Theta Series

Brooks Roberts
University of Idaho

Contents

1 Background 1
1.1 Dirichlet characters 1
1.2 Fundamental discriminants 6
1.3 Quadratic extensions 15
1.4 Kronecker Symbol 16
1.5 Quadratic forms 19
1.6 The upper half-plane 28
1.7 Congruence subgroups 29
1.8 Modular forms 29
1.9 The symplectic group 31
1.10 The Siegel upper half-space 34
1.11 The theta group 41
1.12 Elementary divisors 44
2 Classical theta series on \mathbb{H}_{1} 45
2.1 Definition and convergence 45
2.2 The Poisson summation formula 49
2.3 Differential operators 57
2.4 A space of theta series 62
2.5 The case $N=1$ 66
2.6 Example: a quadratic form of level one 68
2.7 The case $N>1$ 70
2.8 Example: the quadratic form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ 89
3 Classical theta series on \mathbb{H}_{n} 97
3.1 Convergence 97
3.2 The Eicher lemma 105
3.3 Application to general theta series 114
3.4 The multiplier 123
3.5 Spherical harmonics 140
A Some tables 151
A. 1 Tables of fundamental discriminants 151
Index 153

Symbols . 155
Bibliography . 158

List of Tables

A. 1 Negative fundamental discriminants between -1 and -100 . . 151
A. 2 Positive fundamental discriminants between 1 and 100

152

Chapter 1

Background

1.1 Dirichlet characters

Let N be a positive integer. A Dirichlet character modulo N is a homomorphism

$$
\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times} .
$$

If N is a positive integer and χ is a Dirichlet character modulo N, then we associate to χ a function

$$
\mathbb{Z} \longrightarrow \mathbb{C}
$$

also denoted by χ, by the formula

$$
\chi(a)= \begin{cases}\chi(a+N \mathbb{Z}) & \text { if }(a, N)=1 \\ 0 & \text { if }(a, N)>1\end{cases}
$$

for $a \in \mathbb{Z}$. We refer to this function as the extension of χ to \mathbb{Z}. It is easy to verify that the following properties hold for the extension of χ to \mathbb{Z} :

1. $\chi(1)=1$;
2. if $a_{1}, a_{2} \in \mathbb{Z}$, then $\chi\left(a_{1} a_{2}\right)=\chi\left(a_{1}\right) \chi\left(a_{2}\right)$;
3. if $a \in \mathbb{Z}$ and $(a, N)>1$, then $\chi(a)=0$;
4. if $a_{1}, a_{2} \in \mathbb{Z}$ and $a_{1} \equiv a_{2}(\bmod N)$, then $\chi\left(a_{1}\right)=\chi\left(a_{2}\right)$.

Let N be a positive integer, and let χ be a Dirichlet character modulo N. We have $\chi(a)^{\phi(N)}=1$ for $a \in \mathbb{Z}$ with $(a, N)=1$; in particular, $\chi(a)$ is a $\phi(N)$-th root of unity. Here, $\phi(N)$ is the number of integers a such that $(a, N)=1$ and $1 \leq a \leq N$.

If $N=1$, then there exists exactly one Dirichlet character χ modulo N; the extension of χ to \mathbb{Z} satisfies $\chi(a)=1$ for all $a \in \mathbb{Z}$.

Let N be a positive integer. The Dirichlet character η modulo N that sends every element of $(\mathbb{Z} / N \mathbb{Z})^{\times}$to 1 is called the principal character modulo N. The extension of η to \mathbb{Z} is given by

$$
\eta(a)=\left\{\begin{array}{l}
1 \text { if }(a, N)=1 \\
0 \text { if }(a, N)>1
\end{array}\right.
$$

for $a \in \mathbb{Z}$.
Let $f: \mathbb{Z} \rightarrow \mathbb{C}$ be a function, let N be a positive integer, and let χ be a Dirichlet character modulo N. We say that f corresponds to χ if f is the extension of χ, i.e., $f(a)=\chi(a)$ for all $a \in \mathbb{Z}$.

Let $f: \mathbb{Z} \rightarrow \mathbb{C}$, and assume that there exists a positive integer N and a Dirichlet character χ modulo N such that f corresponds to χ. Assume $N>1$. Then there exist infinitely many positive integers N^{\prime} and Dirichlet characters χ^{\prime} modulo N^{\prime} such that f corresponds to χ^{\prime}. For example, let N^{\prime} be any positive integer such that $N \mid N^{\prime}$ and N^{\prime} has the same prime divisors as N. Let χ^{\prime} be the Dirichlet character modulo N^{\prime} that is the composition

$$
\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right)^{\times} \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

where the first map is the natural surjective homomorphism. The extension of χ^{\prime} to \mathbb{Z} is the same as the extension of χ to \mathbb{Z}, namely f. Thus, f also corresponds to χ^{\prime}.

Lemma 1.1.1. Let $f: \mathbb{Z} \rightarrow \mathbb{C}$ be a function and let N be a positive integer. Assume that f satisifes the following conditions:

1. $f(1) \neq 0$;
2. if $a_{1}, a_{2} \in \mathbb{Z}$, then $f\left(a_{1} a_{2}\right)=f\left(a_{1}\right) f\left(a_{2}\right)$;
3. if $a \in \mathbb{Z}$ and $(a, N)>1$, then $f(a)=0$;
4. if $a \in \mathbb{Z}$, then $f(a+N)=f(a)$.

There exists a unique Dirichlet character χ modulo N such that f corrsponds to χ.

Proof. Assume that f satisfies $1,2,3$, and 4. Since $1=1 \cdot 1$, we have $f(1)=$ $f(1) f(1)$, so that $f(1)=1$. Next, we claim that $f\left(a_{1}\right)=f\left(a_{2}\right)$ for $a_{1}, a_{2} \in \mathbb{Z}$ with $a_{1} \equiv a_{2}(\bmod N)$, or equivalently, if $a \in \mathbb{Z}$ and $x \in \mathbb{Z}$ then $f(a+x N)=$ $f(a)$. Let $a \in \mathbb{Z}$ and $x \in \mathbb{Z}$. Write $x=\epsilon z$, where $\epsilon \in\{1,-1\}$ and z is positive. Then

$$
\begin{aligned}
f(a+x N) & =\chi(\epsilon(\epsilon a+z N)) \\
& =f(\epsilon) \chi(\epsilon a+z N) \\
& =f(\epsilon) \chi(\epsilon a+\underbrace{N+\cdots+N}_{z})
\end{aligned}
$$

$$
\begin{aligned}
& =f(\epsilon) