x) =
1

2
t
xAx.

Let w ∈ Cf . Define g : Rf → C by

g(x) = e−2πQ(x+w) = e−π
t(x+w)A(x+w)

for x ∈ Rf . Then (
Fg
)
(x) = det(A)−1/2e2πi txwe−π

txA−1x

for x ∈ Rf .

Proof. There exists positive-definite symmetric matrix B ∈ GL(f,R) such that
A =

t
BB = BB (see (1.7)). Let x ∈ Rf . Then:(
Fg
)
(x) =

∫
Rf

exp(−2πQ(y + w)) exp(−2πi
t
xy) dy
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=

∫
Rf

exp
(
− π

(
2Q(y + w) + 2i

t
xy
))
dy

=

∫
Rf

exp
(
− π

( t
(y + w)A(y + w) + 2i

t
xy
))
dy

=

∫
Rf

exp
(
− π

( t
(y + w)A(y + w) + 2i

t
yx
))
dy

=

∫
Rf

exp
(
− π

( t
(y + w)

t
BB(y + w) + 2i

t
(By)

t
B−1x

))
dy

=

∫
Rf

exp
(
− π

( t
(By +Bw)(By +Bw) + 2i

t
(By)

t
B−1x

))
dy

(
Fg
)
(x) = det(B)−1

∫
Rf

exp
(
− π

( t
(y +Bw)(y +Bw) + 2i

t
y

t
B−1x

))
dy.

In the last step we used the formula for a linear change of variables (see Theorem
2.20, (e) on page 50 and section 2.23 of [24]; note also that det(A) and det(B) are
positive, as A and B are positive-definite symmetric matrices). Now det(B)2 =
det(A), so that det(A)1/2 = det(B). Hence,(
Fg
)
(x)

= det(A)−1/2

∫
Rf

exp
(
− π

( t
yy + 2

t
yBw +

t
(Bw)Bw + 2i

t
y

t
B−1x

))
dy

= det(A)−1/2 exp(−π t
wAw)

∫
Rf

exp
(
− π

( t
yy + 2

t
yBw + 2i

t
y

t
B−1x

))
dy

= det(A)−1/2 exp(−π t
wAw)

∫
Rf

exp
(
− π

( t
yy + 2

t
y(Bw + i

t
B−1x)

))
dy

= det(A)−1/2 exp(−π t
wAw) exp

(
π

t
(Bw + i

t
B−1x)(Bw + i

t
B−1x)

)
×
∫
Rf

exp
(
− π

( t
yy + 2

t
y(Bw + i

t
B−1x)

+
t
(Bw + i

t
B−1x)(Bw + i

t
B−1x)

))
dy

= det(A)−1/2 exp
(
− π t

wAw
)

exp
(
π

t
wAw + 2πi

t
xw − π t

xA−1x
)

×
∫
Rf

exp
(
− π t

(y +Bw + i
t
B−1x)(y +Bw + i

t
B−1x)

)
dy.

Applying now Lemma 2.2.2, we obtain:(
Fg
)
(x) = det(A)−1/2 exp

(
2πi

t
xw − π t

xA−1x
) ∫
Rf

exp
(
− π t

yy
)
dy
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Fg
)
(x) = det(A)−1/2 exp

(
2πi

t
xw − π t

xA−1x
)
.

Here, we have used the well-known classical fact that∫
Rf

exp
(
− π t

yy
)
dy = 1.

This completes the calculation.

Theorem 2.2.4 (Poisson summation formula). Let f be a positive integer. Let
g ∈ S(Rf ). Then ∑

m∈Zf
g(m) =

∑
m∈Zf

(Fg)(m),

where both series converge absolutely.

Proof. See page 249 of [15].

Lemma 2.2.5. Let f be a positive integer. Let A ∈ M(f,R) be a positive-
definite symmetric matrix. Let ε be real number such that 0 < ε < 1. Let K1

be a compact subset of H1, and let K2 be a compact subset of Cf . For x ∈ Cf ,
define

Q(x) =
1

2
t
xAx.

Then there exists a positive real number R > 0 such that

−Im
(
(−1/z)

t
gA−1g + 2

t
gw
)
≤ −ε Im

(
(−1/z) · t

gA−1g
)
,

for z ∈ K1, w ∈ K2, and all g ∈ Rf such that ‖g‖ ≥ R.

Proof. This proof is similar to the proof of Proposition 2.1.2. First of all, there
exists a positive-definite symmetric matrix B ∈ GL(f,R) such that A =

t
BB

(see (1.7)). If m ∈ Rf , then we note that

t
gA−1g = | tgA−1g|

= | tgB−1 t
B−1g|

= | t(t
B−1g) · (t

B−1g)|
= ‖ t

B−1g‖2

=
( 1

‖ t
B‖
· ‖ t

B‖‖ t
B−1g‖

)2

≥
( 1

‖ t
B‖
· ‖g‖

)2

=
1

‖ t
B‖2

· ‖g‖2.

Next, let M > 0 be such that

|Im(−1/z)|, |Im(w)| ≤M
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for z ∈ K1 and w ∈ K2; note that the set consisting of −1/z for z ∈ K1 is also
a compact subset of H1. Let δ > 0 be such that

Im(−1/z) ≥ δ > 0.

Let R > 0 be such that if x ≥ R, then

δ(1− ε) · 1

‖ t
B‖2

· x2 ≥ 2Mx.

Now z ∈ K1, w ∈ K2, and g ∈ Rf with ‖g‖ ≥ R. Write −1/z = σ + it for
σ, t ∈ R and w = a+ bi for a, b ∈ Rf . We have

−Im(2
t
gw) = −2

t
gb

≤ 2| tgb|
≤ 2M‖g‖.

On the other hand,

(1− ε) · Im
(
(−1/z)

t
gA−1g

)
= t · t

gA−1g

≥ δ(1− ε) · 1

‖ t
B‖2

· ‖g‖2

It follows that

−Im(2
t
gw) ≤ (1− ε) · Im

(
(−1/z)

t
gA−1g

)
−Im

(
(−1/z)

t
gA−1g + 2

t
gw
)
≤ −ε · Im

(
(−1/z)

t
gA−1g

)
.

This is the desired result.

Theorem 2.2.6. Let f be a positive integer. Assume that f is even, and set

k =
f

2
.

Let A ∈ M(f,R) be a positive-definite symmetric matrix, and for x ∈ Rf let

QA(x) =
1

2
t
xAx, QA−1(x) =

1

2
t
xA−1x.

The series ∑
m∈Zf

eπi(−1/z) tmA−1m+2πi tmw

converges absolutely and uniformly for (z, w) ∈ D ×D1 × · · · ×Df , where D is
any closed disk in H1, and D1, . . . , Df are any closed disks in Cf . The function
that sends (z, w) ∈ H1 ×Cf to this series is analytic in each variable. We have

θ(A, z, w) =
ik

zk
√

det(A)

∑
m∈Zf

eπi(−1/z) tmA−1m+2πi tmw

for z ∈ H1 and w ∈ Cf .
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Proof. We apply Lemma 2.2.5 with ε = 1/2, K1 = D, and K2 = D1× · · ·×Df .
By this corollary, there exists a finite set X of Zf such that for m ∈ Zf − X,
z ∈ K1 and w ∈ K2 we have:

|eπi(−1/z) tmA−1m+2πi tmw| = e−πIm
(

(−1/z) tmA−1m+2 tmw
)

= e−π·(1/2)·Im
(

(−1/z)·tmA−1m
)

≤ e−π·Im
(

(−1/z)·QA−1 (m)
)

= e−2πQA−1 (m)·Im(−1/(2z))

≤ e−2πδQA−1 (m)

= |e2πi(δi)QA−1 (m)|.

Here, δ > 0 is such that δ ≤ Im(−1/(2z)) for z ∈ D. By Lemma 2.1.1 the series∑
m∈Zf

|e2πi(δi)QA−1 (m)|

converges. The Weierstrass M -test (see [17], p. 160) now implies that the series∑
m∈Zf

eπi(−1/z) tmA−1m+2πi tmw

converges absolutely and uniformly on D×D1×· · ·×Df . Since for each m ∈ Zf

the function on H1 × Cf defined by (z, w) 7→ eπi(−1/z) tmA−1m+2πi tmw is an
analytic function in each variable z, w1, . . . , wf , and since our series converges
absolutely and uniformly on all products of closed disks, it follows that this
series is analytic in each variable (see [17], p. 162).

Now fix w ∈ Cf . Define g : Rf → C by

g(x) = e−2πQA(x+w) = e−π
t(x+w)A(x+w)

for x ∈ Rf . Then by Lemma 2.2.3,(
Fg
)
(x) = det(A)−1/2e−π

txA−1x+2πi txw

for x ∈ Rf . By Theorem 2.2.4, the Poisson summation formula, we have:∑
m∈Zf

e−2πQA(m+w) =
∑
m∈Zf

det(A)−1/2e−π
txA−1x+2πi txw

∑
m∈Zf

e2πi·i·QA(m+w) = det(A)−1/2
∑
m∈Zf

eπi·(−1/i) txA−1x+2πi txw.

Let t > 0. Replacing A by tA, we obtain similarly,∑
m∈Zf

e2πi·it·QA(m+w) =
1

det(tA)1/2

∑
m∈Zf

eπi·(−1/(it)) txA−1x+2πi txw
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=
ik

(it)k
√

det(A)

∑
m∈Zf

eπi·(−1/(it)) txA−1x+2πi txw

∑
m∈Zf

e2πi·z·QA(m+w) =
ik

zk
√

det(A)

∑
m∈Zf

eπi·(−1/z) txA−1x+2πi txw

θ(A, z, w) =
ik

zk
√

det(A)

∑
m∈Zf

eπi·(−1/z) txA−1x+2πi txw,

for z ∈ H1 of the form z = it for t > 0. Since both sides of the last equation
are analytic functions in z for z ∈ H1, the Identity Principle (see p. 307 of [17])
implies that this equality holds for all z ∈ H1.

2.3 Differential operators

Let f be a positive integer. Let H(Cf ) be the C-algebra of all functions

F : Cf → C

that are analytic in each variable. Let ` =
t
(`1, . . . , `f ) ∈ Cf . We define a C

linear map
L` : H(Cf ) −→ H(Cf )

by

L`(F ) =

f∑
i=1

`i
∂F

∂wi
.

Lemma 2.3.1. Let f be a positive integer, and let ` ∈ Cf . Then

L`
(
F1 · F2

)
= L`(F1) · F2 + F1 · L`(F2)

for F1, F2 ∈ H(Cf ). Also,

L`(e
F ) = L`(F ) · eF

for F ∈ H(Cf ).

Proof. Let F1, F2 ∈ H(Cf ). We have

L`
(
F1 · F2

)
=

f∑
i=1

`i
∂

∂wi

(
F1 · F2

)
=

f∑
i=1

`i
(∂F1

∂wi
· F2 + F1 ·

∂F2

∂wi

)
=

f∑
i=1

`i
∂F1

∂wi
· F2 +

f∑
i=1

`iF1 ·
∂F2

∂wi
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=
( f∑
i=1

`i
∂F1

∂wi

)
· F2 + F1 ·

( f∑
i=1

`i
∂F2

∂wi

)
= L`(F1) · F2 + F1 · L`(F2).

Let F ∈ H(Cf ). Then:

L`(e
F ) =

f∑
i=1

`i
∂

∂wi
(eF )

=

f∑
i=1

`i
∂F

∂wi
· eF

=
( f∑
i=1

`i
∂F

∂wi

)
· eF

= L`(F ) · eF .

This completes the proof.

Lemma 2.3.2. Let f be a positive integer and let A ∈ M(f,R) be a positive-
definite symmetric matrix. Assume that ` ∈ Cf is such that

t
`A` = 0.

Let m ∈ Cf be fixed, and let r be a non-negative integer. Then:

L`
( t

(m+ w)A(m+ w)
)

= 2
t
`A(m+ w),

L`

(( t
`A(m+ w)

)r)
= 0,

L`
( t
mw) =

t
`m.

Here, all functions are variables in w ∈ Cf .

Proof. We have

L`
( t

(m+ w)A(m+ w)
)

= L`
( f∑
i,j=1

aij(mi + wi)(mj + wj)
)

=

f∑
i,j=1

aijL`
(
(mi + wi)(mj + wj)

)
=

f∑
i,j=1

aij

(
L`
(
(mi + wi)

)
(mj + wj) + (mi + wi)L`

(
(mj + wj)

))

=

f∑
i,j=1

aij
(
`i(mj + wj) + `j(mi + wi)

)
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=

f∑
i,j=1

aij`i(mj + wj) +

f∑
i,j=1

aij`j(mi + wi)

=
t
`A(m+ w) +

t
(m+ w)A`

= 2
t
`A(m+ w).

We prove the second assertion by induction on r. The assertion is clear if r = 0.
For r = 1, we have:

L`
( t
lA(m+ w)

)
= L`

( f∑
i,j=1

aij`i(mj + wj)
)

=

f∑
i,j=1

aij`iL`(mj + wj)

=

f∑
i,j=1

aij`i`j

=
t
`A`

= 0.

Assume now that r ≥ 2 and that the claim holds for the non-negative integers
0, 1, . . . , r − 1. Then

L`

(( t
`A(m+ w)

)r)
= L`

(
t
`A(m+ w) ·

( t
`A(m+ w)

)r−1
)

= L`
( t
`A(m+ w)

)
·
( t
`A(m+ w)

)r−1
+

t
`A(m+ w) · L`

(( t
`A(m+ w)

)r−1
)

= 0 ·
( t
`A(m+ w)

)r−1
+

t
`A(m+ w) · 0

= 0.

The final assertion of the lemma is straightforward.

Proposition 2.3.3. Let f be a positive even integer, and let A ∈ M(f,R) be a
positive-definite symmetric matrix. Define

k =
f

2
.

Let ` ∈ Cf be such that
t
`A` = 0.

For every non-negative integer r the series∑
m∈Zf

( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)
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and ∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi tmw

converge absolutely and uniformly for (z, w) ∈ D ×D1 × · · · ×Df , where D is
any closed disk in H1, and D1, . . . , Df are any closed disks in Cf . Both series
define functions on H1 × Cf that are analytic in each variable. Moreover,∑

m∈Zf

( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)

=
ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi tmw.

Proof. We prove this result by induction on r. The case r = 0 is Theorem 2.2.6.
Assume the claims hold for r; we will prove that they hold for r + 1. Let

S1(z, w) =
∑
m∈Zf

( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)

for s ∈ H1 and w ∈ Cf . Let D be any closed disk in H1, and let D1, . . . , Df be
any closed disks in Cf . Since the above series converge absolutely and uniformly
onD×D1×· · ·×Df to S1, and since the terms of this series are analytic functions
in each of the variables z, w1, . . . , wf , the series∑

m∈Zf
L`

(( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)
)

converges absolutely and uniformly on D×D1×· · ·×Df to the analytic function
L`S1 (see p. 162 of [17]). We have for z ∈ H1 and w ∈ Cf , using Lemma 2.3.1
and Lemma 2.3.2,

(L`S1)(z, w)

=
∑
m∈Zf

L`

(( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)
)

=
∑
m∈Zf

L`

(( t
`A(m+ w)

)r)
eπiz

t(m+w)A(m+w)

+
( t
`A(m+ w)

)r
L`
(
eπiz

t(m+w)A(m+w)
)

=
∑
m∈Zf

( t
`A(m+ w)

)r · L`(πiz t
(m+ w)A(m+ w)

)
· eπiz

t(m+w)A(m+w)

= 2πiz
∑
m∈Zf

( t
`A(m+ w)

)r+1
eπiz

t(m+w)A(m+w).

Next, for z ∈ H1 and w ∈ Cf , let

S2(z, w) =
ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi tmw.
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Comments similar to those above apply to S2 and the series defining S2. For
S2 we have for z ∈ H1 and w ∈ Cf , using Lemma 2.3.1 and Lemma 2.3.2,

(L`S2)(z, w)

=
ik

zk+r
√

det(A)

∑
m∈Zf

L`

(( t
`m)reπi(−1/z) tmA−1m+2πi tmw

)
=

ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)rL`

(
eπi(−1/z) tmA−1m+2πi tmw

)
=

ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)rL`

(
πi(−1/z)

t
mA−1m+ 2πi

t
mw

)
× eπi(−1/z) tmA−1m+2πi tmw

= 2πi · ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)r · t

`m · eπi(−1/z) tmA−1m+2πi tmw

= 2πi · ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)r+1 · eπi(−1/z) tmA−1m+2πi tmw.

Since (L`S1)(z, w) = (L`S2)(z, w), we have for (z, w) ∈ H1 × Cf ,

2πiz
∑
m∈Zf

( t
`A(m+ w)

)r+1
eπiz

t(m+w)A(m+w)

= 2πi · ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)r+1 · eπi(−1/z) tmA−1m+2πi tmw,

or equivalently,∑
m∈Zf

( t
`A(m+ w)

)r+1
eπiz

t(m+w)A(m+w)

=
ik

zk+r+1
√

det(A)

∑
m∈Zf

( t
`m)r+1 · eπi(−1/z) tmA−1m+2πi tmw.

By induction, the proof is complete.

Let f be a positive even integer, and let A ∈ M(f,R) be a positive-definite
symmetric matrix. For r a non-negative integer, we let Hr(A) be the C vector
space spanned by the polynomials in w1, . . . , wf given by

(
t
`Aw)r

where w =
t
(w1, . . . , wf ) and ` ∈ Cf with

t
`A` = 0. The elements of Hr(A)

are homogeneous polynomials of degree r, and are called spherical functions
with respect to A.
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2.4 A space of theta series

Lemma 2.4.1. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Q(x) =
1

2
t
xAx.

Let r be a non-negative integer, and let P ∈ Hr(A). Let h ∈ Zf be such that

Ah ≡ 0 (mod N).

For z ∈ H1 define

θ(A,P, h, z) =
∑
n∈Zf

n≡h (mod N)

P (n)e2πiz
Q(n)

N2 .

This series converges absolutely and uniformly on closed disks in H1 to an ana-
lytic function. If h, h′ ∈ Zf are such that Ah ≡ 0 (mod N), Ah′ ≡ 0 (mod N),
and h ≡ h′ (mod N), then

θ(A,P, h, z) = θ(A,P, h′, z), (2.2)

θ(A,P, h, z) = (−1)rθ(A,P,−h, z), (2.3)

for z ∈ H1. For h ∈ Zf with Ah ≡ 0 (mod N) and P ∈ Hr(A) we have

θ(A,P, h, z)
∣∣
k+r

[
1

−1

]
=

ik√
det(A)

∑
g (mod N)

Ag≡0 (mod N)

e2πi
tgAh

N2 · θ(A,P, g, z) (2.4)

and

θ(A,P, h, z)
∣∣
k+r

[
1 b

1

]
= e2πib

Q(h)

N2 θ(A,P, h, z) (2.5)

for z ∈ H1. Let P ∈ Hr(A), and let V (A,P ) be the C vector space spanned by
the functions θ(A,P, h, ·) for h ∈ Zf with Ah ≡ 0 (mod N). The C vector space
V (A,P ) is a right SL(2,Z) module under the |k+r action.

Proof. The assertions (2.2) and (2.3) follow from the involved definitions.
To prove (2.4) and (2.5), let h ∈ Zf with Ah ≡ 0 (mod N) and P ∈ Hr(A).

Using the definition of Hr(A), it is clear that may assume that the polynomial
P is of the form

P (w) = (
t
`Aw)r.

for some ` ∈ Cf such that
t
`A` = 0. We recall from Proposition 2.3.3 that
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∑
m∈Zf

( t
`A(m+ w)

)r
eπiz

t(m+w)A(m+w)

=
ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi tmw.

for z ∈ H1 and w ∈ Cf . Replacing w with h/N , we obtain:

∑
m∈Zf

( t
`A(m+

h

N
)
)r
eπiz

t
(m+ h

N )A(m+ h
N )

=
ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi

tmh

N .

Let m ∈ Zf . Then

m+
h

N
=
h+mN

N

=
n

N
,

where n = h+mN . The map

Zf ∼−→ {n ∈ Zf : n ≡ h (mod N)}

defined by m 7→ n = h + mN is a bijection, the inverse of which is given by
n 7→ (n− h)/N . It follows that

N−r
∑
n∈Zf

n≡h (mod N)

( t
`An

)r
eπiz

tnAn

N2

=
ik

zk+r
√

det(A)

∑
m∈Zf

( t
`m)reπi(−1/z) tmA−1m+2πi

tmh

N .

Next, consider the map

Zf ∼−→ {g ∈ Zf : Ag ≡ 0 (mod N)}

defined by m 7→ g = NA−1m; note that NA−1m ∈ Zf for m ∈ Zf because
NA−1 is integral by the definition of the level N . This map is a bijection, with
inverse defined by g 7→ m = N−1Ag. Hence,

N−r
∑
n∈Zf

n≡h (mod N)

( t
`An

)r
eπiz

tnAn

N2

= N−r
ik

zk+r
√

det(A)

∑
g∈Zf

Ag≡0 (mod N)

( t
`Ag)reπi(−1/z)

tgAg

N2 +2πi
tgAh

N2 .
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Canceling the common factor N−r, we get:

∑
n∈Zf

n≡h (mod N)

( t
`An

)r
eπiz

tnAn

N2

=
ik

zk+r
√

det(A)

∑
g∈Zf

Ag≡0 (mod N)

( t
`Ag)reπi(−1/z)

tgAg

N2 +2πi
tgAh

N2 .

The set of g ∈ Zf such that Ag ≡ 0 (mod N) is a subgroup of Zf ; this subgroup
in turn contains the subgroup NZf . We may therefore sum in stages on the
right-hand side. Let F (g) be the summand on the right-hand side for g ∈ Zf
with Ag ≡ 0 (mod N). The form of this summation in stages is then:∑

g∈Zf
Ag≡0 (mod N)

F (n) =
∑

g∈Zf/NZf
Ag≡0 (mod N)

∑
m∈NZf

F (g +m)

=
∑

g (mod N)
Ag≡0 (mod N)

∑
n1∈Zf

n1≡g (mod N)

F (n1).

Applying this observation, we have:

∑
n∈Zf

n≡h (mod N)

( t
`An

)r
eπiz

tnAn

N2 =
ik

zk+r
√

det(A)

∑
g (mod N)

Ag≡0 (mod N)∑
n1∈Zf

n1≡g (mod N)

( t
`An1)reπi(−1/z)

tn1An1
N2 +2πi

tn1Ah

N2 .

Let g ∈ Zf with Ag ≡ 0 (mod N) and let n1 ∈ Zf with n1 ≡ g (mod N). Write
n1 = g +Nm for some m ∈ Zf . Then

e2πi
tn1Ah

N2 = e2πi
tgAh

N2 e2πi
N tmAh

N2

= e2πi
tgAh

N2 e2πi
tmAh

N

= e2πi
tgAh

N2 .

In the last step we used that Ah ≡ 0 (mod N), so that
tmAh

N is an integer. We
therefore have:∑

n∈Zf
n≡h (mod N)

( t
`An

)r
eπiz

tnAn

N2
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=
ik

zk+r
√

det(A)

∑
g (mod N)

Ag≡0 (mod N)

e2πi
tgAh

N2

∑
n1∈Zf

n1≡g (mod N)

( t
`An1)reπi(−1/z)

tn1An1
N2 .

Interchanging z and −1/z, we obtain:∑
n∈Zf

n≡h (mod N)

( t
`An

)r
eπi(−1/z)

tnAn

N2

=
(−1)k+rikzk+r√

det(A)

∑
g (mod N)

Ag≡0 (mod N)

e2πi
tgAh

N2

∑
n1∈Zf

n1≡g (mod N)

( t
`An1)reπiz

tn1An1
N2 .

This implies that

θ(A,P, h,

[
1

−1

]
· z)

=
(−i)k+2rzk+r√

det(A)

∑
g (mod N)

Ag≡0 (mod N)

e2πi
tgAh

N2 θ(A,P, g, z), (2.6)

which is equivalent to (2.4).
Next, let b ∈ Z. We have

θ(A,P, h, z)
∣∣
k+r

[
1 b

1

]
= θ(A,P, h, z + b)

=
∑
n∈Zf

n≡h (mod N)

P (n)e2πi(z+b)
Q(n)

N2

=
∑
n∈Zf

n≡h (mod N)

P (n)e2πib
Q(n)

N2 e2πiz
Q(n)

N2

= e2πib
Q(h)

N2

∑
n∈Zf

n≡h (mod N)

P (n)e2πiz
Q(n)

N2 (cf. Lemma 1.5.8)

= e2πib
Q(h)

N2 θ(A,P, h, z).

This is (2.5).
Finally, the vector space V (A,P ) is mapped into itself by SL(2,Z) via the

|k+r right action because SL(2,Z) is generated by the matrices[
1

−1

]
,

[
1 1

1

]
and because (2.4) and (2.5) hold.
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2.5 The case N = 1

Proposition 2.5.1. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be a even symmetric positive-definite matrix, and let N be the level
of A. By Corollary 1.5.5 N = 1 if and only if det(A) = 1; assume that N = 1 so
that also det(A) = 1. Then f is divisible by 8. Let r be a non-negative integer,
and let P ∈ Hr(A). The C vector space V (A,P ) has dimension at most one,
and is spanned by the theta series

θ(A,P, 0, z) =
∑
n∈Zf

P (n)e2πizQ(n).

We have
θ(A,P, 0, z)

∣∣
k+r

α = θ(A,P, 0, z) (2.7)

for all α ∈ SL(2,Z), and θ(A,P, 0, z) is a modular form of weight k + r with
respect to SL(2,Z).

Proof. Let h ∈ Zf ; since N = 1, we have Ah ≡ 0 (mod N). Now

θ(A,P, h, z) =
∑
n∈Zf

n≡h (mod 1)

P (n)e2πizQ(n)

=
∑
n∈Zf

n≡0 (mod 1)

P (n)e2πizQ(n)

= θ(A,P, 0, z).

It follows that V (A,P ) is at most one-dimensional, and is spanned by the func-
tion θ(A,P, 0, z). By Lemma 2.4.1, we have

θ(A,P, 0, z)
∣∣
k+r

[
1

−1

]
= ikθ(A,P, 0, z), (2.8)

θ(A,P, 0, z)
∣∣
k+r

[
1 b

1

]
= θ(A,P, 0, z) (2.9)

for b ∈ Z. Since SL(2,Z) is generated by the elements[
1

−1

]
,

[
1 1

1

]
it follows that there exists a function t : SL(2,Z)→ C× such that

θ(A,P, 0, z)
∣∣
k+r

α = t(α) · θ(A,P, 0, z) (2.10)

for α ∈ SL(2,Z) and for all non-negative integers r and P ∈ SL(2,Z). We claim
that t(α) = 1 for all α ∈ SL(2,Z). Assume that r = 0 and let P ∈ H0(A) be
the polynomial such that P (X1, . . . , Xf ) = 1. Then the function θ(A,P, 0, z) is
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not identically zero. Since θ(A,P, 0, z) is not identically zero, and since |k is a
right action, equation (2.10) implies that t is a homomorphism. Also, by (2.8)
and (2.9) we have

t(

[
1

−1

]
) = ik, t(

[
1 b

1

]
) = 1

for b ∈ Z. Now [
1

−1

] [
1

−1

]
=

[
−1

−1

]
.

Applying these matrices to θ(A,P, 0, z) we obtain:

θ(A,P, 0, z)
∣∣
k

[
1

−1

] [
1

−1

]
= θ(A,P, 0, z)

∣∣
k

[
−1

−1

]
i2kθ(A,P, 0, z) = (−1)kθ(A,P, 0, z).

Since θ(A,P, 0, z) is not identically zero, we have i2k = (−1)k. We also have the
matrix identity [

1
−1

] [
1 −b

1

] [
1

−1

]
=

[
−1

−1

] [
1
b 1

]
for b ∈ Z. Applying these matrices to θ(A,P, 0, z), we find that:

i2kθ(A,P, 0, z) = (−1)kθ(A,P, 0, z)
∣∣
k

[
1
b 1

]
for b ∈ Z. Since i2k = (−1)k, this implies that

θ(A,P, 0, z)
∣∣
k+r

[
1
b 1

]
= θ(A,P, 0, z)

for b ∈ Z. Therefore, t is trivial on all matrices of the form[
1 b

1

]
,

[
1
b 1

]
for b ∈ Z. Since these matrices generate SL(2,Z) it follows that the homomor-
phism t is trivial. This proves (2.7) for all α ∈ SL(2,Z), for all non-negative
integers r and P ∈ Hr(A). Also, since t is trivial, we must have ik = 1. Write
k = 4a + b where a and b are non-negative integers with b ∈ {0, 1, 2, 3}. Then
1 = ik = (i4)aib = ib. This equality implies that 4|k, so that 8|f .

Given what we have already proven, to complete the proof that θ(A,P, 0, z)
is a modular form of weight k + r for SL(2,Z), it will suffice to prove that
θ(A,P, 0, z) is holomorphic at the cusps of SL(2,Z), i.e., that the third condition
of the definition of a modular form holds (see section 1.7). Clearly, the smallest
positive integer N such that Γ(N) ⊂ SL(2,Z) is N = 1. Let σ ∈ SL(2,Z). We
have already proven that θ(A,P, 0, z)|k+rσ = θ(A,P, 0, z). Thus, to complete
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the proof we need to prove the existence of a positive number R and a complex
power series

∞∑
m=0

a(m)qm

that converges in D(R) = {q ∈ C : |q| < R} such that

θ(A,P, 0, z) =

∞∑
m=0

a(m)e2πimz

for z ∈ H(1, R) = {z ∈ H1 : Im(z) > − log(R)
2π } (note that H(1, R) is mapped

into D(R) under the map defined by z 7→ e2πiz). Consider the power series∑
n∈Zf

P (n)qQ(n) (2.11)

in the complex variable q. Let q be any element of C with |q| < 1. Since
q = e2πiz for some z ∈ H1, and since∑

n∈Zf
P (n)e2πizQ(n) =

∑
n∈Zf

P (n)qQ(n)

converges absolutely by Lemma 2.4.1, it follows that the power series (2.11)
converges absolutely at q. Hence, the radius of convergence of the power series
(2.11) is greater than 0, and in fact at least 1 (see Theorem 8 on p. 172 of [17]).
Since by the definition of θ(A,P, 0, z) we have

θ(A,P, 0, z) =
∑
n∈Zf

P (n)e2πizQ(n),

for z ∈ H1, the proof is complete.

2.6 Example: a quadratic form of level one

If the level N of A is 1, so that the θ(A,P, h, z) are modular forms with respect
to SL(2,Z), then necessarily 8|f by Proposition 2.5.1. Assume that f = 8. Up
to equivalence, there is the only positive-definite even integral symmetric matrix
A in M(8,Z) with det(A) = 1. This matrix arises in the following way. Consider
the root system E8 inside R8. To describe this root system with 240 elements,
let e1, . . . , e8 be the standard basis for R8. The root system E8 consists of the
112 vectors

δ1ei + δ2ek where 1 ≤ i, k ≤ 8, i 6= k, and δ1, δ2 ∈ {±1}

and the 128 vectors

1

2
(ε1e1 + · · ·+ ε8e8) where ε1, . . . , ε8 ∈ {±1} and ε1 · · · ε8 = 1.
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Every element of E8 has length
√

2. As a base for this root system we can take
the 8 vectors

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8),

α2 = e1 + e2,

α3 = −e1 + e2,

α4 = −e2 + e3,

α5 = −e3 + e4,

α6 = −e4 + e5,

α7 = −e5 + e6,

α8 = −e6 + e7.

Every element of E8 can be written as a Z linear combination of α1, . . . , α8 such
that all the coefficients are either all non-negative or all non-positive. Let A be
the Cartan matrix of E8 with respect to the above base; this turns out to be
A = ((αi, αj))1≤i,j≤8. Here, (·, ·) is the usual inner product on R8. Explicitly,
we have:

A =



2 −1
2 −1

−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2


.

Clearly, A is the matrix of (·, ·) with respect to the ordered basis α1, . . . , α8

for R8; hence, A is positive-definite. Evidently A is an even integral symmetric
matrix, and a computation shows that det(A) = 1. Since det(A) = 1, the level
of A is N = 1. The quadratic form Q is given by:

Q(x1, x2, x3, . . . , x8) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8

− x1x3 − x2x4 − x3x4 − x4x5 − x5x6 − x6x7 − x7x8.

Let r = 0, and let 1 ∈ H0(A) be the constant polynomial. The theta series

θ(A, z) = θ(A, 1, 0, z) =
∑
m∈Z8

e2πiQ(m)

is a non-zero modular form for SL(2,Z) of weight 8/2 = 4. We may also write

θ(A, z) =

∞∑
n=0

r(n)e2πin

where
r(n) = #{m ∈ Z8 : Q(m) = n}.
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It is known that the dimension of the space of modular forms for SL(2,Z) of
weight 4 is one (see Proposition 2.26 on p. 46 of [27]). Moreover, this space
contains the Eisenstein series

E(z) = 1 + 240

∞∑
n=1

σ3(n)e2πinz

where
σ3(n) =

∑
a|n,a>0

a3

for positive integers n. Since r(0) = 1, we have θ(A, z) = E(z). Thus,

r(n) = 240 · σ3(n)

for all positive integers n. Evidently, 240 · σ3(1) = 240. Thus, there are 240
solutions m ∈ Z8 to the equation Q(m) = 1. These 240 solutions are exactly
the coordinates of the elements of E8 when the elements of E8 are written in
our chosen base (note that the coordinates are automatically in Z, as this is
property of a base for a root system).

2.7 The case N > 1

The action of SL(2,Z)

Lemma 2.7.1. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Let c be a positive integer; by Corollary 1.5.7, the level of cA is
cN . Let r be a non-negative integer. We have Hr(cA) = Hr(A). Let h ∈ Zf
be such that Ah ≡ 0 (mod N) and let P ∈ Hr(A). If g ∈ Zf is such that
g ≡ h (mod N), then (cA)g ≡ 0 (mod cN) so that θ(cA, P, g, ·) is defined, and

θ(A,P, h, z) =
∑

g (mod cN)
g≡h (mod N)

θ(cA, P, g, cz)

for z ∈ H1.

Proof. If ` ∈ Cf , then
t
`A` = 0 if and only if

t
`(cA)` = 0; this observation, and

the involved definitions, imply that Hr(cA) = Hr(A). Next, let z ∈ H1. Then:

θ(A,P, h, z) =
∑
n∈Zf

n≡h (mod N)

P (n)e2πiz
Q(n)

N2

=
∑

g∈Zf/cNZf
g≡h (mod N)

∑
n1∈cNZf

P (g + n1)e2πiz
Q(g+n1)

N2 .
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Let g ∈ Zf with g ≡ h (mod N). There is a bijection

cNZf ∼−→ {m ∈ Zf : m ≡ g (mod cN)}

given by n1 7→ m = g + n1. Hence,

θ(A,P, h, z) =
∑

g (mod cN)
g≡h (mod N)

∑
m∈Zf

m≡g (mod cN)

P (m)e2πiz
Q(m)

N2

=
∑

g (mod cN)
g≡h (mod N)

∑
m∈Zf

m≡g (mod cN)

P (m)eπiz
tmAm

N2

=
∑

g (mod cN)
g≡h (mod N)

∑
m∈Zf

m≡g (mod cN)

P (m)e
πicz

tmcAm

(cN)2

=
∑

g (mod cN)
g≡h (mod N)

θ(cA, P, g, cz).

This completes the proof.

Lemma 2.7.2. Let f be a positive even integer. Let A ∈ M(f,Z) be an even
symmetric positive-definite matrix, and let N be the level of A. Let

α =

[
a b
c d

]
∈ SL(2,Z),

and assume that c 6= 0. Let

Y (A) = {m ∈ Zf : Am ≡ 0 (mod N)}.

Define a function
sα : Y (A)× Y (A) −→ C

by

sα(g1, g2) =
∑

g (mod cN)
g≡g2 (mod N)

e2πi
(
aQ(g)+tg1Ag+dQ(g1)

cN2

)
.

The function sα is well-defined. If g1, g
′
1, g2, g

′
2 ∈ Y (A) and g1 ≡ g′1 (mod N)

and g2 ≡ g′2 (mod N), then sα(g1, g2) = sα(g′1, g
′
2). Moreover,

sα(g1, g2) = e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
sα(0, g2 + dg1) (2.12)

for g1, g2 ∈ Y (A).

Proof. To prove that sα is well-defined, let g1, g2 ∈ Y (A), and g, g′ ∈ Zf with
g ≡ g′ (mod cN) and g ≡ g′ ≡ g2 (mod N). Write g′ = g + cNm for some
m ∈ Zf . Then

e2πi
(
aQ(g′)+tg1Ag

′+dQ(g1)

cN2

)
= e2πi

(
aQ(g+cNm)+tg1A(g+cNm)+dQ(g1)

cN2

)
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= e2πi
(
aQ(g)+acN tgAm+ac2N2Q(m)+tg1Ag+cN tg1Am+dQ(g1)

cN2

)
= e2πi

(
aQ(g)+tg1Ag+dQ(g1)+acN t(Ag)m+ac2N2Q(m)+cN t(Ag1)m

cN2

)
= e2πi

(
aQ(g)+tg1Ag+dQ(g1)

cN2

)
,

where in the last step we used that Ag ≡ Ag1 ≡ 0 (mod N). It follows that sα
is well-defined.

Next we prove (2.12). Let g1, g2 ∈ Y (A). Then

e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
sα(0, g2 + dg1)

=
∑

g (mod cN)
g≡g2+dg1 (mod N)

e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
e2πi

(
aQ(g)

cN2

)

=
∑

g (mod cN)
g≡g2+dg1 (mod N)

e2πi
(
aQ(g)−bc tg2Ag1−bcdQ(g1)

cN2

)

=
∑

g (mod cN)
g≡g2 (mod N)

e2πi
(
aQ(g+dg1)−bc tg2Ag1−bcdQ(g1)

cN2

)

=
∑

g (mod cN)
g≡g2 (mod N)

e2πi
(
aQ(g)+ad tg1Ag+ad2Q(g1)−bc tg2Ag1−bcdQ(g1)

cN2

)

=
∑

g (mod cN)
g≡g2 (mod N)

e2πi
(
aQ(g)+tg1A(adg−bcg2)+dQ(g1)

cN2

)
.

Let g ∈ Zf with g ≡ g2 (mod N). Write g2 = g +Nm for some m ∈ Zf . Then

e2πi
( tg1A(adg−bcg2)

cN2

)
= e2πi

( tg1A((ad−bc)g−bcNm)

cN2

)
= e2πi

( tg1A(g−bcNm)

cN2

)
= e2πi

( tg1Ag

cN2

)
e2πi

(
−bcN t(Ag1)m

cN2

)
= e2πi

( tg1Ag

cN2

)
e2πi

(
−b t(Ag1)m

N

)
= e2πi

( tg1Ag

cN2

)
,

where the last step follows because Ag1 ≡ 0 (mod N). We therefore have:

e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
sα(0, g2 + dg1) =

∑
g (mod cN)
g≡g2 (mod N)

e2πi
(
aQ(g)+tg1Ag+dQ(g1)

cN2

)

e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
sα(0, g2 + dg1) = sα(g1, g2).
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This completes the proof of (2.12).
Finally, let g1, g

′
1, g2, g

′
2 ∈ Y (A) with g1 ≡ g′1 (mod N) and g2 ≡ g′2 (mod N).

It is evident from the definition of sα that sα(g1, g2) = sα(g1, g
′
2). Write g′1 =

g1 +Nm for some m ∈ Zf . Then

sα(g′1, g2) = e−2πi
(
b tg2Ag

′
1+bdQ(g′1)

N2

)
sα(0, g2 + dg′1)

= e−2πi
(
b tg2A(g1+Nm)+bdQ(g1+Nm)

N2

)
sα(0, g2 + d(g1 +Nm))

= e−2πi
(
b tg2Ag1+bdQ(g1)+bdN t(Ag1)m+bdN2Q(m)+bN t(Ag2)m

N2

)
× sα(0, g2 + dg1 + dNm)

= e−2πi
(
b tg2Ag1+bdQ(g1)

N2

)
sα(0, g2 + dg1)

= sα(g1, g2).

Here we used that Ag1 ≡ Ag2 ≡ 0 (mod N). This completes the proof.

Lemma 2.7.3. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Q(x) =
1

2
t
xAx.

Let r be a non-negative integer, and let P ∈ Hr(A). Let h ∈ Zf be such that

Ah ≡ 0 (mod N).

Let

α =

[
a b
c d

]
∈ SL(2,Z),

and assume that c is a positive integer. Then

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
=

1

ik+2rck
√

det(A)

∑
g (mod N)

Ag≡0 (mod N)

sα(g, h) · θ(A,P, g, z), (2.13)

where sα is defined in Lemma 2.7.2.

Proof. We have

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
= j(α, z)−k−rθ

(
A,P, h,

az + b

cz + d

)
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= j(α, z)−k−r
∑

g (mod cN)
g≡h (mod N)

θ
(
cA, P, g, c · az + b

cz + d

)

= j(α, z)−k−r
∑

g (mod cN)
g≡h (mod N)

θ
(
cA, P, g, − 1

cz + d
+ a

)

= j(α, z)−k−r
∑

g (mod cN)
g≡h (mod N)

e
2πia

QcA(g)

(cN)2 θ
(
cA, P, g, − 1

cz + d

)

= j(α, z)−k−r
∑

g (mod cN)
g≡h (mod N)

e2πia
Q(g)

cN2 θ
(
cA, P, g, − 1

cz + d

)

= (−1)k+r
∑

g (mod cN)
g≡h (mod N)

e2πia
Q(g)

cN2
(
θ(cA, P, g, ·)

∣∣
k+r

[
1

−1

] )
(cz + d)

=
ik(−1)k+r√

det(cA)

∑
g (mod cN)
g≡h (mod N)

e2πia
Q(g)

cN2

∑
g1 (mod cN)

(cA)g1≡0 (mod cN)

e
2πi

tg1(cA)g

(cN)2 θ(cA, P, g1, cz + d)

=
ik(−1)k+r√

det(cA)

∑
g (mod cN)
g≡h (mod N)

e2πia
Q(g)

cN2

∑
g1 (mod cN)

(cA)g1≡0 (mod cN)

e
2πi

tg1(cA)g

(cN)2 e2πid
Q(g1)

cN2 θ(cA, P, g1, cz)

=
ik(−1)k+r√

det(cA)

∑
g1 (mod cN)

(cA)g1≡0 (mod cN)( ∑
g (mod cN)
g≡h (mod N)

e2πi
(
aQ(g)+tg1Ag+dQ(g1)

cN2

))
θ(cA, P, g1, cz)

=
ik(−1)k+r√

det(cA)

∑
g1 (mod cN)

(cA)g1≡0 (mod cN)

sα(g1, h)θ(cA, P, g1, cz)

=
ik(−1)k+r√

det(cA)

∑
g1 (mod cN)

Ag1≡0 (mod N)

sα(g1, h)θ(cA, P, g1, cz)
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=
ik(−1)k+r√

det(cA)

∑
g1∈Zf/NZf

Ag1≡0 (mod N)

∑
m∈NZf/cNZf

sα(g1 +m,h)θ(cA, P, g1 +m, cz)

=
ik(−1)k+r√

det(cA)

∑
g1∈Zf/NZf

Ag1≡0 (mod N)

sα(g1, h)
∑

m∈NZf/cNZf
θ(cA, P, g1 +m, cz)

=
ik(−1)k+r√

det(cA)

∑
g1∈Zf/NZf

Ag1≡0 (mod N)

sα(g1, h)
∑

g′ (mod cN)
g′≡g1 (mod N)

θ(cA, P, g′, cz)

=
ik(−1)k+r√

det(cA)

∑
g1∈Zf/NZf

Ag1≡0 (mod N)

sα(g1, h)
∑

g′ (mod cN)
g′≡g1 (mod N)

θ(cA, P, g′, cz)

=
1

ik+2rck
√

det(A)

∑
g1 (mod N)

Ag1≡0 (mod N)

sα(g1, h) · θ(A,P, g1, z).

Here, we used Lemma 2.7.2.

The action of Γ0(N)

Lemma 2.7.4. Let f be an even positive integer, let A ∈ M(f,Z) be a positive-
definite even integral symmetric matrix and let N be the level of A. Let

Y (A) = {g ∈ Zf : Ag ≡ 0 (mod N)}.

Define a function
s : Y (A) −→ C

by

s(g) =
∑

q (mod N)
Aq≡0 (mod N)

e2πi
tgAq

N2 =
∑

q∈Y (A)/NZf
e2πi

tgAq

N2

for g ∈ Y (A). The function s is well-defined and

s(g) =

{
0 if g 6≡ 0 (mod N),

#Y (A)/NZf if g ≡ 0 (mod N)

for g ∈ Y (A).

Proof. To see that s is well defined, let g, q1, q2 ∈ Y and assume that q2 =
q1 +Nq3 for some q3 ∈ Zf . Then

t
gAq2 =

t
gAq1 +N

t
gAq3

=
t
gAq1 +N

t
(Ag)Aq3
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≡ t
gAq1 (mod N2)

because Ag ≡ 0 (mod N). This implies that

e2πi
tgAq1
N2 = e2πi

tgAq2
N2 ,

so that s is well-defined. To prove the second assertion, asssume first that
g ≡ 0 (mod N). Write g = Nm for some m ∈ Zf . Let q ∈ Y (A). Then

t
gAq = N

t
m(Aq)

≡ 0 (mod N2)

since Aq ≡ 0 (mod N) because q ∈ Y (A). It follows that

s(g) =
∑

q∈Y (A)/NZf
e2πi

tgAq

N2 =
∑

q∈Y (A)/NZf
1 = #Y (A)/NZf .

Finally, assume that g 6≡ 0 (mod N). Then there exists m ∈ Zf such that
t
gm 6≡ 0 (mod N). This implies that

t
gNm 6≡ 0 (mod N2). Let q1 = NA−1m.

Then q ∈ Y (A) because Aq = Nm ≡ 0 (mod N). Also,

t
gAq1 =

t
gNm 6≡ 0 (mod N2).

This implies that e2πi
tgAq1
N2 6= 1. Since the function Y (A)/NZf → C× defined

by q 7→ e2πi
tgAq

N2 is a character, and since this character is non-trivial at q1, it
follows that summing this character over the elements of Y (A)/NZf gives 0;
this means that s(g) = 0.

Proposition 2.7.5. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Q(x) =
1

2
t
xAx.

Let r be a non-negative integer, and let P ∈ Hr(A). Let h ∈ Zf be such that

Ah ≡ 0 (mod N).

Let

α =

[
a b
c d

]
∈ Γ0(N)

and assume that d is a positive integer. Then

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
=
( 1

dk

∑
q (mod dN)
q≡h (mod N)

e2πi· bQ(q)

dN2
)
· θ(A,P, ah, z). (2.14)
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Proof. We will abbreviate

α =

[
b −a
d −c

]
.

Applying first Lemma 2.7.3 (note that d > 0), and then (2.4), we obtain:

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
=
(
θ(A,P, h, z)

∣∣
k+r

[
a b
c d

] [
−1

1

] )∣∣
k+r

[
−1

1

]
=
(
θ(A,P, h, z)

∣∣
k+r

[
b a
d −c

] )∣∣
k+r

[
−1

1

]
=

1

ik+2rdk
√

det(A)

∑
q (mod N)

Aq≡0 (mod N)

sα(q, h)θ(A,P, q, z)
∣∣
k+r

[
−1

1

]

=
1

i2rdk det(A)

∑
q (mod N)

Aq≡0 (mod N)

∑
g (mod N)

Ag≡0 (mod N)

sα(q, h)e2πi
tgAq

N2 θ(A,P, g, z)

=
1

i2rdk det(A)

∑
g (mod N)

Ag≡0 (mod N)

( ∑
q (mod N)

Aq≡0 (mod N)

sα(q, h)e2πi
tgAq

N2
)
θ(A,P, g, z).

We can calculate the inner sum as follows:∑
q (mod N)

Aq≡0 (mod N)

sα(q, h)e2πi
tgAq

N2

=
∑

q (mod N)
Aq≡0 (mod N)

sα(0, h− cq)e−2πi
(
−a thAq+acQ(q)

N2

)
e2πi

tgAq

N2 (cf. (2.12))

= sα(0, h)
∑

q (mod N)
Aq≡0 (mod N)

e2πi
( t(ah+g)Aq

N2

)
e2πi

(
−acQ(q)

N2

)

= sα(0, h)
∑

q (mod N)
Aq≡0 (mod N)

e2πi
( t(ah+g)Aq

N2

)
(cf. Lemma 1.5.8)

= sα(0, h)s(g + ah) (cf. Lemma 2.7.4)

= sα(0, h)×

{
0 if g 6≡ −ah (mod N),

#Y (A)/NZf if g ≡ −ah (mod N)
(cf. Lemma 2.7.4).

It follows that

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
(2.15)
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=
#Y (A)/NZf

i2rdk det(A)
· sα(0, h) · θ(A,P,−ah, z)

=
(−1)r#Y (A)/NZf

i2rdk det(A)
· sα(0, h) · θ(A,P, ah, z) (cf. (2.3))

=
#Y (A)/NZf

dk det(A)
· sα(0, h) · θ(A,P, ah, z). (2.16)

The definition of sα asserts that:

sα(0, h) =
∑

q (mod dN)
q≡h (mod N)

e2πi
(
bQ(q)

dN2

)
.

Finally, to determine #Y (A)/NZf , assume that h = 0, r = 0, and that P is the
element of H0(A) such that P (X1, . . . , Xf ) = 1. Then the function

θ(A, 1, 0, z) =
∑
n∈Zf

e2πizQ(n)

is not identically zero. Also, let[
a b
c d

]
=

[
1

1

]
, so that α =

[
−1

1

]
.

Then sα(0, 0) = 1, and (2.16) asserts that:

θ(A, 1, 0, z) =
#Y (A)/NZf

det(A)
· θ(A, 1, 0, z).

We conclude that
#Y (A)/NZf = det(A).

This completes the proof.

Lemma 2.7.6. Let f be a positive even integer, let A ∈ M(f,Z) be an even
symmetric positive-definite matrix, and let N be the level of A. Let

Y (A) = {h ∈ Zf : Ah ≡ 0 (mod N)}.

Then
#Y (A)/NZf = det(A).

Proof. This was proven in the proof of Proposition 2.7.5.

Lemma 2.7.7. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Assume that N > 1. Define the quadratic form Q(x) in f variables
by

Q(x) =
1

2
t
xAx.
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Define
χA : Z −→ C

by

χA(d) =
1

dk
·

∑
m∈Zf/dZf

e2πi·Q(m)
d

for d ∈ Z with (d,N) = 1 and d > 0, by

χA(d) = (−1)kχA(−d)

for d ∈ Z with (d,N) = 1 and d < 0, and by χ(d) = 0 for d ∈ Z with (d,N) > 1.
Then χA is a well-defined real-valued Dirichlet character modulo N . Moreover,
if r is a non-negative integer, h ∈ Zf is such that Ah ≡ 0 (mod N), and
P ∈ Hr(A), then

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
= e2πi· abQ(h)

N2 · χA(d) · θ(A,P, ah, z) (2.17)

for [
a b
c d

]
∈ Γ0(N).

Proof. Define a function
α : Γ0(N) −→ C

in the following way. Let

g =

[
a b
c d

]
∈ Γ0(N). (2.18)

If d > 0, then define

α(g) =
1

dk

∑
q∈Zf/dZf

e2πi· bQ(q)
d (2.19)

and if d < 0, define

α(g) = (−1)kα(

[
−a −b
−c −d

]
) = (−1)kα(

[
−1

−1

]
g). (2.20)

Note that d 6= 0 since ad − bc = 1 and N > 1 (by assumption). Our first goal
will be to prove that α takes values in Q× and is in fact a homomorphism from
Γ0(N) to Q×. Let P = 1 ∈ H0(A) be the polynomial in f variables such that
P (X1, . . . , Xf ) = 1. Let g be as in (2.18), and assume d > 0. Then by (2.14)
we have

θ(A, 1, 0, z)
∣∣
k
g =

( 1

dk

∑
q∈Zf/dNZf
q≡0 (mod N)

e2πi· bQ(q)

dN2
)
· θ(A, 1, 0, z)
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=
( 1

dk

∑
q∈Zf/dZf

e2πi· bQ(Nq)

dN2
)
· θ(A, 1, 0, z)

=
( 1

dk

∑
q∈Zf/dZf

e2πi· bQ(q)
d

)
· θ(A, 1, 0, z)

θ(A, 1, 0, z)
∣∣
k
g = α(g) · θ(A, 1, 0, z).

Assume that d < 0. Then by what we just proved,

θ(A, 1, 0, z)
∣∣
k
g = θ(A, 1, 0, z)

∣∣
k

[
−1

−1

] [
−1

−1

]
g

= (−1)kθ(A, 1, 0, z)
∣∣
k

[
−1

−1

]
g

= (−1)kα(−g)θ(A, 1, 0, z)

= α(g) · θ(A, 1, 0, z).

Thus,
θ(A, 1, 0, z)

∣∣
k
g = α(g) · θ(A, 1, 0, z)

for all g ∈ Γ0(N). Since θ(A, 1, 0, z) is non-zero, this formula also implies
that α(g) 6= 0 for all g ∈ Γ0(N). Thus, α actually takes values in C×. Let
g, g′ ∈ Γ0(N). Then

θ(A, 1, 0, z)
∣∣
k
(gg′) =

(
θ(A, 1, 0, z)

∣∣
k
g
)∣∣
k
g′

α(gg′)θ(A, 1, 0, z) = α(g) · θ(A, 1, 0, z)
∣∣
k
g′

α(gg′)θ(A, 1, 0, z) = α(g)α(g′)θ(A, 1, 0, z).

Since θ(A, 1, 0, z) 6= 0, we have

α(gg′) = α(g)α(g′) (2.21)

for g, g′ ∈ Γ0(N). We have already noted that α(g) is non-zero for all g ∈ Γ0(N);
we will now show that α takes values in Q×. To prove this it will suffice to prove
that α(g) ∈ Q for g as in (2.18) with d > 0. Fix such a g. If d = 1 then it is
clear that α(g) ∈ Q. Assume that d > 1. Then c 6= 0 (recall that ad− bc = 1).
Let n be an integer such that nc+ d > 0. Then

α(

[
1 n

1

]
)α(g) = α(

[
1 n

1

] [
a b
c d

]
)

1 · α(g) = α(

[
a an+ b
c cn+ d

]
)

α(g) = α(

[
a an+ b
c cn+ d

]
).

By the definition of α, this implies that

α(g) =
1

(cn+ d)k

∑
q∈Zf/dZf

e2πi· (an+b)Q(q)
cn+d .
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It is clear from this formula that

α(g) ∈ Q(ζnc+d)

where ζnc+d = e2πi/(nc+d) is a primitive nc + d-th root of unity. Assume that
c > 0. Then c+ d > 0, and

α(g) ∈ Q(ζd) ∩Q(ζc+d).

Since c and d are non-zero and relatively prime (because ad−bc = 1), d and c+d
are relatively prime. This implies that Q(ζd) ∩Q(ζc+d) = Q, so that α(g) ∈ Q.
Assume that c < 0. Then (−1)c+ d > 0, and

α(g) ∈ Q(ζd) ∩Q(ζ−c+d).

Since −c and d are non-zero and relatively prime, d and −c + d are relatively
prime, and Q(ζd) ∩ Q(ζ−c+d) = Q, so that α(g) ∈ Q. This completes the
argument that α(g) ∈ Q for g ∈ Γ0(N).

Now we prove the claims about χA. We need to prove that the four condi-
tions of Lemma 1.1.1 hold for χA. It is immediate from the formula for χA that
χA(1) = 1; this proves the first condition. The third condition, that χA(d) = 0
for d ∈ Z such that (d,N) > 1, follows from the definition of χA.

To prove the remaining conditions we first make a connection to α. We will
prove that if d ∈ Z with (d,N) = 1, and

g =

[
a b
c d

]
∈ Γ0(N)

then

χA(d) = α(

[
a b
c d

]
). (2.22)

Assume first that d > 0. By definition,

α(g) =
1

dk

∑
q∈Zf/dZf

e2πi· bQ(q)
d

The summands in this formula are contained in Q(ζd), where ζd = e2πi/d. Since
(b, d) = 1, there exists an element σ of Gal(Q(ζd)/Q) such that σ(ζd) = ζbd. We
have σ−1(ζbd) = ζd. Applying σ−1 to both sides of the above formula, and using
that α(g) ∈ Q, we obtain:

α(g) =
1

dk

∑
q∈Zf/dZf

e2πi·Q(q)
d

α(g) = χA(d).

This proves (2.22) for the case d > 0. Assume that d < 0. Using the previous
case, and the definition of α, we have:

χA(d) = (−1)kχA(−d)
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= (−1)kα(

[
−a −b
−c −d

]
)

= (−1)kα(

[
−1

−1

] [
a b
c d

]
)

χA(d) = α(

[
a b
c d

]
).

This proves (2.22) in all cases.
Now we will prove the fourth condition of Lemma 1.1.1, which asserts that

χA(d) = χA(d+N) for all d ∈ Z. Let d ∈ Z. If (d,N) > 1, then (d+N,N) > 1,
and χA(d) = 0 = χA(d + N). Assume that (d,N) = 1. Then there exists
a, b ∈ Z such that ad− bN = 1. By (2.22),

α(

[
a b
N d

] [
1 1

1

]
) = α(

[
a b
N d

]
)α(

[
1 1

1

]
)

α(

[
a a+ b
N d+N

]
= χA(d) · 1

χA(d+N) = χA(d). (cf. (2.22))

To prove the remaining second condition of Lemma 1.1.1 let d1, d2 ∈ Z. If
(d1, N) > 0 or (d2, N) > 0, then evidently χA(d1d2) = 0 = χA(d1)χA(d2).
Assume, therefore, that (d1, N) = (d2, N) = 1. There exist a1, b1, a2, b2 ∈ Z
and ε2 ∈ {±1} such that be such that a1d1 − b1N = 1, a2d2 − b2ε2N = 1, and
b2 ≥ 0. Then

α(

[
a1 b1
N d1

] [
a2 b2
ε2N d2

]
) = α(

[
a1a2 + b1ε2N a1b2 + b1d2

a2N + d1ε2N d1d2 + b2N

]
)

α(

[
a1 b1
N d1

]
)α(

[
a2 b2
ε2N d2

]
) = α(

[
a1a2 + b1ε2N a1b2 + b1d2

a2N + d1ε2N d1d2 + b2N

]
)

χA(d1)χA(d2) = χA(d1d2 + b2N)

χA(d1)χA(d2) = χA(d1d2 +N + · · ·+N︸ ︷︷ ︸
b2

)

χA(d1)χA(d2) = χA(d1d2) (fourth condition).

We have proven that all the conditions of Lemma 1.1.1; by this lemma χA is a
Dirichlet character modulo N . Since (2.22) holds, and since α(g) ∈ Q× for all
g ∈ Γ0(N), it follows that χA is real-valued.

It remains to prove (2.17). Let

g =

[
a b
c d

]
∈ Γ0(N)

and let h ∈ Y (A), i.e., h ∈ Zf with Ah ≡ 0 (mod N). First assume that d > 0.
We have:

1

dk

∑
q (mod dN)
q≡h (mod N)

e2πi· bQ(q)

dN2
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=
1

dk

∑
q∈Zf/dNZf
q≡h (mod N)

e2πi· bQ(q)

dN2

=
1

dk

∑
q∈Zf/dNZf

q≡ad·h (mod N)

e2πi· bQ(q)

dN2 (ad ≡ 1 (mod N))

=
1

dk

∑
q∈Zf/NZf

q≡ad·h (mod N)

∑
q1∈NZf/dNZf

e2πi· bQ(q+q1)

dN2

=
1

dk

∑
q1∈NZf/dNZf

e2πi· bQ(ad·h)+b t(ad·h)Aq1+bQ(q1)

dN2

=
1

dk

∑
m∈Zf/dZf

e2πi· ba
2d2Q(h)+abdN thAm+bN2Q(m)

dN2

=
1

dk
· e2πi· ab·ad·Q(h)

N2 ·
∑

m∈Zf/dZf
e2πi· ab

t(Ah)m

N · e2πi· bQ(m)
d

= e2πi· ab·ad·Q(h)

N2 · 1

dk
·

∑
m∈Zf/dZf

e2πi· bQ(m)
d (since Ah ≡ 0 (mod N))

= e2πi· abQ(h)

N2 · 1

dk
·

∑
m∈Zf/dZf

e2πi· bQ(m)
d (ad = 1 + bc, N |c, Lemma 1.5.8)

= e2πi· abQ(h)

N2 · α(g)

= e2πi· abQ(h)

N2 · χA(d) (cf. (2.22)).

In summary, if d > 0, then

1

dk

∑
q (mod dN)
q≡h (mod N)

e2πi· bQ(q)

dN2 = e2πi· abQ(h)

N2 · χA(d).

This equality and (2.14) now imply (2.17) if d > 0. Assume that d < 0. We
then have:

θ(A,P, h, z)
∣∣
k+r

[
a b
c d

]
= θ(A,P, h, z)

∣∣
k+r

[
−1

−1

] [
−a −b
−c −d

]
= (−1)k+rθ(A,P, h, z)

∣∣
k+r

[
−a −b
−c −d

]
= (−1)k+re2πi· (−a)(−b)Q(h)

N2 · χA(−d) · θ(A,P, (−a)h, z)

= (−1)k+re2πi· abQ(h)

N2 (−1)k · χA(d) · (−1)rθ(A,P, ah, z) (cf. (2.3))
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= e2πi· abQ(h)

N2 · χA(d) · θ(A,P, ah, z).

This completes the proof.

Calculation of χA

Lemma 2.7.8. Let p be a prime, and let χ : (Z/pZ)× → C× be a Dirichlet
character modulo p. We define the Gauss sum W(χ) to be the complex number

W(χ) =

p−1∑
a=0

χ(a)e2πi ap =
∑

a∈Z/pZ

χ(a)e2πi ap .

If χ is trivial, then W(χ) = 0. If χ is non-trivial, then

W(χ)W(χ̄) = χ(−1)p.

Proof. Let G be a finite group. In this proof we will the following fact:

If η ∈ Hom(G,C×) and η 6= 1, then
∑
g∈G

η(g) = 0. (2.23)

Assume that χ = 1. Consider the function Z/pZ → C× defined by a 7→
e2πi ap . This function is a non-trivial element of Hom(Z/pZ,C×). The assertion
W(χ) = 0 follows from (2.23).

Next, assume that χ is non-trivial. In the following computation, if b ∈
(Z/pZ)×, then we will denote the inverse of b in (Z/pZ)× by b′, so that bb′ = 1.
We have

W(χ)W(χ̄) = (
∑

a∈Z/pZ

χ(a)e2πi ap ) · (
∑

b∈Z/pZ

χ(b)e2πi bp )

= (
∑

a∈Z/pZ

χ(a)e2πi ap ) · (
∑

b∈(Z/pZ)×

χ(b)−1e2πi bp )

= (
∑

a∈Z/pZ

χ(a)e2πi ap ) ·
∑

b∈(Z/pZ)×

χ(b′)e2πi bp )

=
∑

b∈(Z/pZ)×

∑
a∈Z/pZ

χ(ab′)e2πi a+b
p

=
∑

b∈(Z/pZ)×

∑
a∈Z/pZ

χ(abb′)e2πi ab+bp

=
∑

b∈(Z/pZ)×

∑
a∈Z/pZ

χ(a)e2πi
(a+1)b
p

=
∑

a∈Z/pZ

χ(a)
∑

b∈(Z/pZ)×

e2πi
(a+1)b
p

=
∑

a∈Z/pZ

χ(a)
(
− 1 +

∑
b∈Z/pZ

e2πi
(a+1)b
p
)
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=
∑

a∈Z/pZ
a+1≡0 (mod p)

χ(a)
(
− 1 +

∑
b∈Z/pZ

e2πi
(a+1)b
p
)

+
∑

a∈Z/pZ
a+16≡0 (mod p)

χ(a)
(
− 1 +

∑
b∈Z/pZ

e2πi
(a+1)b
p
)

= χ(−1)
(
− 1 + p

)
+

∑
a∈Z/pZ

a+16≡0 (mod p)

χ(a)
(
− 1 + 0

)
(cf. (2.23))

= χ(−1)(p− 1)−
∑

a∈Z/pZ
a+16≡0 (mod p)

χ(a)

= χ(−1)(p− 1)−
(
− χ(−1) +

∑
a∈Z/pZ

χ(a)
)

= χ(−1)(p− 1)−
(
− χ(−1) + 0

)
(cf. (2.23))

= pχ(−1).

This completes the proof.

Lemma 2.7.9. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Assume that N > 1. We recall from Lemma 1.5.4 that N divides
det(A), and that det(A) and N have the same set of prime divisors. Define
χA : Z → C as in Lemma 2.7.7; by this lemma, χA is a Dirichlet character
modulo N . Let ∆ = ∆(A) = (−1)k det(A) be the discriminant of A. Let

(
∆
·
)

be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo
det(A) by Proposition 1.4.2 and Lemma 1.5.2. Then the diagram

(Z/det(A)Z)× (Z/NZ)×

{±1}

( ∆
· )

χA

commutes. We have

χA(d) =
(∆

d

)
=
( (−1)k det(A)

d

)
(2.24)

for d ∈ Z.

Proof. By Lemma 1.5.4, N divides det(A), and det(A) and N have the same
set of prime divisors. To prove the assertions of this lemma it will suffice to
prove that χA(d) =

(
∆
d

)
for d ∈ Z with (d,N) = 1. Let d ∈ Z with (d,N) = 1;

then (d,det(A)) = 1. By Dirichlet’s theorem about infinitely many primes in
arithmetic progressions (see, for example, Theorem 155 on p. 125 of [14]), there
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exists an odd prime p such that p ≡ d (mod det(A)). Then (p,N) = 1 and
p ≡ d (mod N). Regard A as an element of M(f,Z/pZ). We have det(A) ∈
(Z/pZ)×. It follows that there exists a matrix U ∈ M(f,Z) and a1, . . . , af ∈ Z
such that (a1, p) = · · · = (af , p) = 1, (det(U), p) = 1, and

t
UAU ≡

a1

. . .

af

 (mod p).

We have

χA(d) = χA(p)

=
1

pk
·

∑
m∈Zf/pZf

e2πi·Q(m)
p

=
1

pk
·

∑
m∈Zf/pZf

e2πi·Q(2m)
p

=
1

pk
·

∑
m∈(Z/pZ)f

e2πi· 4
tmAm

2p

=
1

pk
·

∑
m∈(Z/pZ)f

e2πi· 2·
tmAm

p

=
1

pk
·

∑
m∈(Z/pZ)f

e2πi· 2
t(Um)A(Um)

p

=
1

pk
·

∑
m∈(Z/pZ)f

e2πi· 2
tm tUAUm

p

=
1

pk
·

∑
m∈(Z/pZ)f

e2πi·
2(a1m

2
1+···+afm

2
f )

p

=
1

pk
·
∏

1≤i≤f

∑
mi∈Z/pZ

e2πi· 2aim
2
i

p

=
1

pk
·
∏

1≤i≤f

∑
mi∈Z/pZ

(1 +
(mi

p

)
) · e2πi· 2aimip

=
1

pk
·
∏

1≤i≤f

( ∑
mi∈Z/pZ

e2πi· 2aimip +
∑

mi∈Z/pZ

(mi

p

)
e2πi· 2aimip

)
=

1

pk
·
∏

1≤i≤f

∑
mi∈Z/pZ

(mi

p

)
e2πi· 2aimip (cf. (2.23))

=
1

pk
·
∏

1≤i≤f

∑
mi∈Z/pZ

(2aimi

p

)
e2πi·mip
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=
1

pk
·
∏

1≤i≤f

(2ai
p

) ∑
mi∈Z/pZ

(mi

p

)
e2πi·mip

=
1

pk
·
∏

1≤i≤f

(2ai
p

)
W(
( ·
p

)
)

=
W(
( ·
p

)
)f

pk
·
∏

1≤i≤f

(2ai
p

)

=

(
W(
( ·
p

)
)2
)k

pk
·
(2fa1 · · · af

p

)
=

(
p
(−1
p

))k
pk

·
(2f det(U)2 det(A)

p

)
(cf. Lemma 2.7.8)

=
( (−1)k

p

)
·
(det(A)

p

)
=
( (−1)k det(A)

p

)
=
(∆

p

)
=
(∆

d

)
.

This completes the proof.

Theorem 2.7.10. Let f be a positive even integer, and define k = f/2. Let
A ∈ M(f,Z) be an even symmetric positive-definite matrix, and let N be the
level of A. Define the quadratic form Q(x) in f variables by

Q(x) =
1

2
t
xAx.

Let r be a non-negative integer, and let P ∈ Hr(A). Let h ∈ Zf be such that

Ah ≡ 0 (mod N).

The analytic function θ(A,P, h, z) on H1 defined by

θ(A,P, h, z) =
∑
m∈Zf

n≡0 (mod N)

P (n)e2πiz
Q(n)

N2

for z ∈ H1 from Lemma 2.4.1 is a modular form of weight k+ r with respect to
Γ(N). If r > 0, then θ(A,P, h, z) is a cusp form.

Proof. The case N = 1 is Proposition 2.5.1. We may thus assume that N > 1.
Let

α =

[
a b
c d

]
∈ Γ(N).
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Then α ∈ Γ0(N). By (2.17), we have

θ(A,P, h, z)
∣∣
k+r

α = e2πi· abQ(h)

N2 · χA(d) · θ(A,P, ah, z).

Since α ∈ Γ(N) we have a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N). By
Lemma 2.7.7, χA is a Dirichlet character modulo N ; hence, χA(d) = 1. By
Lemma 1.5.8, Q(h) ≡ 0 (mod N). Hence, abQ(h) ≡ 0 (mod N2); this implies

that e2πi· abQ(h)

N2 = 1. Since a ≡ 1 (mod N), we see that ah ≡ h (mod N); by
(2.2), this implies that θ(A,P, ah, z) = θ(A,P, h, z). We now have

θ(A,P, h, z)
∣∣
k+r

α = θ(A,P, h, z).

To prove that θ(A,P, h, z) is a modular form of weight k + r with respect
to Γ(N) we still need to prove that θ(A,P, h, z) is holomorphic at the cusps
of Γ(N), as defined in section 1.8. Clearly, N is the smallest positive integer
M such that Γ(M) ⊂ Γ(N). To prove that θ(A,P, h, z) is holomorphic at the
cusps of Γ(N), and is a cusp form if r > 0, it will suffice to prove that for each
σ ∈ SL(2,Z) there exists a power series

∞∑
m=0

a(m)qm

that converges in D(1) = {q ∈ C : |q| < 1} such that

θ(A,P, h, z)
∣∣
k+r

σ =

∞∑
m=0

a(m)e2πim/N

for z ∈ H1, and a(0) = 0 if r > 0. Let

σ =

[
a b
c d

]
∈ SL(2,Z).

We recall the set Y (A) = {g ∈ Zf : Ag ≡ 0 (modN)}, and the finite-dimensional
vector space V (A,P ) spanned by the theta series θ(A,P, g, z) for g ∈ Y (A)/NZf
from Lemma 2.4.1. By Lemma 2.4.1 the vector space V (A,P ) is preserved by
SL(2,Z) under the

∣∣
k+r

action. It follows that there exist constants c(g) ∈ C
for g ∈ Y (A)/NZf such that

θ(A,P, h, z)
∣∣
k+r

σ =
∑

g∈Y (A)/NZf
c(g) · θ(A,P, g, z). (2.25)

Let g ∈ Y (A). By Lemma 1.5.8, for every n ∈ Zf with n ≡ g (mod N), the
number Q(n)/N is a non-negative integer. Consequently, we may consider the
power series ∑

n∈Zf
n≡g (mod N)

P (n)q
Q(n)
N (2.26)



2.8. EXAMPLE: THE QUADRATIC FORM X2
1 +X2

2 +X2
3 +X2

4 89

in the complex variable q. Let q ∈ D(1). There exists z ∈ H1 such that
q = e2πiz/N . Since∑

n∈Zf
n≡g (mod N)

P (n)q
Q(n)
N =

∑
n∈Zf

n≡g (mod N)

P (n)e2πiz
Q(n)

N2 = θ(A,P, g, z)

converges absolutely by Lemma 2.4.1, it follows that the power series (2.26)
converges absolutely at q. Hence, the radius of convergence of (2.26) is at least
1. Consequently, the radius of convergence of the finite linear combination of
power series ∑

g∈Y (A)/NZf
c(g)

∑
n∈Zf

n≡g (mod N)

P (n)q
Q(n)
N (2.27)

is also at least 1. Denote this power series by

∞∑
m=0

a(m)qm.

By construction,

θ(A,P, h, z)
∣∣
k+r

σ =

∞∑
m=0

a(m)e2πim/N

for z ∈ H1. This proves that θ(A, h, P, z) is a modular form of weight k+r with
respect to Γ(N). Finally, assume that r > 0; we need to prove that a(0) = 0.
From above,

a(0) =
∑

g∈Y (A)/NZf
c(g)

∑
n∈Zf

n≡g (mod N)
Q(n)
N =0

P (n)

=
∑

g∈Y (A)/NZf
c(g)

∑
n∈Zf

n≡g (mod N)
n=0

P (n)

= c(0)P (0)

= c(0) · 0
= 0.

Here, P (0) = 0 because P is a homogeneous polynomial in r > 0 variables.

2.8 Example: the quadratic form x2
1 +x2

2 +x2
3 +x2

4

In this example we let

A =


2

2
2

2


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so that
Q(x1, x2, x3, x4) = x2

1 + x2
2 + x2

3 + x2
4.

Evidently,
N = 4 and k = 2.

Also, χA is the trivial character of (Z/4Z)×. We will simplify the notation for
θ(A, 1, h, z) for h ∈ Y (A), and write:

θ(h) = θ(A, 1, h, z).

Let V be the C vector space spanned the θ(h) for h ∈ Y (A):

V = 〈θ(h) : h ∈ Y (A)〉.

By Theorem 2.7.10, we have V ⊂ M2(Γ(4)). If h ∈ Z4, then h ∈ Y (A) if and
only if Ah ≡ 0 (mod 4), i.e., h ≡ 0 (mod 2). Define the following elements of
Y (A):

h0 =


0
0
0
0

 , h1 =


2
0
0
0

 , h2 =


2
2
0
0

 , h3 =


2
2
2
0

 , h4 =


2
2
2
2

 .
The vector space V is spanned by the five modular forms

θ(h0), θ(h1), θ(h2), θ(h3), θ(h4).

For z ∈ H1, define
q4 = e2πiz/4.

We have:

θ(h0) =
∑
m∈Z4

q
4m2

1+4m2
2+4m2

3+4m2
4

4 ,

θ(h1) =
∑
m∈Z4

q
(2m1+1)2+4m2

2+4m2
3+4m2

4
4 ,

θ(h2) =
∑
m∈Z4

q
(2m1+1)2+(2m2+1)2+4m2

3+4m2
4

4 ,

θ(h3) =
∑
m∈Z4

q
(2m1+1)2+(2m2+1)2+(2m3+1)2+4m2

4
4 ,

θ(h4) =
∑
m∈Z4

q
(2m1+1)2+(2m2+1)2+(2m3+1)2+(2m4+1)2

4 .

Calculations show that:

θ(h0) = 1 + 8q4
4 + 24q8

4 + 32q12
4 + 24q16

4 + 48q20
4 + · · · ,

θ(h1) = 2q4 + 12q5
4 + 26q9

4 + 28q13
4 + 36q17

4 + 64q21
4 + · · · ,
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θ(h2) = 4q2
4 + 16q6

4 + 24q10
4 + 32q14

4 + 52q18
4 + 48q22

4 + · · · ,
θ(h3) = 8q3

4 + 16q7
4 + 24q11

4 + 48q15
4 + 40q19

4 + 48q23
4 + · · · ,

θ(h4) = 16q4
4 + 64q12

4 + 96q20
4 + 128q28

4 + 208q36
4 + 192q44

4 + · · · .

These expansions show that θ(h0), . . . , θ(h4) are linearly independent, so that

dimC V = 5.

Lemma 2.8.1. We have

dimM2(Γ0(2)) = 1 and dimM2(Γ0(4)) = 2.

Proof. See, for example, Proposition 1.40 on page 23, Proposition 1.43 on page
24, and Theorem 2.23 on page 46 of [27].

Proposition 2.8.2. Let

V1 = 〈θ(h0) + θ(h4), θ(h2)〉, V2 = 〈θ(h0)− θ(h4), θ(h1), θ(h3)〉,

so that
V = V1 ⊕ V2.

Then V1 and V2 are irreducible SL(2,Z) subspaces of V . Moreover,

M2(Γ0(4)) = 〈θ(h0), θ(h4)〉,
M2(Γ0(2)) = 〈θ(h0) + θ(h4)〉.

Proof. By (2.4) we have

θ(h0)
∣∣
2

[
1

−1

]
= −1

4

(
θ(h0) + 4 · θ(h1) + 6 · θ(h2) + 4 · θ(h3) + θ(h4)

)
,

θ(h1)
∣∣
2

[
1

−1

]
= −1

4

(
θ(h0) + 2 · θ(h1)− 2 · θ(h3)− θ(h4)

)
,

θ(h2)
∣∣
2

[
1

−1

]
= −1

4

(
θ(h0)− 2 · θ(h2) + θ(h4)

)
θ(h3)

∣∣
2

[
1

−1

]
= −1

4

(
θ(h0)− 2 · θ(h1) + 2 · θ(h3)− θ(h4)

)
,

θ(h4)
∣∣
2

[
1

−1

]
= −1

4

(
θ(h0)− 4 · θ(h1) + 6 · θ(h2)− 4 · θ(h3) + θ(h4)

)
.

By (2.5) we have:

θ(h0)
∣∣
2

[
1 1

1

]
= θ(h0),

θ(h1)
∣∣
2

[
1 1

1

]
= iθ(h1),
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θ(h2)
∣∣
2

[
1 1

1

]
= −θ(h2),

θ(h3)
∣∣
2

[
1 1

1

]
= −iθ(h3),

θ(h4)
∣∣
2

[
1 1

1

]
= θ(h4).

Since SL(2,Z) is generated by[
1

−1

]
,

[
1 1

1

]
the above equations imply that V1 and V2 are SL(2,Z) subspaces of V .

To see that V1 is irreducible as an SL(2,Z) space, let W ⊂ V1 be a SL(2,Z)
subspace. We need to prove that W = 0 or W = V1, and to prove this it
suffices to prove that dimW 6= 1. Assume that dimW = 1; we will obtain a
contradiction. Let a, b ∈ C be such that F1 = a(θ(h0) + θ(h4)) + bθ(h2) is a
basis for W . Since W is one-dimensional, SL(2,Z) acts on W by a character
β : SL(2,Z)→ C×. F1 is fixed by SL(2,Z). Now

F1

∣∣
2

[
1 1

1

]
= β(

[
1 1

1

]
)F1

a(θ(h0) + θ(h4))− bθ(h2) = aβ(

[
1 1

1

]
)(θ(h0) + θ(h4)) + bβ(

[
1 1

1

]
)θ(h2).

This equality implies that a = 0 or b = 0. If a = 0 and b 6= 0, then

F1

∣∣
2

[
1

−1

]
= β(

[
1

−1

]
)F1

− b
4

(
θ(h0)− 2 · θ(h2) + θ(h4)

)
= β(

[
1

−1

]
)bθ(h2).

This is a contradiction. Similarly, the case a 6= 0 and b = 0 leads to a contra-
diction. Thus, V1 is irreducible.

To prove that V2 is irreducible, let W be a non-zero SL(2,Z) subspace of
V2; we need to prove that W = V2. An argument similar to that in the last
paragraph proves that W cannot be one-dimensional. Assume that W is two-
dimensional; we will obtain a contradiction. The formulas for the action of[

1
−1

]
show that W can contain at most one of θ(h0) − θ(h4), θ(h1) and θ(h3);
otherwise, W = V2, a contradiction. Consider the quotient V2/W . This
SL(2,Z) space is one-dimensional. Hence, SL(2,Z) acts on V2/W by a char-
acter δ : SL(2,Z) → C×. Let p : V2 → V2/W be the projection map. We have
The formulas for the action of [

1 1
1

]
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imply that

p(θ(h0)− θ(h4)) = δ(

[
1 1

1

]
)p(θ(h0)− θ(h4)),

ip(θ(h1)) = δ(

[
1 1

1

]
)p(θ(h1)),

−ip((θ(h3)) = δ(

[
1 1

1

]
)p((θ(h3)).

Since at least two of p(θ(h0)− θ(h4)), p(θ(h1)), and p(θ(h3)) are non-zero, these
equations imply that

δ(

[
1 1

1

]
)

is equal to at least two distinct elements of {1, i,−i}, a contradiction. Thus, V2

is irreducible.
By Lemma 2.8.1 we have dimM2(Γ0(4)) = 2 and dimM2(Γ0(2)) = 1. By

Lemma 2.7.7 and Theorem 2.7.10, the functions θ(h0) and θ(h4) are contained
in M2(Γ0(4)). Since θ(h0) and θ(h4) are linearly independent, θ(h0) and θ(h4)
form a basis for M2(Γ0(4)). Finally, we need to prove that

F = θ(h0) + θ(h4)

is contained in M2(Γ0(2)). It will suffice to prove that

F
∣∣
2
γ = F for γ ∈ Γ0(2)

for γ ∈ Γ0(2). We begin with some preliminary calculations. Let h ∈ Y (A); we
write h = 2h′ for some h′ ∈ Z4. Let

α =

[
1
2 1

]
.

By (2.13),

θ(h)
∣∣
2

[
1
2 1

]
=

1

ik22
√

det(A)

∑
g∈Y (A)/4Z4

sα(g, h)θ(g)

=
1

−24

∑
g∈Y (A)/4Z4

sα(g, h)θ(g). (2.28)

Let g ∈ Y (A), and write g = 2g′ for some g′ ∈ Z4. We obtain

sα(g, h) =
∑

x∈Z4/8Z4

x≡h (mod 4)

e2πi
(
Q(x)+tgAx+Q(g)

32

)

= e2πi
(
Q(g)
32

) ∑
x∈Z4/8Z4

x≡h (mod 4)

e2πi
(
Q(x)+tgAx

32

)
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= e2πi
(
Q(g)
32

) ∑
y∈Z4/2Z4

e2πi
(
Q(h+4y)+tgA(h+4y)

32

)
= e2πi

(
Q(g)
32

) ∑
y∈Z4/2Z4

e2πi
(
Q(h)+2 tgh+8 t(g+h)y+16Q(y)

32

)
= e2πi

(
Q(g)+Q(h)+2 tgh

32

) ∑
y∈Z4/2Z4

e2πi
(

8 t(g+h)y+16Q(y)

32

)
= e2πi

(
Q(g+h)

32

) ∑
y∈Z4/2Z4

e2πi
(

16 t(g′+h′)y+16Q(y)

32

)
= e2πi

(
Q(g+h)

32

) ∑
y∈Z4/2Z4

e2πi
( t(g′+h′)y+Q(y)

2

)
= e2πi

(
Q(g+h)

32

) ∑
y∈Z4/2Z4

e2πi
( t(g′+h′)y+Q(y)

2

)
.

The function Z4/2Z4 → C× defined by

y 7→ e2πi
( t(g′+h′)y+Q(y)

2

)
is a homomorphism. This homomorphism is trivial if and only if every entry of
g′ + h′ is odd, or equivalently, g + h ≡ h4 (mod 4). Therefore,

sα(g, h) = e2πi
(
Q(g+h)

32

) ∑
y∈Z4/2Z4

e2πi
( t(g′+h′)y+Q(y)

2

)

sα(g, h) =

{
−24 if g + h ≡ h4 (mod 4),

0 if g + h 6≡ h4 (mod 4).

Consequently,

θ(h)
∣∣
2

[
1
2 1

]
=

1

−24

∑
g∈Y (A)/4Z4

sα(g, h)θ(g)

= θ(h4 − h).

This implies that:

θ(h0)
∣∣
2

[
1
2 1

]
= θ(h4),

θ(h1)
∣∣
2

[
1
2 1

]
= θ(h3),

θ(h2)
∣∣
2

[
1
2 1

]
= θ(h2),

θ(h3)
∣∣
2

[
1
2 1

]
= θ(h1),
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θ(h4)
∣∣
2

[
1
2 1

]
= θ(h0).

Since F ∈ M2(Γ0(4), to prove that F |2γ = F for γ ∈ Γ0(2), it will suffices to
prove that F |2γ = F for γ ∈ Γ0(2) of the form

γ =

[
a b
2c d

]
where c is an odd integer; we note that since ad − 2bc = 1, d is also odd. Let
γ ∈ Γ0(2) have this form. Then

F
∣∣
2
γ = θ(h0)

∣∣
2
γ + θ(h4)

∣∣
2
γ

= θ(h0)
∣∣
2
γ

[
1
−2 1

] [
1
2 1

]
+ θ(h4)

∣∣
2
γ

[
1
−2 1

] [
1
2 1

]
= θ(h0)

∣∣
2

[
a− 2b b

2(c− d) 2c+ d

] [
1
2 1

]
+ θ(h4)

∣∣
2

[
a− 2b b

2(c− d) 2c+ d

] [
1
2 1

]
= θ(h0)

∣∣
2

[
1
2 1

]
+ θ(h4)

∣∣
2

[
1
2 1

]
(c− d is even)

= θ(h4) + θ(h0)

= F.

This proves our claim about F .

Proposition 2.8.3 (Jacobi’s four square theorem). If n is a positive integer,
then the number of (x, y, z, w) ∈ Z4 such

x2 + y2 + z2 + w2 = n

is
8 ·

∑
m > 0, m|n,
m 6≡0 (mod 4)

m.

In particular, every positive integer is a sum of four squares.

Proof. We have

θ(h0, z) =

∞∑
n=0

a(n)qn

where
a(n) = #{m ∈ Z4 : Q(m) = n}

for each non-negative integer n. The modular form θ(h0, z) is contained in
M2(Γ0(4)). By Lemma 2.8.1, the dimension of M2(Γ0(4)) is two, and the di-
mension of M2(Γ0(2)) is one. The vector space M2(Γ0(2)) is spanned by

E(z) =
1

24
+

∞∑
n=1

b(n)qn
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where q = e2πiz for z ∈ H1; here, for positive integers n,

b(n) =

{
σ1(n)− 2σ1(n/2) if n is even,

σ1(n) if n is odd.

For this, see Theorem 5.8 on page 88 of [28]. Trivially, the function E(z) is
contained in M2(Γ0(4)). The function

E(z)
∣∣
2

[
2

1

]
= E(2z)

is also contained in M2(Γ0(4)). We have

E(2z) =
1

24
+

∞∑
n=1

c(n)qn

where

c(n) =


σ1(n/2)− 2σ1(n/4) if n is divisible by 4,

σ1(n/2) if n is even and n/2 is odd,

0 if n is odd

for positive integers n. The two modular forms E(z) and E(2z) form a basis for
M2(Γ0(4)). Hence, there exist c1, c2 ∈ C such that

θ(h0, z) = c1 · E(z) + c2 · E(2z).

Calculations show that

θ(h0, z) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + 96q6 + 64q7 + · · · ,

E(z) =
1

24
+ q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + · · · ,

E(2z) =
1

24
+ q2 + q4 + 4q6 + q8 + 6q10 + 4q12 + · · · .

Using these expansions to solve for c1 and c2, we find that:

θ(h0, z) = 8 · E(z) + 16 · E(2z).

It follows that

a(n) = 8b(n) + 16c(n)

=


8σ1(n)− 32σ1(n/4) if 4|n,

8σ1(n) if n is even and n/2 is odd,

8σ1(n) if n is odd,

= 8 ·
∑

m > 0, m|n,
m 6≡0 (mod 4)

m.

This completes the proof.



Chapter 3

Classical theta series on Hn

3.1 Convergence

Let m and n be positive integers. If A ∈ M(m,C) and X ∈ M(m× n,C), then
we define

A[X] =
t
XAX.

Lemma 3.1.1. Let m and n be positive integers, and let A ∈ M(m,Z) be an
even positive-definite symmetric integral matrix. For every N ∈ M(m×n,Z) the
n× n integral matrix A[N ] is an even positive semi-definite symmetric matrix.

Proof. Let N ∈ M(m× n,Z). Set B = A[N ]. It is clear that B is integral and
symmetric. Let x ∈ Rn. Then

t
xBx =

t
(Nx)A(Nx) ≥ 0. It follows that B is

positive semi-definite.

Assume that A ∈ M(m,Z) and B ∈ M(n,Z) are even symmetric integral
matrices. Assume further that A is positive-definite, and that B is positive
semi-definite. We say that A represents B if there exists N ∈ M(m × n,Z)
such that

A[N ] = B.

We let
r(A,B) = #{N ∈ M(m× n,Z) : A[N ] = B}.

Lemma 3.1.2. Let m and n be positive integers, and let A ∈ M(m,Z) and
B ∈ M(n,Z) be even symmetric integral matrices with A positive-definite and
B positive semi-definite. The set {N ∈ M(m × n,Z) : A[N ] = B} is finite, so
that r(A,B) is a non-negative integer.

Proof. By §1.5, there exists T ∈ GL(m,R) and positive numbers λ1, . . . , λm

97
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such that
t
T = T and

D =
t
TAT =


λ1

λ2

λ3

. . .

λm

 .

Define Let N ∈ M(m × n,Z). We have A[N ] = B if and only if D[TN ] = B.
Write TN = [(TN)1 · · · (TN)n] where (TN)1, . . . , (TN)n ∈ Rm are column
vectors. We have

Bjj =
t
(TN)jD(TN)j =

m∑
i=1

λi(TN)2
ij

for 1 ≤ j ≤ n. Let S be the set of X ∈ M(m× n,R) such that

Bjj =

m∑
i=1

λiX
2
ij

for 1 ≤ j ≤ n. It follows that {N ∈ M(m × n,Z) : A[N ] = B} is contained
in T−1S ∩M(m × n,Z). The set S is compact, so that T−1S is also compact.
Since T−1S is compact and M(m × n,Z) is a discrete subset of M(m × n,R),
the set T−1S ∩M(m× n,Z) is finite.

Lemma 3.1.3. Let n be a positive integer. Let S, T ∈ M(n,R) be positive
semi-definite symmetric matrices. Then tr(ST ) ≥ 0.

Proof. Arguing as before (1.7), there exist positive semi-definite symmetric ma-
trices U, V ∈ M(n,R) such that S = U2 and T = V 2. Now

tr(ST ) = tr(UUV V )

= tr(V UUV )

= tr(
t
(V )

t
UUV )

= tr(
t
(UV )UV ).

Let W = UV . Then

tr(ST ) = tr(
t
WW )

=

n∑
k=1

(
∑
j=1

(
t
W )kjWjk)

=

n∑
k=1

(
∑
j=1

WjkWjk)

=

n∑
k=1

(
∑
j=1

W 2
jk)
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≥ 0.

This completes the proof.

Lemma 3.1.4. Let K be a compact subset of Sym(n,R). Assume that S > 0
for S ∈ K. Then there exists δ > 0 such that S − δ > 0 for all S ∈ K.

Proof. Let S ∈ K. Since S is positive-definite, there exists T ∈ GL(n,R) such
that

t
TT = T

t
T = 1 and

A =
t
T


λ1

λ2

λ3

. . .

λn

T

for some positive numbers λ1, . . . , λn ∈ R. Let εS > 0 be a positive number
such and λ1 > εS , . . . , λn > εS . Let x ∈ Rn with x 6= 0. Then

t
x(S − εS)x =

t
x

t
T


λ1

λ2

λ3

. . .

λn

Tx− εS t
xx

=
t
(Tx)


λ1 − εS

λ2 − εS
λ3 − εS

. . .

λn − εS

Tx
> 0.

It follows that S − εS > 0. Hence, S ∈ εS + Sym(n,R)+. By Lemma 1.10.1,
set Sym(n,R)+ is open in Sym(n,R). The sets εS + Sym(n,R)+ form an open
cover for K. Since K is compact, this cover has a finite subcover Sym(n,R)+ +
εS1

, . . . ,Sym(n,R)+ + εSk for some S1, . . . , Sk ∈ K. Let δ = min(εS1
, . . . , εSk).

Now let S ∈ K. Then S ∈ Sym(n,R)+ + εSi for some i ∈ {1, . . . , k}. Hence,
S − εSi ∈ Sym(n,R)+. This implies that S − εSi > 0, so that S > εSi ≥ δ, as
desired.

Lemma 3.1.5. Let m and n be positive integers. Let M,N ∈ M(m × n,R).
Then

|tr(t
MN)| ≤

n∑
i=1

‖Mi‖‖Ni‖.

Here, for P ∈ M(m × n,R), we write P = [P1 · · ·Pn], where Pi ∈ Rm for
1 ≤ i ≤ n are column vectors.
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Proof. We have

|tr(t
MN)| = |tr(t

[M1 · · ·Mn][N1 · · ·Nn])|

= |
n∑
i=1

t
MiNi|

≤
n∑
i=1

| tMiNi|

≤
n∑
i=1

‖Mi‖‖Ni‖,

where in the last step we used the Cauchy-Schwarz inequality.

Lemma 3.1.6. Let k be a positive integer, and let δ > 0 and M > 0 be positive
real numbers. Then there exists positive numbers R > 0 and ε > 0 such that if
x1 ≥ 0, . . . , xk ≥ 0 and

x2
1 + · · ·+ x2

k ≥ R,

then

−δ(x2
1 + · · ·+ x2

k) + 2M(x1 + · · ·+ xk) +M ≤ −ε(x2
1 + · · ·+ x2

k).

Proof. Let ε be any positive number such that 0 < ε < δ. Let m ∈ R be such
that

m ≤ (δ − ε)x2 − 2Mx−M

for all x ∈ R. There exists a positive number T such that if x ≥ T , then

−(k − 1)m ≤ (δ − ε)x2 + 2Mx−M.

Now define R = T 2k. Assume that x1 ≥ 0, . . . , xk ≥ 0 and x2
1 + · · · + x2

k ≥ R.

Then for some i ∈ {1, . . . , k} we have x2
i ≥ R/k, i.e., xi ≥

√
R/k = T . It

follows that

(δ − ε)(x2
1 + · · ·+ x2

k)− 2M(x1 + · · ·+ xk)−M
≥ (δ − ε)x2

i − 2Mxi −M + (k − 1)m

≥ −(k − 1)m+ (k − 1)m

≥ 0.

This completes the proof.

Lemma 3.1.7. Let m and n be positive integers, and let A ∈ M(m,R) be a
positive-definite symmetric matrix. Let K be a compact subset of Hn, and let
K1 and K2 be compact subsets of M(m × n,C). There exists a positive real
number R > 0 and a positive constant ε such that such that

Re
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
≤ −ε ·

n∑
i=1

‖Ni‖2
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for Z ∈ K, X ∈ K1, Y ∈ K2 and N ∈ M(m× n,R) with

n∑
i=1

‖Ni‖2 ≥ R.

Here, for N ∈ M(m × n,R), we write N = [N1 · · ·Nn], where Ni ∈ Rm for
1 ≤ i ≤ n are column vectors.

Proof. We first prove that we may assume that A = 1. To see this, assume
that the assertion holds for 1 = 1m. Since A is positive-definite, there exists a
positive-definite symmetric matrix B ∈ M(n,R) such that A = B2 (see (1.7)).
Define K ′1 = B−1(K1) and K ′2 = B(K2). Since we are assuming that the
assertion holds for 1 = 1m, there exists a positive real number R > 0 and a
positive constant ε such that

Re
(
πitr(Z

t
(N ′ − Y ′)(N ′−Y ′)) + 2πitr(

t
N ′X ′)−πitr(t

X ′Y ′)
)
≤ −ε ·

n∑
i=1

‖N ′i‖2

for Z ∈ K, X ′ ∈ K ′1 = B(K1), Y ′ ∈ B−1(K2) and N ′ ∈ M(m× n,R) with

n∑
i=1

‖N ′i‖2 ≥ R.

Regard the matrix B−1 as operator from Rm to Rm. Then B is continuous and
hence bounded. Therefore, there exists a positive constant ‖B−1‖ such that

‖B−1(g)‖ ≤ ‖B−1‖‖g‖

for g ∈ Rm. Define T = ‖B−1‖2R. Let N ∈ M(m× n,R) with

n∑
i=1

‖Ni‖2 ≥ T.

Define N ′ = BN . Then

n∑
i=1

‖N ′i‖2 =

n∑
i=1

‖(BN)i‖2

=

n∑
i=1

‖BNi‖2

=

n∑
i=1

‖B−1‖−2‖B−1‖2‖BNi‖2

≥
n∑
i=1

‖B−1‖−2‖B−1BNi‖2

=

n∑
i=1

‖B−1‖−2‖Ni‖2
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= ‖B−1‖−2
n∑
i=1

‖Ni‖2

≥ ‖B−1‖−2T

= R.

Let Z ∈ K, X ∈ K1 and Y ∈ K2. Then X ′ = B−1(X) ∈ K ′1 and Y ′ = B(Y ) ∈
K ′2. Since

Re
(
πitr(Z

t
(N ′ − Y ′)(N ′ − Y ′)) + 2πitr(

t
N ′X ′)− πitr(t

X ′Y ′)
)

= Re
(
πitr(Z

t
(BN −BY )(BN −BY )) + 2πitr(

t
(BN)B−1X)

− πitr(t
(B−1X)BY )

)
= Re

(
πitr(Z

t
(N − Y )BB(N − Y )) + 2πitr(

t
NX)− πitr(t

XY )
)

= Re
(
πitr(Z

t
(N − Y )A(N − Y )) + 2πitr(

t
NX)− πitr(t

XY )
)

= Re
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
,

and,

−ε ·
n∑
i=1

‖N ′i‖2 = −ε ·
n∑
i=1

‖BNi‖2

= −ε ·
n∑
i=1

‖B−1‖−2‖B−1‖2‖BNi‖2

≤ −ε ·
n∑
i=1

‖B−1‖−2‖Ni‖2

= −ε‖B−1‖−2 ·
n∑
i=1

‖Ni‖2.

we conclude that

Re
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
≤ −ε‖B−1‖−2 ·

n∑
i=1

‖Ni‖2.

It follows that we may assume that A = 1 = 1m.
We now prove the lemma for A = 1 = 1m. Since K, K1 and K are compact,

there exists a positive number M > 0 such that

‖(V t
Y1 + U

t
Y2 − t

X2)i‖ ≤M, for 1 ≤ i ≤ n,
|tr(t

X1Y2 +
t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))| ≤M

for Z = U + iV ∈ K, X = X1 + iX2 ∈ K1 and Y = Y1 + iY2 ∈ K2 where
U, V,X1, X2, Y1 and Y2 are real matrices. By Lemma 3.1.4 there exists δ > 0
such that Im(Z)− δ > 0 for all Z ∈ K. Let N ∈ M(m× n,R). Then

t
NN ≥ 0.
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Hence, by Lemma 3.1.3, we have tr((Im(Z)−δ) t
NN) ≥ 0 for N ∈ M(m×n,R),

or equivalently,

− tr((Im(Z)
t
NN) ≤ −δtr(t

NN) for N ∈ M(m× n,R). (3.1)

Let Z ∈ K, X ∈ K1 and Y ∈ K2. Write Z = U + iV for U, V ∈ M(n × n,R)
with

t
U = U ,

t
V = V , and V > 0. Also, write X = X1 + iX2 and Y = Y1 + iY2

for X1, X2, Y1, Y2 ∈ M(m× n,R). We have

π−1Re
(
πitr(Z

t
(N − Y )(N − Y )) + 2πitr(

t
NX)− πitr(t

XY )
)

= −π−1Im
(
πtr(Z

t
(N − Y )(N − Y )) + 2πtr(

t
NX)− πtr(

t
XY )

)
= −tr(V

t
NN) + 2tr(V

t
Y1N) + 2tr(U

t
Y2N)− 2tr(

t
NX2)

+ tr(
t
X1Y2 +

t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))

= −tr(V
t
NN) + 2tr((V

t
Y1 + U

t
Y2 − t

X2)N)

+ tr(
t
X1Y2 +

t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))

≤ −δtr(t
NN) + 2|tr((V t

Y1 + U
t
Y2 − t

X2)N)|
+ |tr(t

X1Y2 +
t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))|

= −δ
n∑
i=1

‖Ni‖2 + 2|tr((V t
Y1 + U

t
Y2 − t

X2)N)|

+ |tr(t
X1Y2 +

t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))|

≤ −δ
n∑
i=1

‖Ni‖2 + 2

n∑
i=1

‖(V t
Y1 + U

t
Y2 − t

X2)i‖‖Ni‖

+ |tr(t
X1Y2 +

t
X2Y1 − U(

t
Y1Y2 +

t
Y2Y1))− V (

t
Y1Y1 +

t
Y2Y2))|

≤ −δ
n∑
i=1

‖Ni‖2 + 2M

n∑
i=1

‖Ni‖+M.

By Lemma 3.1.6, there exists positive numbers R > 0 and ε > 0 such that

−δ
n∑
i=1

‖Ni‖2 + 2M

n∑
i=1

‖Ni‖+M ≤ −ε
n∑
i=1

‖Ni‖2

for
n∑
i=1

‖Ni‖2 ≥ R.

This completes the proof.

Proposition 3.1.8. Let m and n be positive integers, and let A ∈ M(m,R) be
a positive-definite symmetric matrix. For Z ∈ Hn, X,Y ∈ M(m× n,C), define

θ(A,Z,X, Y ) =
∑

N∈M(m×n,Z)

exp
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
.
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If D, D1 and D2 are products of closed disks in C such that D ⊂ Hn and
D1, D2 ⊂ M(m × n,C), then the series θ(A,Z,X, Y ) converges absolutely and
uniformly on D × D1 × D2. The resulting function θ(A,Z,X, Y ) defined on
Hn ×M(m× n,C)×M(m× n,C) is analytic in each complex variable.

Proof. Let D, D1 and D2 be products of closed disks in C such that D ⊂ Hn
and D1, D2 ⊂ M(m × n,C). By there exists a positive real number R > 0 and
a positive constant ε such that such that

Re
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
≤ −ε ·

n∑
i=1

‖Ni‖2

for Z ∈ D, X ∈ D1, Y ∈ D2 and N ∈ M(m× n,R) with

n∑
i=1

‖Ni‖2 ≥ R.

Hence,

| exp
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)
|

= exp
(
Re
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
))

≤ exp
(
− ε ·

n∑
i=1

‖Ni‖2
)

for Z ∈ D, X ∈ D1, Y ∈ D2 and all but finitely many N ∈ M(m × n,Z). The
series ∑

N∈M(m×n,Z)

exp
(
− ε ·

n∑
i=1

‖Ni‖2
)

converges. The Weierstrass M -test (see [17], p. 160) now implies that the series
θ(A,Z,X, Y ) converges absolutely and uniformly on D × D1 × D2. Since for
each N ∈ M(m×n,Z) the function on Hn×M(m×n,C)×M(m×n,C) defined
by

(Z,X, Y ) 7→ exp
(
πitr(ZA[N − Y ]) + 2πitr(

t
NX)− πitr(t

XY )
)

is an analytic function in each complex variable and since our series converges ab-
solutely and uniformly on all products of closed disks, the function θ(A,Z,X, Y )
is analytic in each variable (see [17], p. 162).

Corollary 3.1.9. Let m and n be positive integers, and let A ∈ M(m,Z) be an
even positive-definite symmetric integral matrix. For Z ∈ Hn, define

θ(A,Z) =
∑

N∈M(m×n,Z)

exp
(
πitr(A[N ]Z)

)
.

If D is a product of closed disks in C such that D ⊂ Hn then the series θ(A,Z)
converges absolutely and uniformly on D. The resulting function θ(A,Z) defined
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on Hn is analytic in each complex variable. Moreover,

θ(A,Z) =
∑

B∈Sym(n,Z)even,
B≥0

r(A,B) exp
(
πitr(BZ)

)
.

3.2 The Eicher lemma

Let k be a positive integer. For Z ∈ Hk, and X,Y ∈ M(k, 1,C) we will consider
the series

θ(Z,X, Y )

=
∑

R∈M(k,1,Z)

exp
(
πi

t
(R− Y )Z(R− Y ) + 2πi

t
RX − πi t

XY
)
. (3.2)

This series is actually an example of the series considered in Proposition 3.1.8
with m = 1 and k = n. To see this, we note that if W1,W2 ∈ M(k, 1,C), then

t
W1W2 = tr(

t
(
t
W1)

t
W2).

Therefore, for Z ∈ Hk, and X,Y ∈ M(k, 1,C),

θ(Z,X, Y ) =
∑

R∈M(k,1,Z)

exp
(
πi

t
(R− Y )Z(R− Y ) + 2πi

t
RX − πi t

XY
)

=
∑

R∈M(k,1,Z)

exp
(
πitr(

t
(
t
(R− Y ))

t
(Z(R− Y ))) + 2πitr(

t
(
t
R)

t
X)

− πitr(t
(
t
X)

t
Y )
)

=
∑

R∈M(k,1,Z)

exp
(
πitr(

t
(
t
R− t

Y )(
t
R− t

Y )
t
Z) + 2πitr(

t
(
t
R)

t
X)

− πitr(t
(
t
X)

t
Y )
)

=
∑

R∈M(k,1,Z)

exp
(
πitr(Z

t
(
t
R− t

Y )(
t
R− t

Y )) + 2πitr(
t
(
t
R)

t
X)

− πitr(t
(
t
X)

t
Y )
)

=
∑

N∈M(1,k,Z)

exp
(
πitr(Z · 1[N − t

Y ]) + 2πitr(
t
N

t
X)− πitr(t

(
t
X)

t
Y )
)

= θ(1, Z,
t
X,

t
Y ),

where 1 is the 1 × 1 matrix with entry 1. It follows that θ(Z,X, Y ) for For
Z ∈ Hk, and X,Y ∈ M(k, 1,C) has the convergence properties mentioned in
Proposition 3.1.8. For Z ∈ Hk, R ∈ M(k, 1,R), and X,Y ∈ M(k, 1,C) define

g(Z,R,X, Y ) = exp
(
πi

t
(R− Y )Z(R− Y ) + 2πi

t
RX − πi t

XY
)

(3.3)
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Lemma 3.2.1. Let k be a positive integer, U ∈ Sym(k,R)+ and X,Y ∈
M(k, 1,C). The function g(iU, ·, X, Y ) is contained in the Schwartz space

S(M(k, 1,R)) = S(Rk)

(see section 2.2 for the definition of the Schwartz space).

Proof. Write X = X1 + iX2 and Y = Y1 + iY2 for X1, X2, Y1, Y2 ∈ M(k, 1,R).
Also, write U = V 2 for some V ∈ Sym(k,R)+ (see (1.7)). Since exp(−πi t

XY )
is constant, it suffices to prove that the function defined by

R 7→ exp
(
− π t

(R− Y )U(R− Y ) + 2πi
t
RX

)
is contained S(M(k, 1,R)). Since S(M(k, 1,R)) is mapped to itself by the map
induced by R 7→ R+ Y2, we may assume that our function has the form

R 7→ exp
(
− π t

(R− iY2)U(R− iY2) + 2πi
t
RX

)
Let R ∈ M(k, 1,R). Then

exp
(
− π t

(R− Y )U(R− Y ) + 2πi
t
RX

)
= exp

(
− π t

(R− iY2)
t
V V (R− iY2) + 2πi

t
RX

)
= exp

(
− π t

(V R− iV Y2)(V R− iV Y2) + 2πi
t
RX

)
.

Since S(M(k, 1,R)) is mapped to itself by the map induced by R 7→ V −1R, we
may assume that our function has the form

R 7→ exp
(
− π t

(R− iY2)(R− iY2) + 2πi
t
RX

)
For R ∈ M(k, 1,R) we have:

exp
(
− π t

(R− iY2)(R− iY2) + 2πi
t
RX

)
= exp

(
− π t

RR− 2π
t
RX2 + π

t
Y2Y2 + i(2π

t
RX1 + π

t
RY2 + π

t
Y2R)

)
.

Since exp(π
t
Y2Y2) is constant, we see that it suffices to prove that the function

h : M(k, 1,R)→ C defined by

h(R) = exp
(
− π t

RR− 2π
t
RX2 + i(2π

t
RX1 + π

t
RY2 + π

t
Y2R)

)
is contained S(M(k, 1,R)). Let α = (α1, . . . , αk) ∈ Zk≥0 and P (X1, . . . , Xk) ∈
C[X1, . . . , Xk]; we need to prove that |P (R)(Dαh)(R)| is bounded as a func-
tion of R ∈ M(k, 1,R). To see this, we note that there exists a polynomial
Qα(X1, . . . , Xk) ∈ C[X1, . . . , Xk] such that

(Dαh)(R) = Qα(R)h(R).

for R ∈ M(k, 1,R). For R ∈ M(k, 1,R) we have

|P (R)(Dαh)(R)| = |P (R)Qα(R) exp
(
− π t

RR− 2π
t
RX2

)
|
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= |P (R)Qα(R) exp
(
− π t

(R+X2)(R+X2)− π t
X2X2

)
|

= | exp(−π t
X2X2)P (R)Qα(R) exp

(
− π t

(R+X2)(R+X2)
)
|. (3.4)

It is well-known that the function

R 7→ exp
(
− π t

RR
)

is contained S(M(k, 1,R)). As above, this implies that

exp
(
− π t

(R+X2)(R+X2)
)

is also contained S(M(k, 1,R)). This implies that (3.4) is bounded.

Lemma 3.2.2. Let k be a positive integer. Let U ∈ Sym(k,R)+ and X,Y ∈
M(k, 1,C). The Fourier transform (see section 2.2) of the Schwartz function
g(iU, ·, X, Y ) is given by

F(g(iU, ·, X, Y ))(R) = det(U)−1/2g(−(iU)−1,−R, Y,−X).

Proof. Let R ∈ M(k, 1,R). We recall that for Z ∈ Hk, the function g is given
by:

g(Z,R,X, Y ) = exp
(
πi

t
(R− Y )Z(R− Y ) + 2πi

t
RX − πi t

XY
)
.

Therefore,

F(g(iU, ·, X, Y ))(R)

=

∫
Rk

exp
(
− π t

(r − Y )U(r − Y ) + 2πi
t
rX − πi t

XY
)

exp(−2πi
t
Rr) dr

= exp(−πi t
XY )

∫
Rk

exp
(
− π

[
t
(r − Y )U(r − Y )− 2i

t
rX + 2i

t
Rr
])
dr.

Write U = V 2 for some V ∈ Sym(k,R)+ (see (1.7)). Then:∫
Rk

exp
(
− π

[
t
(r − Y )U(r − Y )− 2i

t
rX + 2i

t
Rr
])
dr

=

∫
Rk

exp
(
− π

[
t
(r − Y )U(r − Y ) + 2i

t
r(−X +R)

])
dr

=

∫
Rk

exp
(
− π

[
t
(r − Y )

t
V V (r − Y ) + 2i

t
r

t
V

t
V −1(−X +R)

])
dr

=

∫
Rk

exp
(
− π

[
t
(V r − V Y )(V r − V Y ) + 2i

t
(V r)

t
V −1(−X +R)

])
dr

= det(V )−1

∫
Rk

exp
(
− π

[
t
(r − V Y )(r − V Y ) + 2i

t
r

t
V −1(−X +R)

])
dr



108 CHAPTER 3. CLASSICAL THETA SERIES ON HN

= det(U)−1/2 exp(−π t
(V Y )(V Y ))

∫
Rk

exp
(
− π

[
t
rr + 2

t
rQ
])
dr,

where

Q = −V Y + i
t
V −1(−X +R) = −V Y − i t

V −1X + i
t
V −1R.

For the penultimate equality, we used the formula for a linear change of variables
(see Theorem 2.20, (e) on page 50 and section 2.23 of [24]). Completing the
square, we obtain:

det(U)−1/2 exp(−π t
(V Y )(V Y ))

∫
Rk

exp
(
− π

[
t
rr + 2

t
rQ
])
dr

= det(U)−1/2 exp(−π t
Y UY )

∫
Rk

exp
(
− π

[
t
rr + 2

t
rQ+

t
QQ− t

QQ
])
dr

= det(U)−1/2 exp(−π t
Y UY )

∫
Rk

exp
(
− π

[
t
(r +Q)(r +Q)− t

QQ
])
dr

= det(U)−1/2 exp(−π t
Y UY + π

t
QQ)

∫
Rk

exp
(
− π t

(r +Q)(r +Q))
)
dr

= det(U)−1/2 exp(−π t
Y UY + π

t
QQ)

∫
Rk

exp(−π t
rr) dr

= det(U)−1/2 exp(−π t
Y UY + π

t
QQ).

For the penultimate equality, we used Lemma 2.2.2. Therefore,

F(g(iU, ·, X, Y ))(R)

= det(U)−1/2 exp(−πi t
XY ) exp(−π t

Y UY + π
t
QQ)

= det(U)−1/2 exp
(
− iπ t

XY − π t
XV −1 t

V −1X + π
t
RV −1 t

V −1X

+ iπ
t
Y

t
V

t
V −1X − π t

Y UY + π
t
XV −1 t

V −1R

+ iπ
t
XV −1V Y − π t

RV −1 t
V −1R− iπ t

RV −1V Y

− iπ t
Y

t
V

t
V −1R+ π

t
Y

t
V V Y

)
= det(U)−1/2 exp

(
− iπ t

XY − π t
XU−1X + π

t
RU−1X

+ iπ
t
Y X − π t

Y UY + π
t
XU−1R

+ iπ
t
XY − π t

RU−1R− iπ t
RY

− iπ t
Y R+ π

t
Y UY

)
= det(U)−1/2 exp

(
− π

[
t
XU−1X − t

RU−1X − t
XU−1R+

t
RU−1R

]
− 2iπ

t
RY + iπ

t
Y X

)
= det(U)−1/2 exp

(
− π

[
t
(R−X)U−1(R−X)

]
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− 2iπ
t
RY − iπ t

Y (−X)
)

= det(U)−1/2 exp
(
πi
[

t
(R−X)(−(iU)−1)(R−X)

]
− 2iπ

t
RY − iπ t

Y (−X)
)

= det(U)−1/2 exp
(
πi
[

t
(−R− (−X))(−(iU)−1)(−R− (−X))

]
+ 2iπ

t
(−R)Y − iπ t

Y (−X)
)

= det(U)−1/2g(−(iU)−1,−R, Y,−X).

This completes the proof.

Lemma 3.2.3. Let k be a positive integer. There exists an eighth root of unity
ξ such that for Z ∈ Hk and X,Y ∈ M(k, 1,C) we have

θ(Z,X, Y ) = ξs(

[
1

−1

]
, Z)−1θ(−Z−1, Y,−X).

Here, s(
[

1
−1

]
, Z) for Z ∈ Hk is defined as in Proposition 1.10.8, and has the

property

s(

[
1

−1

]
, Z)2 = j(

[
1

−1

]
, Z) = det(−Z−1).

for Z ∈ Hk.

Proof. Let the function g be as in (3.3). Let U ∈ Sym(k,R)+ and X,Y ∈
M(k, 1,C). By Lemma 3.2.1 the function g(iU, ·, X, Y ) is in S(M(k, 1,R)). By
Theorem 2.2.4, Lemma 3.2.2, and Proposition 1.10.8, we have:∑

R∈M(k,1,Z)

g(iU,R,X, Y ) =
∑

R∈M(k,1,Z)

(Fg)(iU,R,X, Y )

θ(iU,X, Y ) = det(U)−1/2
∑

R∈M(k,1,Z)

g(−(iU)−1,−R, Y,−X)

θ(iU,X, Y ) = det(U)−1/2θ(−(iU)−1, Y,−X)

θ(iU,X, Y ) = ξs(

[
1

−1

]
, iU)−1θ(−(iU)−1, Y,−X).

The assertion of the lemma follows now from Lemma 1.10.5.

Let k be a positive integer. Let V be the be C vector space of all functions
from Hk ×M(k, 1,C)×M(k, 1,C) to C. For g = [A B

C D ] ∈ Sp(2n,Z) and F ∈ V
we define another element F

∣∣g of V by the formula

(F
∣∣g)(Z,X, Y ) = s(g, Z)−1F (g · Z,AX +BY,CX +DY )

for X ∈ Hk and X,Y ∈ M(k, 1,C). We define an equivalence relation ∼ on the
set V by defining F1, F2 ∈ V to be equivalent if there exists an eighth root of
unity ζ such that F2 = ζF1. If F ∈ V , then the equivalence class determined
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by F will be denoted by [F ]. For F ∈ V and g ∈ Sp(2k,Z), we define another
equivalence class in V/ ∼ by

[F ]
∣∣g = [F

∣∣g].

It is easy to see that [F ]
∣∣g is well-defined, and a calculation using Corollary

1.10.9 and Lemma 1.10.7 shows that

[F ]
∣∣(gh) = ([F ]

∣∣g)
∣∣h

for F ∈ V and g, h ∈ Sp(2k,Z). We define a function

T : Z2k −→ V/ ∼ (3.5)

by

T (m) = [exp
(
− πi t

m1X/2 + πi
t
m2Y/2)

)
θ(Z,X +m2/2, Y +m1/2)]

where m ∈ Z2k is (as usual) regarded as a column vector, and m = [m1
m2

] with
m1,m2 ∈ Zk.

Lemma 3.2.4. Let k be a positive integer. Then

T (m+ 2n) = T (m)

for m,n ∈ Z2k.

Proof. We begin with an observation about θ. Let X0, Y0 ∈ M(k, 1,Z). Then
for Z ∈ Hk and X,Y ∈ M(k, 1,C) we have:

θ(Z,X +X0, Y + Y0)

=
∑

R∈M(k,1,Z)

exp
(
πZ[R− Y − Y0] + 2πi

t
R(X +X0)− πi t

(X +X0)(Y + Y0)
)

=
∑

R∈M(k,1,Z)

exp
(
πZ[R− Y ] + 2πi

t
(R+ Y0)(X +X0)

− πi t
(X +X0)(Y + Y0)

)
=

∑
R∈M(k,1,Z)

exp
(
πZ[R− Y ] + 2πi

t
RX + 2πi

t
RX0 + 2πi

t
Y0X + 2πi

t
Y0X0

− πi t
XY − πi t

XY0 − πi t
X0Y − πi t

X0Y0

)
=

∑
R∈M(k,1,Z)

exp
(
πZ[R− Y ] + 2πi

t
RX + πi

t
Y0X+

− πi t
XY − πi t

X0Y − πi t
X0Y0

)
(since

t
RX0,

t
Y0X0 ∈ Z)

= exp
(
πi

t
Y0X − πi t

X0Y − πi t
X0Y0

)
×

∑
R∈M(k,1,Z)

exp
(
πZ[R− Y ] + 2πi

t
RX − πi t

XY
)
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= exp
(
πi

t
Y0X − πi t

X0Y − πi t
X0Y0

)
θ(Z,X, Y ).

It follows that

[θ(Z,X +X0, Y + Y0)] = [exp
(
πi

t
Y0X − πi t

X0Y
)
θ(Z,X, Y )]

because exp(−πi t
X0Y0) is an eighth root of unity. Now let m,n ∈ Z2k. Then

T (m+ 2n)

= [exp
(
− πi t

(m1 + 2n1)X/2 + πi
t
(m2 + 2n2)Y/2

)
× θ(Z,X +m2/2 + n2, Y +m1/2 + n1)]

= [exp
(
− πi t

m1X/2− πi t
n1X + πi

t
m2Y/2 + πi

t
n2Y

)
× exp

(
πi

t
n1(X +m2/2)− πi t

n2(Y +m1/2)
)

× θ(Z,X +m2/2, Y +m1/2)]

= [exp
(
− πi t

m1X/2− πi t
n1X + πi

t
m2Y/2 + πi

t
n2Y

)
× exp

(
πi

t
n1X + πi

t
n1m2/2− πi t

n2Y − πi t
n2m1/2

)
]

× θ(Z,X +m1/2, Y +m2/2)

= [exp
(
− πi t

m1X/2 + πi
t
m2Y/2

)
× exp

(
πi

t
n1m2/2− πi t

n2m1/2
)

× θ(Z,X +m2/2, Y +m1/2)]

= [exp
(
− πi t

m1X/2 + πi
t
m2Y/2

)
θ(Z,X +m2/2, Y +m1/2)]

= T (m),

because exp(πi
t
n1m2/2− πi t

n2m1/2) is an eighth root of unity.

By Lemma 3.2.4, the function T induces a function

T : (Z/2Z)2k −→ V/ ∼,

which we denote by the same name.
Next, if H : (Z/2Z)2k → V/ ∼ is a function and g ∈ Sp(2n,Z), then we

define a new function H
∣∣g : (Z/2Z)2k → V/ ∼ by

(H
∣∣g)(m) = H(g{m})

∣∣g
for m ∈ (Z/2Z)2k; here, g{m} is defined in Proposition 1.11.2, where it is proven
that this defines an action of Sp(2k,Z) on (Z/2Z)2k. It is easy to verify that

H
∣∣(gh) = (H

∣∣g)
∣∣h (3.6)

for g, h ∈ Sp(2k,Z) and a function H : (Z/2Z)2k → V/ ∼.

Theorem 3.2.5. Let k be a positive integer. Then

T
∣∣g = T

for g ∈ Sp(2k,Z).
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Proof. Since (3.6) holds, it suffices to prove that T
∣∣g = T for the generators of

Sp(2k,Z) from Theorem 1.9.6. Let B ∈ Sym(k,Z) and m ∈ (Z/2Z)2k. Then,
using that

(T |
[
1 B

1

]
)(m)

= T (

[
1 B

1

]
{m})

∣∣ [1 B
1

]
= T (

[
m1

−Bm1 +m2 + diag(B)

]
)
∣∣ [1 B

1

]
= [exp

(
− πi t

m1(X +BY )/2 + πi
t
(−Bm1 +m2 + diag(B))Y/2

)
× θ(Z,X −Bm1/2 +m2/2 + diag(B)/2, Y +m1/2)]

∣∣ [1 B
1

]
= [exp

(
− πi t

m1(X +BY )/2 + πi
t
(−Bm1 +m2 + diag(B))Y/2

)
× θ(Z +B,X +BY −Bm1/2 +m2/2 + diag(B)/2, Y +m1/2)]

(use s([ 1 B
1 ], Z)2 = 1, so that s([ 1 B

1 ], Z) is identically 1 or −1)

= [exp
(
− πi t

m1(X +BY )/2 + πi
t
(−Bm1 +m2 + diag(B))Y/2)

×
∑

R∈M(k,1,Z)

exp
(
πi(Z +B)[R− Y −m1/2]

+ 2πi
t
R(X +BY −Bm1/2 +m2/2 + diag(B)/2)

− πi t
(X +BY −Bm1/2 +m2/2 + diag(B)/2)(Y +m1/2)

)
]

= [exp
(
− πi t

m1(X +BY )/2 + πi
t
(−Bm1 +m2 + diag(B))Y/2)

×
∑

R∈M(k,1,Z)

exp
(
πiZ[R− Y −m1/2] + 2πi

t
R(X +m2/2)

− πi t
(X +m2/2)(Y +m1/2)

)
× exp

(
πiB[R− Y −m1/2] + 2πi

t
R(BY −Bm1/2 + diag(B)/2)

− πi t
(BY −Bm1/2 + diag(B)/2)(Y +m1/2)

)
]

= [exp
(
− πi t

m1(X +BY )/2 + πi
t
(−Bm1 +m2 + diag(B))Y/2)

×
∑

R∈M(k,1,Z)

exp
(
πi(Z +B)[R− Y −m1/2]

+ 2πi
t
R(X +BY −Bm1/2 +m2/2 + diag(B)/2)

× exp
(
πi

t
(R− Y −m1/2)B(R− Y −m1/2)

+ 2πi
t
R(BY −Bm1/2 + diag(B)/2)

− πi t
(BY −Bm1/2 + diag(B)/2)(Y +m1/2)

)
]

= [exp
(
− πi t

m1X/2− πi t
m1BY/2

− πi t
m1BY/2 + πi

t
m2Y/2 + πi

t
diag(B)Y/2)
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×
∑

R∈M(k,1,Z)

exp
(
πi(Z +B)[R− Y −m1/2]

+ 2πi
t
R(X +BY −Bm1/2 +m2/2 + diag(B)/2)

× exp
(
πi

t
RBR− πi t

RBY − πi t
RBm1/2

− πi t
Y BR+ πi

t
Y BY + πi

t
Y Bm1/2

− πi t
m1BR/2 + πi

t
m1BY/2 + πi

t
m1Bm1/4

+ 2πi
t
RBY − 2πi

t
RBm1/2 + 2πi

t
Rdiag(B)/2

− πi t
Y BY − πi t

Y Bm1/2

+ πi
t
m1BY/2 + πi

t
m1Bm1/4

− πi t
diag(B)Y/2− πi t

diag(B)m1/4
)
]

= [exp
(
− πi t

m1X/2 + πi
t
m2Y/2

)
× exp

(
+ πi

t
m1Bm1/2− πi t

diag(B)m1/4
)

×
∑

R∈M(k,1,Z)

exp
(
πiZ[R− Y −m1/2] + 2πi

t
R(X +m2/2)

− πi t
(X +m2/2)(Y +m1/2)

)
× exp

(
πi(

t
RBR+

t
Rdiag(B))− 2πi

t
RBm1

)
]

= [exp
(
− πi t

m1X/2 + πi
t
m2Y/2

)
× exp

(
πi

t
m1Bm1/2− πi t

diag(B)m1/4
)

×
∑

R∈M(k,1,Z)

exp
(
πiZ[R− Y −m1/2] + 2πi

t
R(X +m2/2)

− πi t
(X +m2/2)(Y +m1/2)

)
] (See Lemma 1.11.1)

= [exp
(
− πi t

m1X/2 + πi
t
m2Y/2

)
θ(Z,X +m2/2, Y +m1/2)]

= T (m).

And:

(T |
[

1
−1

]
)(m)

= T (

[
1

−1

]
{m})

∣∣ [ 1
−1

]
= T (

[
m2

−m1

]
)
∣∣ [ 1
−1

]
= [exp

(
− πi t

m2X/2− πi t
m1Y

)
θ(Z,X −m1/2, Y +m2/2)]

∣∣ [ 1
−1

]
= [s(

[
1

−1

]
, Z)−1 exp

(
− πi t

m2Y/2 + πi
t
m1X/2

)
× θ(−Z−1, Y −m1/2,−X +m2/2)]

= [exp
(
− πi t

m2Y/2 + πi
t
m1X/2

)
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× θ(Z,X −m2/2, Y −m1/2)] (by Lemma 3.2.3)

= [exp
(
− πi t

(−m1)X/2 + πi
t
(−m2)Y/2

)
θ(Z,X −m2/2, Y −m1/2)]

= T (−m)

= T (m).

This completes the proof.

Corollary 3.2.6. Let k be a positive integer, and let Γθ be the theta group, as
defined in sect. 1.11. Let µ8 be the group of all eighth roots of unity. There
exists a function χ : Γθ → µ8 such that

θ(Z,X, Y ) = χ(g)s(g, Z)−1θ(g · Z,AX +BY,CX +DY )

for Z ∈ Hk, X,Y ∈ M(k, 1,C), and g = [A B
C D ] ∈ Γθ.

Proof. Let g ∈ Γθ. By Theorem 3.2.5 we have T
∣∣g = T . Evaluating at m = 0 ∈

(Z/2Z)2k, we obtain:

T (0) = (T
∣∣g)(0)

[θ(Z,X, Y )] = T (g{0})
∣∣g

= T (0)
∣∣g

= [θ(Z,X, Y )]
∣∣g

[θ(Z,X, Y )] = [s(g, Z)−1θ(g · Z,AX +B,CX +D)].

It follows that there exists ξ ∈ µ8 such that

θ(Z,X, Y ) = ξs(g, Z)−1θ(g · Z,AX +B,CX +D)

for all Z ∈ Hk and X,Y ∈ M(k, 1,C).

3.3 Application to general theta series

Lemma 3.3.1. Let m and n be positive integers. If A ∈ M(m,C) and B ∈
M(n,C), then we define an element A⊗B ∈ M(mn,C) by

A⊗B =

b11A · · · b1nA
...

...
bn1A · · · bnnA

 .
Let A,A′ ∈ M(m,C) and B,B′ ∈ M(m,C). Then

(A⊗B)(A′ ⊗B′) = AA′ ⊗BB′, (3.7)

det(A⊗B) = (detA)n(detB)m, (3.8)
t
(A⊗B) =

t
A⊗ t

B. (3.9)
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If A and B are invertible, then A⊗B is invertible, and

(A⊗B)−1 = A−1 ⊗B−1. (3.10)

If A ∈ Sym(m,R)+ and B ∈ Sym(n,R)+, then A⊗B ∈ Sym(mn,R)+.

Proof. We write B = (bij)1≤i,j≤n and B = (b′ij)1≤i,j≤n. Then

(A⊗B)(A′ ⊗B′) =

b11A · · · b1nA
...

...
bn1A · · · bnnA


b
′
11A

′ · · · b′1nA
′

...
...

b′n1A
′ · · · b′nnA

′


=

(
∑n
j=1 b1jb

′
j1)AA′ · · · (

∑n
j=1 b1jb

′
jn)AA′

...
...

(
∑n
j=1 bnjb

′
j1)AA′ · · · (

∑n
j=1 bnjb

′
jn)AA′


= AA′ ⊗BB′.

Next,

det(A⊗B)

= det((A⊗ 1n)(1m ⊗B))

= det(A⊗ 1n) det(1m ⊗B)

= det(

A . . .

A

) det(



b11

. . .

b11

 · · ·

b1n . . .

b1n


...

...bn1

. . .

bn1

 · · ·

bnn . . .

bnn




= det(A)n det(B)m.

We have

t
(A⊗B) =

tb11A · · · b1nA
...

...
bn1A · · · bnnA


=

b11
t
A · · · bn1

t
A

...
...

b1n
t
A · · · bnn

t
A


=

t
A⊗ t

B.

Assume that A and B are invertible. Then

(A⊗B)(A−1 ⊗B−1) = AA−1 ⊗BB−1
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= 1m ⊗ 1n

= 1mn.

This implies that A⊗B is invertible and has inverse A−1⊗B−1. Finally, assume
that A ∈ Sym(m,R)+ and B ∈ Sym(n,R)+. Since

t
(A⊗B) =

t
A⊗ t

B = A⊗B,
it follows that A⊗B is symmetric. By (1.5), there exist T ∈ GL(m,R) and S ∈
GL(n,R) such that T−1 =

t
T and S−1 =

t
S, and there exist λ1 > 0, . . . , λm > 0

and µ1 > 0, . . . , µn > 0 such that

t
TAT =

λ1

. . .

λm

 , t
SBS =

µ1

. . .

µn

 .
We have:

t
(T ⊗ S)(A⊗B)(T ⊗ S) = (

t
T ⊗ t

S)(A⊗B)(T ⊗ S)

=
t
TAT ⊗ t

SBS

=

λ1

. . .

λm

⊗
µ1

. . .

µn



=



µ1λ1

. . .

µ1λm
. . .

µnλ1

. . .

µnλm


.

This equality implies that A⊗B is positive-definite.

Lemma 3.3.2. Let m and n be positive integers. Let F ∈ Sym(m,Z) be even
and invertible, and let N be the level of F . Let

Γ0(N) = {
[
A B
C D

]
∈ Sp(2n,Z) : C ≡ 0 (mod N)}.

Define a function
t : Γ0(N) −→ Γθ,2mn

by M = [A B
C D ] 7→ M̃ , where

M̃ =

[
Ã B̃

C̃ D̃

]
=

[
1m ⊗A F ⊗B
F−1 ⊗ C 1m ⊗D

]
.

The function t is a well-defined homomorphism.
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Proof. We first verify that t is well-defined. Let M = [A B
C D ] ∈ Γ0(N). By

Lemma 1.9.2, we have

t
AC =

t
CA,

t
BD =

t
BD,

t
AD − t

CB = 1n,

and to see that M̃ ∈ Sp(2mn,Z) it suffices to check that Ã, B̃, C̃, D̃ are integral,
and

t
ÃC̃ =

t
C̃Ã,

t
B̃D̃ =

t
D̃B̃,

t
ÃD̃ − t

C̃B̃ = 1mn.

It is clear that Ã, B̃ and D̃ are integral. Concerning C̃, we have:

C̃ = F−1 ⊗ C = NF−1 ⊗N−1C.

Since NF−1 and N−1C are integral, by the definition of the level of N and as
C ≡ 0 (mod N), it follows that C̃ is integral. Now

t
ÃC̃ =

t
(1m ⊗A)(F−1 ⊗ C)

= (1m ⊗ t
A)(F−1 ⊗ C)

= F−1 ⊗ t
AC

= F−1 ⊗ t
CA

= (F−1 ⊗ t
C)(1m ⊗A)

= (
t
F−1 ⊗ t

C)(1m ⊗A)

=
t
(F−1 ⊗ C)(1m ⊗A)

=
t
C̃Ã.

A similar calculation shows that
t
B̃D̃ =

t
D̃B̃. Next,

t
ÃD̃ − t

C̃B̃ = (1m ⊗ t
A)(1m ⊗D)− (

t
F−1 ⊗ t

C)(F ⊗B)

= 1m ⊗ t
AD − 1m ⊗ t

CB

= 1m ⊗ (
t
AD − t

CB)

= 1m ⊗ 1n

= 1mn.

It follows that M̃ ∈ Sp(2mn,Z). To now prove that M̃ ∈ Γθ,mn it suffices to
prove that

diag(Ã
t
B̃) ≡ 0 (mod 2) and diag(C̃

t
D̃) ≡ 0 (mod 2).

We have

diag(Ã
t
B̃) ≡ diag((1m ⊗A)

t
(F ⊗B) (mod 2)

≡ diag(F ⊗A t
B) (mod 2)

≡ 0 (mod 2),
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by the definition of ⊗, and because diag(F ) ≡ 0 (mod 2). And

diag(C̃
t
D̃) ≡ diag((F−1 ⊗ C)

t
(1m ⊗D)) (mod 2)

≡ diag(F−1 ⊗ C t
D) (mod 2)

≡ diag(NF−1 ⊗N−1C
t
D) (mod 2)

≡ 0 (mod 2)

by the definition of ⊗, diag(NF−1) ≡ 0 (mod 2), and N−1C
t
D ∈ M(n,Z).

Finally, we verify that t is a homomorphism. Let
[
A1 B1

C1 D1

]
,
[
A2 B2

C2 D2

]
∈ Γ0(N).

Then

t(

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

]
) = t(

[
A1A2 +B1C2 A1B2 +B1D2

C1A2 +D1C2 C1B2 +D1D2

]
)

= t(

[
1m ⊗ (A1A2 +B1C2) F ⊗ (A1B2 +B1D2)
F−1 ⊗ (C1A2 +D1C2) 1m ⊗ (C1B2 +D1D2)

]
)

= t(

[
(1m ⊗A1)(1m ⊗A2) + (F ⊗B1)(F−1 ⊗ C2)
(F−1 ⊗ C1)(1m ⊗A2) + (1⊗D1)(F−1 ⊗ C2)

(1m ⊗A1)(F ⊗B2) + (F ⊗B1)(1m ⊗D2)
(F−1 ⊗ C1)(F ⊗B2) + (1⊗D1)(1⊗D2)

]
)

=

[
1m ⊗A1 F ⊗B1

F−1 ⊗ C1 1m ⊗D1

] [
1m ⊗A2 F ⊗B2

F−1 ⊗ C2 1m ⊗D2

]
= t(

[
A1 B1

C1 D1

]
)t(

[
A2 B2

C2 D2

]
)

This completes the proof.

Lemma 3.3.3. Let m and n be positive integers, and let F ∈ Sym(m,R)+. For
Z ∈ Hn and Y ∈ M(m,n,C) define

Z̃ = F ⊗ Z, Ỹ =

Y1

...
Yn


where Y = [Y1 · · ·Yn] with Y1, . . . , Yn ∈ M(m, 1,C). We have

Z̃ ∈ Hmn,

X̃ ∈ M(mn, 1,C),

Z̃[Ỹ ] = tr(ZF [Y ]),
t
X̃Ỹ = tr(

t
XY ),

M̃ · Z̃ = M̃ · Z,

ÃX̃ + B̃Ỹ = ˜X
t
A+ FY

t
B,

C̃X̃ + D̃Ỹ = ˜F−1X
t
C + Y

t
D,
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for Z ∈ Hn, X,Y ∈ M(m,n,C), and M ∈ Sp(2n,Z). Moreover, for every
M ∈ Sp(2n,Z) there exists ε ∈ {±1} such that

s(M̃, Z̃) = εs(M,Z)m

for Z ∈ Hn.

Proof. Let Z ∈ Hn and X,Y ∈ M(m,n,C). We have
t
Z̃ = Z̃ by Lemma 3.3.1.

Write Z = U+iV with U, V ∈ Sym(n,R) and V > 0. Then Z̃ = F ⊗(U+iV ) =
(F⊗U)+i(F⊗V ). By Lemma 3.3.1 we have F⊗V > 0. It follows that Z ∈ Hmn.
Next,

Z̃[Ỹ ] =

tY1

...
Yn


z11F · · · z1nF

...
...

zn1F · · · znnF


Y1

...
Yn


=
[t
Y1 · · · t

Yn
] z11FY1 + · · ·+ z1nFYn

...
zn1FY1 + · · ·+ znnFYn


=

n∑
i=1

n∑
j=1

zij
t
YiFYj .

And:

tr(ZF [Y ]) = tr(Z
t
Y FY )

= tr(Z
t[
Y1 · · · Yn

]
F
[
Y1 · · · Yn

]
)

= tr(Z


t
Y1

...
t
Yn

F [Y1 · · · Yn
]
)

= tr(Z


t
Y1F

...
t
YnF

 [Y1 · · · Yn
]
)

= tr(

z11 · · · z1n

...
...

zn1 · · · znn




t
Y1FY1 · · · t

Y1FYn
...

...
t
YnFY1 · · · t

YnFYn

)

=

n∑
i=1

n∑
j=1

zij
t
YiFYj .

It follows that Z̃[Ỹ ] = tr(ZF [Y ]). Next, we have:

t
X̃Ỹ =

tX1

...
Xn


Y1

...
Yn


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=
[t
X1 · · · t

Xn

] Y1

...
Yn


=

n∑
i=1

t
XiYi.

And:

tr(
t
XY ) = tr(

t[
X1 · · · Xn

] [
Y1 · · · Yn

]
)

= tr(


t
X1

...
t
Xn

 [Y1 · · · Yn
]
)

= tr(


t
X1Y1 · · · t

X1Yn
...

...
t
XnY1 · · · t

XnYn

)

=

n∑
i=1

t
XiYi.

It follows that
t
X̃Ỹ = tr(

t
XY ). Let M = [A B

C D ] ∈ Sp(2n,Z). Then

M̃ · Z̃ =

[
1m ⊗A F ⊗B
F−1 ⊗ C 1m ⊗D

]
· (F ⊗ Z)

= ((1m ⊗A)(F ⊗ Z) + F ⊗B)((F−1 ⊗ C)(F ⊗ Z) + 1m ⊗D)−1

= (F ⊗AZ + F ⊗B)(1m ⊗ CZ + 1m ⊗D)−1

= (F ⊗ (AZ +B))(1m ⊗ (CZ +D))−1

= (F ⊗ (AZ +B))(1m ⊗ (CZ +D)−1)

= F ⊗ (AZ +B)(CZ +D)−1

= F ⊗M · Z

= M̃ · Z.

Now

ÃX̃ + B̃Ỹ = (1m ⊗A)

X1

...
Xn

+ (F ⊗B)

Y1

...
Yn


=

a111m · · · a1n1m
...

...
an11m · · · ann1m


X1

...
Xn

+

b11F · · · b1nF
...

...
bn1F · · · bnnF


Y1

...
Yn


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=


∑n
i=1 a1iXi

...∑n
i=1 aniXi

+


∑n
i=1 b1iFYi

...∑n
i=1 bniFYi

 .
And:

˜X
t
A+ FY

t
B = ˜[

X1 · · · Xn

] t
A+ F

[
Y1 · · · Yn

] t
B

= ˜[∑n
i=1 a1iXi · · ·

∑n
i=1 aniXi

]
+ F

[∑n
i=1 b1iYi · · ·

∑n
i=1 bniYi

]
=


∑n
i=1 a1iXi

...∑n
i=1 aniXi

+


∑n
i=1 b1iFYi

...∑n
i=1 bniFYi

 .
Hence, ÃX̃+ B̃Ỹ = ˜X

t
A+ FY

t
B. The proof of C̃X̃+ D̃Ỹ = ˜F−1X

t
C + Y

t
D

is similar. Finally, let M ∈ Sp(2n,Z). For Z ∈ Hn we have

s(M̃, Z̃)2 = det(C̃Z̃ + D̃)

= det((F−1 ⊗ C)(F ⊗ Z) + (1m ⊗D))

= det(1m ⊗ CZ + 1m ⊗D)

= det(1m ⊗ (CZ +D))

= det(CZ +D)m

= s(M,Z)2m.

It follows that for each Z ∈ Hn there exists ε(Z) ∈ {±1} such that s(M̃, Z̃) =
ε(Z)s(M,Z)m. The function on Hn that sends Z to ε(Z) is continuous and takes
values in {±1}. Since Hn is connected (see Proposition 1.10.3), the intermediate
value theorem (see Theorem 6 on page 90 of [18]) implies now that this function
is constant, which completes the proof of the lemma.

Lemma 3.3.4. Let m and n be positive integers, and let F ∈ Sym(m,R)+. For
Z ∈ Hn, X,Y ∈ M(m× n,C), define

θ(F,Z,X, Y ) =
∑

R∈M(m×n,Z)

exp
(
πitr(ZF [R− Y ]) + 2πitr(

t
RX)− πitr(t

XY )
)
.

By Lemma 3.1.8, this series converges absolutely and uniformly on compact
subsets of Hn ×M(m,n,C) ×M(m,n,C) and defines an analytic function on
this set. With the notation of Lemma 3.3.3, we have

θ(F,Z,X, Y ) = θ(Z̃, X̃, Ỹ ). (3.11)

Proof. By definition,

θ(Z̃, X̃, Ỹ ) =
∑

R′∈M(k,1,Z)

exp
(
πiZ̃[R′ − Ỹ ] + 2πi

t
R′X̃ − πi t

X̃Ỹ
)
.



122 CHAPTER 3. CLASSICAL THETA SERIES ON HN

The map M(m,n,Z) → M(k, 1,Z) defined by R 7→ R̃ is an isomorphism of
groups. Using this, and Lemma 3.3.3,

θ(Z̃, X̃, Ỹ ) =
∑

R′∈M(m,n,Z)

exp
(
πiZ̃[R̃− Ỹ ] + 2πi

t
R̃X̃ − πi t

X̃Ỹ
)

=
∑

R∈M(m,n,Z)

exp
(
πitr(ZF [R− Y ]) + 2πitr(

t
RX)− πitr(t

XY )
)

θ(Z̃, X̃, Ỹ ) = θ(F,Z,X, Y ).

This completes the proof.

Theorem 3.3.5. Let m and n be positive integers, and let F ∈ Sym(m,Z)+ be
even. Let N be the level of F . For Z ∈ Hn, X,Y ∈ M(m× n,C), define

θ(F,Z,X, Y ) =
∑

R∈M(m×n,Z)

exp
(
πitr(ZF [R− Y ]) + 2πitr(

t
RX)− πitr(t

XY )
)
.

By Lemma 3.1.8, this series converges absolutely and uniformly on compact
subsets of Hn ×M(m,n,C) ×M(m,n,C) and defines an analytic function on
this set. Let µ8 be the group of eighth roots of unity. There exists a function
χ : Γ0(N)→ µ8 such that

χ(M)θ(F,Z,X, Y )

= s(M,Z)−mθ(F,M · Z,X t
A+ FY

t
B,F−1X

t
C + Y

t
D)

for M = [A B
C D ] ∈ Γ0(N), Z ∈ Hn, and X,Y ∈ M(m,n,C).

Proof. Let k = mn. By Corollary 3.2.6 there exists a function µ : Γθ → µ8 such
that

µ(M ′)θ(Z ′, X ′, Y ′)

= s(M ′, Z ′)−1θ(M ′ · Z ′, A′X ′ +B′Y ′, C ′X ′ +D′Y ′) (3.12)

for Z ′ ∈ Hk, X ′, Y ′ ∈ M(k, 1,C), and M ′ =
[
A′ B′

C′ D′

]
∈ Γθ,k. Here,

θ(Z ′, X ′, Y ′) =
∑

R′∈M(k,1,Z)

exp
(
πiZ ′[R′ − Y ′] + 2πi

t
R′X − πi t

X ′Y ′
)

for Z ′ ∈ Hk, X ′, Y ′ ∈ M(k, 1,C). Let M = [A B
C D ] ∈ Γ0(N), Z ∈ Hn, and

X,Y ∈ M(m,n,C). To prove the theorem we will substitute M̃ for M ′, Z̃ for
Z ′, X̃ for X ′ and Ỹ for Y ′ in both sides of (3.12); note that M̃ ∈ Γθ,2k by
Lemma 3.3.2. Substituting in the left hand side, we have, by (3.11),

θ(Z̃, X̃, Ỹ ) = θ(F,Z,X, Y ).

Substituting M̃ for M ′, Z̃ for Z ′, X̃ for X ′ and Ỹ for Y ′ in the right hand side
of (3.12), using Lemma 3.3.3 again, and also (3.11), we get:

s(M ′, Z ′)−1θ(M ′ · Z ′, A′X ′ +B′Y ′, C ′X ′ +D′Y ′)
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= s(M̃, Z̃)−1θ(M̃ · Z̃, ÃX̃ + B̃Ỹ , C̃X̃ + D̃Ỹ )

= εs(M,Z)−mθ(M̃ · Z, ˜X
t
A+ FY

t
B, ˜F−1X

t
C + Y

t
D)

= εs(M,Z)−mθ(F,M · Z,X t
A+ FY

t
B,F−1X

t
C + Y

t
D).

Here, ε depends only on M . The theorem is proven.

3.4 The multiplier

In this section we compute the multiplier χ(M) from Theorem 3.3.5 in the case
that m is even.

Lemma 3.4.1. Let m and n be positive integers, and assume that m is even.
Let F ∈ Sym(m,Z)+ be even, and let N be the level of F . Let χ : Γ0(N)→ µ8

be as in Theorem 3.3.5. Then χ is a character.

Proof. Let M1,M2 ∈ Γ0(N). By Theorem 3.3.5, if Z ∈ Hn, then:

χ(M1M2)θ(F,Z) = s(M1M2, Z)−mθ(F, (M1M2) · Z)

= j(M1M2, Z)−m/2θ(F,M1 · (M2 · Z))

= j(M1,M2 · Z)−m/2j(M2, Z)−m/2

× χ(M1)s(M1,M2 · Z)mθ(F,M2 · Z)

= j(M1,M2 · Z)−m/2j(M2, Z)−m/2

× χ(M1)j(M1,M2 · Z)m/2θ(F,M2 · Z)

= j(M2, Z)−m/2χ(M1)θ(F,M2 · Z)

= j(M2, Z)−m/2χ(M1)χ(M2)s(M2, Z)mθ(F,Z)

= j(M2, Z)−m/2χ(M1)χ(M2)j(M2, Z)m/2θ(F,Z)

= χ(M1)χ(M2)θ(F,Z).

Since θ(F, ·) is not zero, we obtain χ(M1M2) = χ(M1)χ(M2).

Lemma 3.4.2. Let m and n be positive integers. Assume that m is even. Let
F ∈ Sym(m,R)+. Then

θ(F,Z,X, Y ) = det(F )−n/2 det(−iZ)−m/2θ(F−1,−Z−1, Y,−X)

for T ∈ Sym(n,R)+ and X,Y ∈ M(m,n,C).

Proof. Let k = mn. From the proof of Lemma 3.2.3 we have

θ(iT ′, X ′, Y ′) = det(T ′)−1/2θ(−(iT ′)−1, Y ′,−X ′) (3.13)

for T ′ ∈ Sym(k,R)+ and X ′, Y ′ ∈ M(k, 1,C). Let T ∈ Sym(n,R)+ and X,Y ∈
M(m,n,C). To prove the lemma we will substitute T ′ = F ⊗ T , X ′ = X̃ and
Y ′ = Ỹ in (3.13). Now

θ(i(F ⊗ T ), X̃, Ỹ ) = θ(F ⊗ iT, X̃, Ỹ )
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= θ(ĩT , X̃, Ỹ )

= θ(F, iT,X, Y ). (use Lemma 3.3.4)

And

θ((−(i(F ⊗ T ))−1, Ỹ ,−X̃)

= θ(F−1 ⊗
(
− (iT )−1

)
, Ỹ ,−X̃)

= θ(F−1,−(iT )−1, Y,−X). (use Lemma 3.3.4 with F−1)

Finally,

det(F ⊗ T ) = det(F )n det(T )m.

The equality (3.13) now implies that

θ(F, iT,X, Y ) = det(F )−n/2 det(T )−m/2θ(F−1,−(iT )−1, Y,−X),

or equivalently,

θ(F, iT,X, Y ) = det(F )−n/2 det((−i)iT )−m/2θ(F−1,−(iT )−1, Y,−X).

The assertion of the lemma follows now from Lemma 1.10.5.

Lemma 3.4.3. Let m and n be positive integers. Let M,N ∈ M(m,n,C),
E ∈ Sym(n,C), and F ∈ Sym(m,C). Then

tr(E
t
MFN) = tr(E

t
NFM).

Proof. Let E = (eij), M = [M1 · · ·Mn], and N = [N1, · · ·Mn]. We have

tr(E
t
MFN) = tr(

e11 · · · e1n

...
...

en1 · · · enn




t
M1FN1 · · · t

M1FNn
...

...
t
MnFN1 · · · t

MnFNn

)

=

n∑
i=1

n∑
j=1

eij
t
MjFNi

=

n∑
i=1

n∑
j=1

eji
t
NiFMj

= tr(

e11 · · · e1n

...
...

en1 · · · enn




t
N1FM1 · · · t

N1FMn

...
...

t
NnFM1 · · · t

NnFMn

)

= tr(E
t
NFM).

This completes the proof.

Lemma 3.4.4. Let m and n be positive integers, and let F ∈ Sym(m,R)+. Let
R ∈ M(m,n,R). Then tr(F [R]) ≥ 0, and tr(F [R]) = 0 if and only if R = 0.
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Proof. Write R = [R1 · · ·Rn]. Then

tr(F [R]) = tr(


t
R1

...
t
Rn

F [R1 · · · Rn
]
)

= tr(


t
R1

...
t
Rn

 [FR1 · · · FRn
]
)

= tr(


t
R1FR1 · · · t

R1FRn
...

...
t
RnFR1 · · · t

RnFRn

)

=

n∑
i=1

F [Ri].

Since F is positive-definite, we have F [Ri] ≥ 0 for 1 ≤ i ≤ n. It follows that
tr(F [R]) ≥ 0. Assume that tr(F [R]) = 0. Then F [Ri] = 0 for 1 ≤ i ≤ n. Since
F is positive-definite, R1 = · · · = Rn = 0.

Lemma 3.4.5. Let m and n be positive integers. Let F ∈ Sym(m,Z) be even.
If W ∈ M(n,Z) and N ∈ M(m,n,Z), then tr(WF [N ]) = tr(F [N ]W ) is an even
integer.

Proof. Write W = (wij) and N = [N1 · · ·Nn]. Then

tr(WF [N ]) = tr(

w11 · · · w1n

...
...

wn1 · · · wnn




t
N1FN1 · · · t

N1FNn
...

...
t
NnFN1 · · · t

NnFNn

)

=

n∑
i=1

n∑
j=1

wij
t
NjFNi

=
∑

i,j∈{1,...,n},
i 6=j

wij
t
NjFNi +

n∑
i=1

wii
t
NiFNi

=
∑

i,j∈{1,...,n},
i<j

2wij
t
NjFNi +

n∑
i=1

wii
t
NiFNi

≡ 0 (mod 2)

because F is an even integral symmetric matrix (see Lemma 1.5.1).

Lemma 3.4.6. For every positive integer `, let

f` : M(m,n,Z)→ C
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be a function, and assume that the limit lim`→∞ f`(N) exists for every N ∈
M(m,n,C). Define f : M(m,n,Z)→ C by

f(N) = lim
`→∞

f`(N)

for N ∈ M(m,n,Z). Suppose that g : M(m,n,Z)→ R≥0 is a function such that

|f`(N)| ≤ g(N)

for every ` ∈ Z+ and N ∈ M(m,n,Z), and
∑
N∈M(m,n,Z) g(N) converges. Then∑

N∈M(m,n,Z)

f(N) and
∑

N∈M(m,n,Z)

f`(N) for ` ∈ Z+

converge absolutely, and

lim
`→∞

∑
N∈M(m,n,Z)

f`(N) =
∑

N∈M(m,n,Z)

f(N).

Proof. This is an application of Lebesgue’s dominated convergence theorem (see
the theorem on p. 26 of [24]).

Lemma 3.4.7. Let m and n be positive integers, and assume that m is even. Let
F ∈ Sym(m,Z)+ be even, and let N be the level of F . Let M = [A B

C D ] ∈ Γ0(N).
Assume that D is invertible, and let d be a non-zero integer such that dD−1 is
integral. Let χ(M) be as in Theorem 3.3.5. Then

χ(M) = d−mn det(D)m/2
∑

R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
.

Proof. For every positive integer `, we define

T` = `−1 · 1n.

Evidently, T` ∈ Sym(n,R)+ for ` ∈ Z+. Let ` ∈ Z+. By Theorem 3.3.5

χ(M)θ(F,Z,X, Y )

= s(M,Z)−mθ(F,M · Z,X t
A+ FY

t
B,F−1X

t
C + Y

t
D) (3.14)

for Z ∈ Hn and X,Y ∈ M(m,n,C). Since m is even, we have

s(M,Z)−m = det(CZ +D)−m/2

for Z ∈ Hn. Let Z = iT` and X = Y = 0 in (3.14), we obtain

χ(M)θ(F, iT`) = det(iCT` +D)−m/2θ(F,M · iT`) (3.15)

where we write θ(F,Z) = θ(F,Z, 0, 0) for Z ∈ Hn. Multiplying this equation by
det(T`)

m/2, we obtain:
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det(T`)
m/2χ(M)θ(F, iT`)

= det(T`)
m/2 det(iCT` +D)−m/2θ(F,M · iT`). (3.16)

To prove the lemma we will determine the limits of both sides of (3.16) as
`→∞. Using Lemma 3.4.2, the left-hand side of (3.16) can be computed as:

LHS of (3.16) = det(T`)
m/2χ(M)θ(F, iT`)

= det(T`)
m/2χ(M) det(F )−n/2 det(T`)

−m/2θ(F−1,−(iT`)
−1)

= χ(M) det(F )−n/2θ(F−1,−(iT`)
−1).

We claim that
lim
`→∞

θ(F−1,−(iT`)
−1) = 1. (3.17)

To prove this, we first note that

θ(F−1,−(iT`)
−1) =

∑
R∈M(m,n,Z)

exp
(
πitr(−(iT`)

−1F−1[R])
)

=
∑

R∈M(m,n,Z)

exp
(
− π`tr(F−1[R])

)
.

Since F−1 is positive-definite, it follows that for R ∈ M(m,n,Z) we have
tr(F−1[R]) ≥ 0 with tr(F−1[R]) = 0 if and only if R = 0 (see Lemma 3.4.4). It
follows that

lim
`→∞

exp
(
− π`tr(F−1[R])

)
=

{
0 if R 6= 0,

1 if R = 0.

We also have

| exp
(
− π`tr(F−1[R])

)
| = exp

(
− π`tr(F−1[R])

)
≤ exp

(
− πtr(F−1[R])

)
for R ∈ M(m,n,Z), and the series∑

R∈M(m,n,Z)

exp
(
− πtr(F−1[R])

)
converges absolutely by Proposition 3.1.8 (with A = F−1, Z = i1n, and X =
Y = 0). Lemma 3.4.6 now implies that

lim
`→∞

θ(F−1,−(iT`)
−1) = lim

`→∞

∑
R∈M(m,n,Z)

exp
(
− π`tr(F−1[R])

)
=

∑
R∈M(m,n,Z)

lim
`→∞

exp
(
− π`tr(F−1[R])

)
=

∑
R∈M(m,n,Z)

{
0 if R 6= 0,
1 if R = 0

}
= 1.



128 CHAPTER 3. CLASSICAL THETA SERIES ON HN

It follows that
lim
`→∞

LHS of (3.16) = χ(M) det(F )−n/2. (3.18)

We now consider the right-hand side of (3.16). We first rewrite M · iT`. Let
Z ∈ Hn, and define

W =
t
D−1Z(CZ +D)−1.

We claim that
M · Z = BD−1 +W. (3.19)

To see this, we calculate:

BD−1 +W = BD−1 +
t
D−1Z(CZ +D)−1

= (BD−1(CZ +D) +
t
D−1Z)(CZ +D)−1

= (BD−1CZ +B +
t
D−1Z)(CZ +D)−1

= ((BD−1C +
t
D−1)Z +B)(CZ +D)−1

= ((BD−1C
t
D + 1)

t
D−1Z +B)(CZ +D)−1

= ((BD−1D
t
C + 1)

t
D−1Z +B)(CZ +D)−1

= ((B
t
C + 1)

t
D−1Z +B)(CZ +D)−1

= (A
t
D

t
D−1Z +B)(CZ +D)−1

= (AZ +B)(CZ +D)−1

= M · Z.

In this calculation we used Lemma 1.9.2. We now define

T ′` =
t
D−1T`(C(iT`) +D)−1.

Multiplying by i, we obtain

iT ′` =
t
D−1(iT`)(C(iT`) +D)−1.

By the general identity (3.19) we have

M · iT` = BD−1 + iT ′` .

Since BD−1 ∈ Sym(n,R) by Lemma 1.9.2, and since M · iT` ∈ Hn, it follows
that iT ′` ∈ Hn. We now have:

θ(F,M · iT`) =
∑

R∈M(m,n,Z)

exp
(
πitr((M · iT`)F [R])

)
=

∑
R∈M(m,n,Z)

exp
(
πitr((BD−1 + iT ′`)F [R])

)
=

∑
R∈M(m,n,Z/dZ)

∑
N∈dM(m,n,Z)

exp
(
πitr((BD−1 + iT ′`)F [R+N ])

)
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=
∑

R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr((BD−1 + iT ′`)F [R+ dN ])

)
=

∑
R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr((BD−1 + iT ′`)

× (F [R] + d
t
NFR+ d

t
RFN + d2F [N ]))

)
=

∑
R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
× exp

(
− πdtr(T ′`

t
NFR)− πdtr(T ′`

t
RFN)− πd2tr(T ′`F [N ])

)
× exp

(
πitr(BdD−1(

t
NFR+

t
RFN)

)
exp

(
πidtr(BdD−1F [N ])

)
=

∑
R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
× exp

(
− 2πdtr(T ′`

t
NFR)− πd2tr(T ′`F [N ])

)
× exp

(
2πitr(BdD−1(

t
NFR)

)
exp

(
πidtr(BdD−1F [N ])

)
=

∑
R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
× exp

(
− 2πdtr(T ′`

t
NFR)− πd2tr(T ′`F [N ])

)
× exp

(
πidtr(BdD−1F [N ])

)
.

For the last two equalities we used Lemma 3.4.3, along with the fact that the
matrix BdD−1 is integral (by the definition of d) and symmetric (by Lemma
1.9.2). By Lemma 3.4.5 we also have exp

(
πidtr(BdD−1F [N ])

)
= 1. Hence,

θ(F,M · iT`) =
∑

R∈M(m,n,Z/dZ)

∑
N∈M(m,n,Z)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
× exp

(
− 2πdtr(T ′`

t
NFR)− πd2tr(T ′`F [N ])

)
=

∑
R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
∑

N∈M(m,n,Z)

exp
(
− 2πdtr(T ′`

t
NFR)− πd2tr(T ′`F [N ])

)
=

∑
R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
∑

N∈M(m,n,Z)

exp
(
πitr(id2T ′`F [N ]) + 2πitr(

t
NdFR(iT ′`))

)
=

∑
R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])− πtr(T ′`F [R])

)
× θ(F, id2T ′` , dFR(iT ′`), 0)

θ(F,M · iT`) =
∑

R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
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exp
(
− πtr(T ′`F [R])

)
θ(F, id2T ′` , dFR(iT ′`), 0). (3.20)

Let R ∈ M(m,n,Z). By Lemma 3.4.2 we have:

θ(F, id2T ′` , dFR(iT ′`), 0)

= det(F )−n/2 det(d2T ′`)
−m/2θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`)). (3.21)

Now

θ(F−1,−(id2T ′`)
−1, 0,−dFR(iT ′`))

=
∑

N∈M(m,n,Z)

exp
(
πitr(−(id2T ′`)

−1F−1[N + dFR(iT ′`)])
)
.

Let N ∈ M(m,n,Z). Then

exp
(
πitr(−(id2T ′`)

−1F−1[N + dFR(iT ′`)])
)

= exp
(
− πd−2tr(T ′−1

`
t
(N + dFRiT ′`)F

−1(N + dFRiT ′`))
)

= exp
(
− πd−2tr(T ′−1

` (
t
N + diT ′`

t
RF )(F−1N + diRT ′`))

)
= exp

(
− πd−2tr((T ′−1

`
t
N + di

t
RF )(F−1N + diRT ′`))

)
= exp

(
− πd−2tr(T ′−1

` F−1[N ] + diT ′−1
`

t
NRT ′` + di

t
RN − d2 t

RFRT ′`)
)

= exp
(
− πd−2tr(T ′−1

` F−1[N ])
)

exp
(
− 2πid−1tr(

t
RN)

)
× exp

(
πtr(T ′`F [R])

)
= exp

(
− πd−2tr((CiT` +D)T−1

`
t
DF−1[N ])

)
exp

(
− 2πid−1tr(

t
RN)

)
× exp

(
πtr(T ′`F [R])

)
= exp

(
− πd−2tr(`(i`−1C +D)

t
DF−1[N ])

)
exp

(
− 2πid−1tr(

t
RN)

)
× exp

(
πtr(T ′`F [R])

)
= exp

(
− πid−2tr(C

t
DF−1[N ])

)
exp

(
− πd−2`tr(D

t
DF−1[N ])

)
× exp

(
− 2πid−1tr(

t
RN)

)
exp

(
πtr(T ′`F [R])

)
= exp

(
− πid−2tr(C

t
DF−1[N ])

)
exp

(
− πd−2`tr(F−1[ND])

)
× exp

(
− 2πid−1tr(

t
RN)

)
exp

(
πtr(T ′`F [R])

)
.

It follows that

exp
(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`)) (3.22)

=
∑

N∈M(m,n,Z)

exp
(
− πid−2tr(C

t
DF−1[N ])

)
× exp

(
− 2πid−1tr(

t
RN)

)
exp

(
− πd−2`tr(F−1[ND])

)
. (3.23)

We claim that

lim
`→∞

exp
(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`)) = 1. (3.24)
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To prove this we use (3.23) and Lemma 3.4.6. Since F−1 is positive-definite we
have, for N ∈ M(m,n,Z), tr(F−1[ND]) ≥ 0, and tr(F−1[ND]) = 0 if and only
if ND = 0, that is, if and only N = 0 (see Lemma 3.4.4. This implies that for
N ∈ M(m,n,Z),

lim
`→∞

exp
(
− πid−2tr(C

t
DF−1[N ])

)
× exp

(
− 2πid−1tr(

t
RN)

)
exp

(
− πd−2`tr(F−1[ND])

)
= exp

(
− πid−2tr(C

t
DF−1[N ])

)
exp

(
− 2πid−1tr(

t
RN)

)
(3.25)

× lim
`→∞

exp
(
− πd−2`tr(F−1[ND])

)
=

{
1 if N = 0,

0 if N 6= 0.
(3.26)

We also have

| exp
(
− πid−2tr(C

t
DF−1[N ])

)
exp

(
− 2πid−1tr(

t
RN)

)
× exp

(
− πd−2`tr(F−1[ND])

)
|

≤ exp
(
− πd−2`tr(F−1[ND])

)
≤ exp

(
− πd−2tr(F−1[ND])

)
,

and the series ∑
N∈M(m,n,Z)

exp
(
− πd−2tr(F−1[ND])

)
converges by Proposition 3.1.8. We now may apply Lemma 3.4.6 and conclude
that (3.24) holds. Going back, we have

RHS of (3.16) = det(T`)
m/2 det(iCT` +D)−m/2θ(F,M · iT`)

= det(T`)
m/2 det(iCT` +D)−m/2 det(F )−n/2 det(d2T ′`)

−m/2∑
R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
exp

(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`))

= det(F )−n/2d−mn det(iCT` +D)−m/2 det(T`T
′−1
` )m/2∑

R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
exp

(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`))

= det(F )−n/2d−mn det(i`−1C +D)−m/2 det((i`−1C +D)
t
D)m/2∑

R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
exp

(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`))

= det(F )−n/2d−mn det(D)m/2
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R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
exp

(
− πtr(T ′`F [R])

)
θ(F−1,−(id2T ′`)

−1, 0,−dFR(iT ′`)).

By (3.26) we now have

lim
`→∞

RHS of (3.16)

= det(F )−n/2d−mn det(D)m/2
∑

R∈M(m,n,Z/dZ)

exp
(
πitr(BD−1F [R])

)
. (3.27)

A comparison of (3.18) and (3.27) completes the proof.

Let n and N be positive integers. We have the subgroup Γ0(N) of Sp(2n,Z).

Sometimes, to indicate the dependence of Γ0(N) we will write Γ
(n)
0 (N) for

Γ0(N). Let K be the subgroup of Γ
(n)
0 (N) generated by the matrices of the

form [t
U−1

U

]
, U ∈ SL(n,Z), (3.28)[

1 S
1

]
, S ∈ Sym(n,Z), (3.29)[

1
T 1

]
, T ∈ Sym(n,Z) and T ≡ 0 (mod N). (3.30)

Let M1,M2 ∈ Γ
(n)
0 (N). We will say that M1 and M2 are equivalent, and write

M1 ∼ M2, if there exist k1, k2 ∈ K such that k1M1k2 = M2. Clearly, ∼ is an

equivalence relation on Γ
(n)
0 (N).

Lemma 3.4.8. Let n and N be positive integers with N > 1. Let k ∈ K. Then
χ(k) = 1.

Proof. Since χ is a character by Lemma 3.4.1, we may assume that k is of the
form (3.28), (3.29), or (3.30). We now use the formula from Lemma 3.4.7 to
conclude that χ(k) = 1.

Lemma 3.4.9. Let n and N be positive integers with N > 1. Let

M1 =

[
A1 B1

C1 D1

]
, M2 =

[
A2 B2

C2 D2

]
∈ Γ0(N) ⊂ Sp(2n,Z).

If M1 ∼M2, then det(D1) ≡ det(D2) (mod N).

Proof. Let g be one of the generators for K, so that g is of the form (3.28),
(3.29), or (3.30). It suffices to verify that if gM1 = M2 or M1g = M2, then
det(D1) ≡ det(D2) (mod N). This follows by direct computations.
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Lemma 3.4.10. Let n and N be positive integers with N > 1. Let M ∈
Γ

(n)
0 (N). Then M is equivalent to

1
. . .

1
a b

1
. . .

1
c d


(3.31)

for some
[
a b
c d

]
∈ Γ

(1)
0 (N).

Proof. We will prove the lemma by induction on n. If n = 1, the lemma is
trivially true. Assume that n ≥ 2 and that the lemma hold for n − 1; we will
prove that it holds for n.

We will first prove the following claim: The element M is equivalent to an
element of the form [

A B
C D

]
where D has the form

1
d2

. . .

dn

 , d2|d3, . . . , dn−1|dn. (3.32)

To begin the proof of the claim, let M = [A B
C D ]. Since N > 1 and

t
AD− t

CB = 1
(see Lemma 1.9.2), we have

t
AD ≡ 1 (mod N); this implies that D is non-zero.

By the theorem on elementary divisors, Theorem 1.12.1, there exist g1, g2 ∈
SL(n,Z), and positive integers d1, . . . , dn such that

d1|d2, d2|d3, . . . , dn1 |dn

and

g1Dg2 =


d1

d2

. . .

dn

 .
Moreover, d1 is the greatest common divisor of the entries of D. It follows that[t

g1
−1

g1

]
M

[t
g2
−1

g2

]
=

[
A1 B1

C1 D1

]
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where

D1 =

d1

. . .

dn

 .
Since [t

g1
−1

g1

]
,

[t
g2
−1

g2

]
∈ K

we have

M ∼
[
A1 B1

C1 D1

]
.

By Lemma 1.9.2 we have A1
t
D1 − B1

t
C1 = 1. Taking the transpose of this

equation, and letting A1 = (aij), B1 = (bij), C1 = (cij), we obtain:

1 = D1
t
A1 − C1

t
B1

=

d1

. . .

dn


a11 · · · an1

...
...

a1n · · · ann

−
c11 · · · c1n

...
...

cn1 · · · cnn


b11 · · · bn1

...
...

b1n · · · bnn


=

[
d1a11 − c11b11 − · · · − c1nb1n ∗

∗ ∗

]
.

Thus,
1 = d1a11 − c11b11 − · · · − c1nb1n. (3.33)

This equation implies that one of c11, . . . , c1n is non-zero; let c be their common
divisor. Equation (3.33) also implies that d1 and c are relatively prime. Let
s1, . . . , sn be integers such that

c = c11s1 + · · ·+ c1nsn.

Define S ∈ Sym(n,Z) by

S =


s1

s1 s2 · · · sn
...
sn

 ,
and define [

A2 B2

C2 D2

]
=

[
A1 B1

C1 D1

] [
1 S

1

]
Since [

1 S
1

]
∈ K

we have [
A1 B1

C1 D1

]
∼
[
A2 B2

C2 D2

]
.
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Moreover, [
A2 B2

C2 D2

]
=

[
A1 A1S +B1

C1 C1S +D1

]
with

D2 = C1S +D1

=

d1

. . .

dn

+

c11 · · · c1n
...

...
cn1 · · · cnn




s1

s1 s2 · · · sn
...
sn


=

[
d1 + c12s1 c ∗
∗ ∗ ∗

]
.

Since d1 and c are relatively prime, and c is the greatest common divisor of
c11, c12, . . . , c1n, it follows that d1 + c12s1 and c are relatively prime. As a
consequence of this, the greatest common divisor of the entries of D2 is 1. An
application of the theorem on elementary divisors to D2 similar to the first
application above then proves that[

A2 B2

C2 D2

]
∼
[
A3 B3

C3 D3

]
where D3 has the form (3.32); the key point is that the greatest common divisor
of the entries of D2 is 1. This proves the claim.

Thanks to the claim, we may assume that M = [A B
C D ] with D having the

form (3.32). Define

S =


−b11 −b21 · · · −bn1

−b21

...
−bn1

 and T =


−c11 −c12 · · · −c1n
−c12

...
−c1n

 .
Let [

A1 B1

C1 D1

]
=

[
1 S

1

] [
A B
C D

] [
1
T 1

]
.

Since [
1 S

1

]
,

[
1
T 1

]
∈ K

we have [
A B
C D

]
∼
[
A1 B1

C1 D1

]
.

Explicitly, [
A1 B1

C1 D1

]
=

[
A+ SC +BT + SDT B + SD

C +DT D

]
.
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By the choice of S and T and the fact that D as the form (3.32), the first column
of B1 is zero, and the first row of C1 is zero; of course, D1 = D, so that D1 has
the form (3.32). By Lemma 1.9.2 we have

t
D1B1 =

t
B1D1 and C1

t
D1 = D1

t
C1.

Therefore, letting B1 = (bij),
1

d2

. . .

dn


0 b12 · · · b1n

...
...

...
0 bn2 · · · bnn

 =


0 · · · 0
b12 · · · bn2

...
...

b1n · · · bnn




1
d2

. . .

dn


0 b12 · · · b1n

...
...

...
0 dnbn2 · · · dnbnn

 =


0 · · · 0
b12 · · · dnbn2

...
...

b1n · · · dnbnn

 .
This equality implies that the first row of B1 is also zero. Similarly, the first
column of C1 is zero, so that B1 and C1 have the form

B1 =

[
0 0
0 B2

]
, C1 =

[
0 0
0 C2

]
for some B2 ∈ M(n − 1,Z) and C2 ∈ NM(n − 1,Z). By Lemma 1.9.2 we have
1 = A1

t
D1−B1

t
C1. Writing this in terms of matrices, we find that A1 has the

form

A1 =

[
1 0
0 A2

]
for some A2 ∈ M(n− 1,Z). Clearly, D1 has the form

D1 =

[
1 0
0 D2

]
for some D2 ∈ M(n− 1,Z). We now have

M ∼


1 0 0 0
0 A2 0 B2

0 0 1 0
0 C2 0 D2

 .
By Lemma 1.9.2, the matrix

[
A2 B2

C2 D2

]
is contained in Sp(2(n − 1),Z); since

C2 ≡ 0 (mod N) we have [
A2 B2

C2 D2

]
∈ Γ

(n−1)
0 (N).

Applying the induction hypothesis to
[
A2 B2

C2 D2

]
now completes the proof.
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Theorem 3.4.11. Let m and n be positive integers, and assume that m is
even. Let F ∈ Sym(m,Z)+ be even, and let N be the level of F . Let χ :
Γ0(N) → µ8 be as in Theorem 3.3.5. If N = 1, then χ is the trivial character
of Γ0(N) = Sp(2n,Z). Assume that N > 1. We recall from Lemma 1.5.4
that N divides det(F ), and that det(F ) and N have the same set of prime
divisors. Let ∆ = ∆(F ) = (−1)m/2 det(F ) be the discriminant of F . Let

(
∆
·
)

be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo
det(F ) by Proposition 1.4.2 and Lemma 1.5.2. Define χF : Z→ C as in Lemma
2.7.7; by this lemma, χF is a Dirichlet character modulo N . The function χ
takes values in {±1}, and the diagram

(Z/det(A)Z)× (Z/NZ)× Γ0(N)

{±1}

( ∆
· )

χF
χ

commutes. Here, the map Γ0(N) → (Z/NZ)× is defined by [A B
C D ] 7→ det(D).

Consequently,

χ(

[
A B
C D

]
) =

( ∆

det(D)

)
=
( (−1)k det(F )

det(D)

)
(3.34)

for [A B
C D ] ∈ Γ0(N).

Proof. Assume first that N = 1. By Lemma 1.5.4 we have det(F ) = 1. By
Theorem 3.3.5 we have

χ(M)θ(F,Z) = s(M,Z)−mθ(F,M · Z) (3.35)

for M ∈ Sp(2n,Z) and Z ∈ Hn. In particular, for Z ∈ Hn,

χ(

[
1

−1

]
)θ(F,Z) = s(

[
1

−1

]
, Z)−mθ(F,

[
1

−1

]
· Z)

χ(

[
1

−1

]
)θ(F,Z) = det(−Z)−m/2θ(F,−Z−1). (3.36)

On the other hand, by Lemma 3.4.2 we have

θ(F,Z) = det(−iZ)−m/2θ(F−1,−Z−1)

for Z ∈ Hn. Now for Z ∈ Hn,

θ(F−1, Z) =
∑

R∈M(m,n,Z)

exp
(
πitr(F−1[N ]Z

)
=

∑
R∈M(m,n,Z)

exp
(
πitr(

t
NF−1NZ

)
=

∑
R∈M(m,n,Z)

exp
(
πitr(

t
NF−1FF−1NZ

)
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=
∑

R∈M(m,n,Z)

exp
(
πitr(

t
F−1NF (F−1N)Z

)
=

∑
R∈M(m,n,Z)

exp
(
πitr(

t
NFNZ)

)
= θ(F,Z).

Therefore,
θ(F,Z) = det(−iZ)−m/2θ(F,−Z−1) (3.37)

for Z ∈ Hn. Comparing (3.36) and (3.37), we obtain

χ(

[
1

−1

]
) = i−mn/2.

By Proposition 2.5.1, m is divisible by 8. This implies that i−mn/2 = 1. Hence,

χ(

[
1

−1

]
) = 1. (3.38)

Next, by (3.35), we have for Z ∈ Hn,

χ(

[
1 B

1

]
)θ(F,Z) = s(

[
1 B

1

]
, Z)−mθ(F,

[
1 B

1

]
· Z)

= j(

[
1 B

1

]
, Z)−mθ(F,Z +B)

= θ(F,Z +B)

=
∑

R∈M(m,n,Z)

exp
(
πitr(F [N ](Z +B))

)
=

∑
R∈M(m,n,Z)

exp
(
πitr(F [N ]Z)

)
exp

(
πitr(F [N ]B)

)
=

∑
R∈M(m,n,Z)

exp
(
πitr(F [N ]Z)

)
= θ(F,Z).

Here, the penultimate step follows from Lemma 3.4.5. It follows that

χ(

[
1 B

1

]
) = 1. (3.39)

We now have χ(M) = 1 for all M ∈ Sp(2n,Z) by Theorem 1.9.6.
Next, assume that N > 1. The commutativity of the left side of the diagram

was proven in Lemma 2.7.9. To prove the commutativity of right side of the
diagram, let

M =

[
A B
C D

]
∈ Γ0(N).
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By Lemma 3.4.10, M is equivalent to

M1 =



1
. . .

1
a b

1
. . .

1
c d


for some

[
a b
c d

]
∈ Γ

(1)
0 (N). By Lemma 3.4.8 we have χ(M) = χ(M1). Also, by

Lemma 3.4.9, we have det(D) ≡ d (mod N). Define the function α : Γ
(1)
0 (N)→

C as in (2.19) and (2.20). We claim that

χ(M) = χ(M1) = α(

[
a b
c d

]
).

Assume first that d > 0. By Lemma 3.4.7,

χ(M) = χ(M1) = d−mn+m/2
∑

R∈M(m,n,Z/dZ)

exp
(
πitr(bd−1F [Rn])

)
,

where we write R = [R1 · · ·Rn] for R ∈ M(m,n,Z/dZ). Hence,

χ(M) = d−mn+m/2+mn−m
∑

q∈M(m,1,Z/dZ)

exp
(
πitr(bd−1F [q])

)
= d−m/2

∑
q∈M(m,1,Z/dZ)

exp
(
πitr(bd−1F [q])

)
= α(

[
a b
c d

]
).

Assume next that d < 0. We have M1 = M2M3, where

M2 =



1
. . .

1
−1

1
. . .

1
−1


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and

M3 =



1
. . .

1
−a −b

1
. . .

1
−c −d


.

The formula from Lemma 3.4.7 implies that χ(M2) = (−1)m/2, and by an
argument as in the case d > 0, we have

χ(M3) = α(

[
−a −b
−c −d

]
).

Then

χ(M) = χ(M1)

= χ(M2M3)

= χ(M2)χ(M3)

= (−1)m/2α(

[
−a −b
−c −d

]
)

= α(

[
a b
c d

]
),

where the last step follows from the definition of α (see (2.20)). Next, by (2.22),
we have

α(

[
a b
c d

]
) = χF (d),

where χF is the Dirichlet character mod N defined in Lemma 2.7.7. Since
det(D) ≡ d (mod N), we obtain

χ(M) = χF (det(D)).

This proves the commutativity of the right side of the diagram. Finally, by
Lemma 2.7.9 we have

χF (det(D)) =
( (−1)m/2 det(F )

det(D)

)
.

This completes the proof.

3.5 Spherical harmonics

Lemma 3.5.1. Let m and n be positive integers. Assume that 1 ≤ n < m. Let
η ∈ M(m,n,C) be such that

t
ηη = 0.
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Let ξαβ for 1 ≤ α ≤ m and 1 ≤ β ≤ n be variables. Define ξ = (ξαβ), and let
∂ = (∂/∂ξαβ). Define

L = det(
t
η∂).

We have

Lr
(

exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
= det(2πi(P

t
ξ +

t
Q)η)r exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
(3.40)

for positive integers r, R ∈ M(n,C), P ∈ Sym(n,C), and Q ∈ M(m,n,C).

Proof. Let α ∈ {1, . . . ,m} and β ∈ {1, . . . , n}. We begin by proving

∂

∂ξαβ

(
tr(P

t
ξξ + 2

t
Qξ)

)
= 2(ξP +Q)αβ (3.41)

∂

∂ξγδ

∂

∂ξαβ

(
tr(P

t
ξξ + 2

t
Qξ)

)
= 0 if γ 6= α, (3.42)

∂

∂ξγδ

(
(ξP +Q)αβ) =

{
0 if γ 6= α

Pβδ = Pδβ if γ = α.
(3.43)

Write ξ = [ξ1 · · · ξn], P = (Pij) and Q = (Qij). Then

tr(P
t
ξξ + 2

t
Q) = tr(

P11 · · · P1n

...
...

Pn1 · · · Pnn




t
ξ1
...

t
ξn

 [ξ1 · · · ξn
]

+ 2

Q11 · · · Qm1

...
...

Q1n · · · Qmn


 ξ11 · · · ξ1n

...
...

ξm1 · · · ξmn

)

= tr(

P11 · · · P1n

...
...

Pn1 · · · Pnn




t
ξ1ξ1 · · · t

ξ1ξn
...

...
t
ξnξ1 · · · t

ξnξn

)

+ 2tr(


∑m
i=1Qi1ξi1 · · · ∗

...
...

∗ · · ·
∑m
i=1Qinξin

)

= tr(


∑n
j=1 P1j

t
ξjξ1 · · · ∗

...
...

∗ · · ·
∑n
j=1 Pnj

t
ξjξn

)

+ 2tr(


∑m
i=1Qi1ξi1 · · · ∗

...
...

∗ · · ·
∑m
i=1Qinξin

)
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=

n∑
i=1

n∑
j=1

Pij
t
ξjξi + 2

n∑
j=1

m∑
i=1

Qijξij

=

n∑
i=1

n∑
j=1

m∑
k=1

Pijξkiξkj + 2

n∑
j=1

m∑
i=1

Qijξij .

It follows that:

∂

∂ξαβ

(
tr(P

t
ξξ + 2

t
Qξ)

)
=

n∑
i=1

n∑
j=1

m∑
k=1

Pij
∂

∂ξαβ

(
ξkiξkj

)
+ 2

n∑
j=1

m∑
i=1

Qij
∂

∂ξαβ

(
ξij
)

=

n∑
i=1

n∑
j=1

m∑
k=1

Pij(ξki
∂

∂ξαβ

(
ξkj
)

+ ξkj
∂

∂ξαβ

(
ξki
)
)

+ 2

n∑
j=1

m∑
i=1

Qij
∂

∂ξαβ

(
ξij
)

=

n∑
i=1

n∑
j=1

m∑
k=1

(

{
Piβξαi if k = α, j = β,

0 if k 6= α or j 6= β

}

+

{
Pβjξαj if k = α, i = β,

0 if k 6= α or i 6= β

}
)

+ 2

n∑
j=1

m∑
i=1

Qij
∂

∂ξαβ

(
ξij
)

=

n∑
i=1

n∑
j=1

m∑
k=1


2Pββξαβ if k = α, i = j = β,
Pβjξαj if k = α, i = β, j 6= β,
Piβξαi if k = α, i 6= β, j = β

0 if k 6= α or β /∈ {i, j}


+ 2Qαβ

=

n∑
i=1

n∑
j=1


2Pββξαβ if i = j = β,
Pβjξαj if i = β, j 6= β,
Piβξαi if i 6= β, j = β

0 β /∈ {i, j}


+ 2Qαβ

=

n∑
i=1

Piβξαi +

n∑
j=1

Pβjξαj + 2Qαβ

= 2

n∑
`=1

ξα`P`β + 2Qαβ
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= 2(ξP +Q)αβ .

This proves (3.41). Since we proved above that

∂

∂ξαβ

(
tr(P

t
ξξ + 2

t
Qξ)

)
= 2

n∑
`=1

P`βξα` + 2Qαβ

we also see that (3.42) holds. Finally, (3.43) follows from the identity

(ξP +Q)αβ =

n∑
`=1

P`βξα` +Qαβ

which we have already noted.
Let I be the set of all n-tuples G = (g1, . . . , gn) where g1, . . . , gn are integers

such that 1 ≤ g1 < g2 ≤ · · · < gn ≤ m. Let G = (g1, . . . , gn) ∈ I, and let X be
an m× n matrix with entries from some commutative ring R. Write

X =

X1

...
Xm


where each Xi ∈ M(1, n,R). Then Xg1

· · ·
Xgn


is an n× n matrix, and we define

XG = det(

Xg1

· · ·
Xgn

).

By the Cauchy-Binet formula, we have

det(
t
η∂) =

∑
G∈I

ηG∂G.

We may further write, for G ∈ I,

∂G =
∑
σ

sign(σ)
∂

∂ξg1σ(g1)
· · · ∂

∂ξgnσ(gn)
,

where σ ranges over the permutations of the set {g1, . . . , gn}. The differential
operator L is now given by the following formula:

L =
∑
G∈I

ηG
∑
σ

sign(σ)
∂

∂ξg1σ(g1)
· · · ∂

∂ξgnσ(gn)
.
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It follows that:

L
(

exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
=
∑
G∈I

ηG
∑
σ

sign(σ)

× ∂

∂ξg1σ(g1)
· · · ∂

∂ξgnσ(gn)

(
exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
= 2πi

∑
G∈I

ηG
∑
σ

sign(σ)
∂

∂ξg1σ(g1)
· · · ∂

∂ξgn−2σ(gn−2)

× ∂

∂ξgn−1σ(gn−1)

(
(ξP +Q)gnσ(gn) exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
where we have used (3.41). Next, taking into account that gn−1 6= gn, using
(3.42), and also (3.41) again, we have by the product rule:

L
(

exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
= (2πi)2

∑
G∈I

ηG
∑
σ

sign(σ)
∂

∂ξg1σ(g1)
· · · ∂

∂ξgn−2σ(gn−2)(
(ξP +Q)gn−1σ(gn−1)(ξP +Q)gnσ(gn) exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
.

Continuing, we obtain:

L
(

exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

))
= (2πi)n

∑
G∈I

ηG
∑
σ

sign(σ)

n∏
j=1

(ξP +Q)gjσ(gj)

× exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
= (2πi)n exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
×
∑
G∈I

ηG
∑
σ

sign(σ)

n∏
j=1

(ξP +Q)gjσ(gj)

= (2πi)n exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

)∑
G∈I

ηG(ξP +Q)G

= (2πi)n exp
(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
det(

t
η(ξP +Q))

= det(2πi
t
η(ξP +Q)) exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
= det(2πi(P

t
ξ +

t
Q)η) exp

(
πitr(P

t
ξξ + 2

t
Qξ +R)

)
.

This proves (3.40) in the case r = 1. To prove that (3.40) holds for all positive
integers r it will suffice to prove that if f : M(m,n,C)→ C is a smooth function,
then

L
(

det((P
t
ξ +

t
Q)η)f(ξ)

)
= det((P

t
ξ +

t
Q)η)L

(
f(ξ)

)
. (3.44)
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We first assert that if β, γ, µ, λ ∈ {1, . . . , n}, then

(

m∑
i=1

ηiβ
∂

∂ξiγ
)
( m∑
`=1

(ξP +Q)`µη`λ
)

= 0. (3.45)

To see this, we calculate as follows:

(

m∑
i=1

ηiβ
∂

∂ξiγ
)
( m∑
`=1

(ξP +Q)`µη`λ
)

=

m∑
i=1

m∑
`=1

ηiβη`λ
∂

∂ξiγ

(
(ξP +Q)`µ

)
=

m∑
i=1

ηiβη`λPγµ (by (3.43))

= Pγµ

m∑
i=1

ηiβηiλ

= Pγµ(
t
ηη)βλ

= 0

because
t
ηη = 0 by assumption. We may write L as:

L = det(
t
n∂)

=
∑
σ∈Sn

sign(σ)(
t
η∂)σ(1)1 · · · (

t
η∂)σ(n)n

=
∑
σ∈Sn

sign(σ)

n∏
j=1

(
t
η∂)σ(j)j

=
∑
σ∈Sn

sign(σ)

n∏
j=1

m∑
i=1

ηiσ(j)
∂

∂ξij
.

We will apply this expression for L to det((P
t
ξ+

t
Q)η)f(ξ). To do this, we note

first that det((P
t
ξ +

t
Q)η) is a sum of products of terms of the form

m∑
`=1

(ξP +Q)`µη`λ

for λ, µ ∈ {1, . . . , n}. By (3.45), any such term is annihilated by

m∑
i=1

ηiβ
∂

∂ξiγ

for any β, γ ∈ {1, . . . , n}. By this fact, and the product rule, we have

( m∑
i=1

ηiσ(j)
∂

∂ξij

)(
det((P

t
ξ +

t
Q)η)f(ξ)

)
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= det((P
t
ξ +

t
Q)η)

( m∑
i=1

ηiσ(j)
∂

∂ξij

)(
f(ξ)

)
.

We now find that

L
(

det((P
t
ξ +

t
Q)η)f(ξ)

)
= det((P

t
ξ +

t
Q)η)

∑
σ∈Sn

sign(σ)
( n∏
j=1

m∑
i=1

ηiσ(j)
∂

∂ξij

)
(f(ξ))

= det((P
t
ξ +

t
Q)η)L(f(ξ)).

This proves (3.44), and thus completes the proof.

Let m and n be positive integers, let r be a non-negative integer, and let
F ∈ Sym(m,R)+. For r a non-negative integer, we let Hr,n(F ) be the C vector
space spanned by the polynomials

det(
t
XFζ)r

where X is an m× n matrix of variables, and ζ ∈ M(m,n,C) is such that

t
ζFζ = 0.

We refer to the elements ofHr,n(F ) as spherical functions of degree n and weight
r with respect to F .

Lemma 3.5.2. Let m and n be positive integers, let r be a non-negative integer,
and let F ∈ Sym(m,R)+. If n > m, then Hr,n(F ) = 0.

Proof. Assume that m > n. Let ζ ∈ M(m,n,C) be such that
t
ζFζ = 0. It will

suffice to prove that the function M(m,n,C)→ C defined by X 7→ det(
t
XFζ)r

is identically zero. Let X ∈ M(m,n,C). The product
t
XFζ is the matrix of the

composition

Cn ζ−→ Cm F−→ Cm
tX
−→ Cn.

Since n > m, the first operator in the composition is has a non-trivial ker-
nel; hence, the composition also has a non-trivial kernel. This implies that
det(

t
XFζ) = 0.

Theorem 3.5.3. Let m and n be positive inters, let r be a non-negative integer,
and let F ∈ Sym(m,Z)+ be even. Let Φ ∈ Hr,n(F ). For Z ∈ Hn define

θ(F,Z,Φ) =
∑

M(m,n,Z)

Φ(N) exp
(
πitr(ZF [N ])

)
.

If D is a product of closed disks in C such that D ⊂ Hn, then the series θ(F,Z,Φ)
converges absolutely and uniformly on D. The resulting function on Hn is an-
alytic in each complex variable, and satisfies the equation

det(CZ +D)−rs(M,Z)−mθ(F,M · Z,Φ) = χ(M)θ(F,Z,Φ)

for Z ∈ Hn and M = [A B
C D ] ∈ Γ0(N). Here, χ : Γ0(N) → µ8 is as in Theorem

3.3.5.
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Proof. By Lemma 3.5.2 we may assume that m ≥ n. We may also assume
that Φ(X) = det(

t
XFζ)r for some ζ ∈ M(m,n,C) such that

t
ζFζ = 0. Let

E ∈ Sym(m,R)+ be such that E2 = F . Define η = Eζ. Then
t
ηη =

t
ζE2ζ =

t
ζFζ = 0. Also,

Φ(X) = det(
t
XFζ)r

= det(
t
XFE−1η)

Φ(X) = det(
t
XEη). (3.46)

By Theorem 3.3.5 we have

θ(F,M · Z,X t
A+ FY

t
B,F−1X

t
C + Y

t
D)

= χ(M)s(M,Z)mθ(F,Z,X, Y )

for X,Y ∈ M(m,n,C), Z ∈ Hn, and M = [A B
C D ] ∈ Γ0(N). Let ξ ∈ M(m,n,C)

and M = [A B
C D ] ∈ Γ0(N). Letting X = 0 and Y = E−1ξ in the last equation

yields

θ(F,M · Z,Eξ t
B,E−1ξ

t
D) = χ(M)s(M,Z)mθ(F,Z, 0, E−1ξ). (3.47)

We consider each side of this equation. First of all,

θ(F,M · Z,Eξ t
B,E−1ξ

t
D)

=
∑

N∈M(m,n,Z)

exp
(
πitr((M · Z)F [N − E−1ξ

t
D])

+ 2πitr(
t
NEξ

t
B)− πitr(t

(Eξ
t
B)E−1ξ

t
D)
)

=
∑

N∈M(m,n,Z)

exp
(
πitr((M · Z)F [N − E−1ξ

t
D])

+ 2tr(
t
NEξ

t
B)− tr(B

t
ξξ

t
D)
)

=
∑

N∈M(m,n,Z)

exp
(
πitr((M · Z)

t
(N − E−1ξ

t
D)F (N − E−1ξ

t
D))

+ 2πitr(
t
NEξ

t
B)− πitr(B t

ξξ
t
D)
)

=
∑

N∈M(m,n,Z)

exp
(
πitr((M · Z)(

t
NFN − t

NEξ
t
D −D t

ξEN +D
t
ξξ

t
D))

+ 2πitr(
t
NEξ

t
B)− πitr(B t

ξξ
t
D)
)

=
∑

N∈M(m,n,Z)

exp
(
πitr((M · Z)D

t
ξξ

t
D)− πitr(B t

ξξ
t
D)

− πitr((M · Z)
t
NEξ

t
D)− πitr((M · Z)D

t
ξEN) + 2πitr(

t
NEξ

t
B)

+ πitr((M · Z)
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(

t
D(M · Z)D

t
ξξ)− πitr(t

DB
t
ξξ)
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− πitr(t
D(M · Z)

t
NEξ)− πitr(t

NEξ
t
D(M · Z)) + 2πitr(

t
B

t
NEξ)

+ πitr((M · Z)
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr((

t
D((M · Z)D −B)

t
ξξ)

− πitr(t
D(M · Z)

t
NEξ)− πitr(t

D(M · Z)
t
NEξ) + 2πitr(

t
B

t
NEξ)

+ πitr((M · Z)
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr((

t
D((M · Z)D −B)

t
ξξ)

− 2πitr((
t
D(M · Z)− t

B)
t
NEξ) + πitr((M · Z)

t
NFN)

)
.

Now

t
D((M · Z)D −B) =

t
D(M · Z)D − t

DB

=
t
D(AZ +B)(CZ +D)−1D − t

BD

=
( t
D(AZ +B)(CZ +D)−1 − t

B
)
D

=
( t
D(AZ +B)− t

B(CZ +D)
)
(CZ +D)−1D

=
( t
DAZ +

t
DB − t

BCZ − t
BD

)
(CZ +D)−1D

=
(
(
t
DA− t

BC)Z +
t
DB − t

BD
)
(CZ +D)−1D

= Z(CZ +D)−1D.

We also note that Z(CZ + D)−1D is symmetric because it is equal to the
symmetric matrix

t
D(M · Z)D − t

DB. And

t
D(M · Z)− t

B =
t
D(AZ +B)(CZ +D)−1 − t

B

=
( t
D(AZ +B)− t

B(CZ +D)
)
(CZ +D)−1

=
( t
DAZ +

t
DB − t

BCZ − t
BD

)
(CZ +D)−1

= Z(CZ +D)−1.

It follows that

θ(F,M · Z,Eξ t
B,E−1ξ

t
D)

=
∑

N∈M(m,n,Z)

exp
(
πitr(Z(CZ +D)−1D

t
ξξ)

− 2πitr(Z(CZ +D)−1 t
NEξ) + πitr((M · Z)

t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z(CZ +D)−1D

t
ξξ

− 2Z(CZ +D)−1 t
NEξ + (M · Z)

t
NFN)

)
.

Next,

θ(F,Z, 0, E−1ξ)
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=
∑

N∈M(m,n,Z)

exp
(
πitr(ZF [N − E−1ξ])

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z

t
ξξ − Z t

NEξ − Z t
ξEN + Z

t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z

t
ξξ)− πitr(Z t

NEξ)− πitr(Z t
ξEN)

+ πitr(Z
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z

t
ξξ)− πitr(Z t

NEξ)− πitr(t
ξENZ)

+ πitr(Z
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z

t
ξξ)− πitr(Z t

NEξ)− πitr(Z t
NEξ)

+ πitr(Z
t
NFN)

)
=

∑
N∈M(m,n,Z)

exp
(
πitr(Z

t
ξξ − 2Z

t
NEξ + Z

t
NFN)

)
.

We will now apply the differential operator Lr from Lemma 3.5.1 to both sides
of (3.47). Because of the convergence properties of Proposition 3.1.8 we may
exchange differentiation and summation (see p. 162 of [17]). By Lemma 3.5.1
we have

Lr
(
θ(F,M · Z,Eξ t

B,E−1ξ
t
D)
)

=
∑

N∈M(m,n,Z)

Lr
(

exp
(
πitr(Z(CZ +D)−1D

t
ξξ

− 2Z(CZ +D)−1 t
NEξ + (M · Z)

t
NFN)

))
=

∑
N∈M(m,n,Z)

det(2πi(Z(CZ +D)−1D
t
ξ − Z(CZ +D)−1 t

NE)η)r

× exp
(
πitr(Z(CZ +D)−1D

t
ξξ

− 2Z(CZ +D)−1 t
NEξ + (M · Z)

t
NFN)

)
.

Evaluating at ξ = 0, we get

Lr
(
θ(F,M · Z,Eξ t

B,E−1ξ
t
D)
)
|ξ=0

=
∑

N∈M(m,n,Z)

det(2πi(−Z(CZ +D)−1 t
NE)η)r

× exp
(
πitr((M · Z)

t
NFN)

)
= det(−2πiZ(CZ +D)−1)r

∑
N∈M(m,n,Z)

det(
t
NEη)r

× exp
(
πitr((M · Z)F [N ])

)
.
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And

Lr
(
θ(F,Z, 0, E−1ξ)

)
=

∑
N∈M(m,n,Z)

Lr
(

exp
(
πitr(Z

t
ξξ − 2Z

t
NEξ + Z

t
NFN)

))
=

∑
N∈M(m,n,Z)

det(2πi(Z
t
ξ − Z t

NE)η)r

× exp
(
πitr(Z

t
ξξ − 2Z

t
NEξ + Z

t
NFN)

)
.

Evaluating at ξ = 0, we obtain:

Lr
(
θ(F,Z, 0, E−1ξ)

)
|ξ=0

=
∑

N∈M(m,n,Z)

det(2πi(−Z t
NE)η)r exp

(
πitr(Z

t
NFN)

)
= det(−2πiZ)r

∑
N∈M(m,n,Z)

det(
t
NEη)r exp

(
πitr(ZF [N ])

)
.

By (3.47) we now have

det(−2πiZ(CZ +D)−1)r
∑

N∈M(m,n,Z)

det(
t
NEη)r exp

(
πitr((M · Z)F [N ])

)
= det(−2πiZ)rχ(M)s(M,Z)m

∑
N∈M(m,n,Z)

det(
t
NEη)r exp

(
πitr(ZF [N ])

)
so that by (3.46),∑

N∈M(m,n,Z)

Φ(N) exp
(
πitr((M · Z)F [N ])

)
= χ(M) det(CZ +D)rs(M,Z)m

∑
N∈M(m,n,Z)

Φ(N) exp
(
πitr(ZF [N ])

)
.

This proves the theorem.



Appendix A

Some tables

A.1 Tables of fundamental discriminants

−3 = −3 −35 = (−7) · 5 −68 = (−4) · 17
−4 = −4 −39 = (−3) · 13 −71 = −71
−7 = −7 −40 = (−8) · 5 −79 = −79
−8 = −8 −43 = −43 −83 = −83
−11 = −11 −47 = −47 −84 = (−4) · (−3) · (−7)
−15 = (−3) · 5 −51 = (−3) · 17 −87 = (−3) · 29
−19 = −19 −52 = (−4) · 13 −88 = (−11) · 8
−20 = (−4) · 5 −55 = (−11) · 5 −91 = (−7) · 13
−23 = −23 −56 = (−7) · 8 −95 = (−19) · 5
−24 = (−3) · 8 −59 = −59
−31 = −31 −67 = −67

Table A.1: Negative fundamental discriminants between −1 and −100, factored
into products of prime fundamental discriminants.
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1 = 1 37 = 37 73 = 73
5 = 1 40 = 8 · 5 76 = (−4) · (−19)
8 = 8 41 = 41 77 = (−7) · (−11)
12 = (−4)(−3) 44 = (−4) · (−11) 85 = 5 · 15
13 = 13 53 = 53 88 = (−8) · (−11)
17 = 17 56 = (−8) · (−7) 89 = 89
21 = (−3)(−7) 57 = 57 92 = (−4) · (−23)
24 = (−8)(−3) 60 = (−4) · (−3) · 5 93 = (−3) · (−31)
28 = (−4)(−7) 61 = 61 97 = 97
29 = 29 65 = (−8) · (−7)
33 = 33 69 = (−3)(−23)

Table A.2: Positive fundamental discriminants between 1 and 100, factored into
products of prime fundamental discriminants.
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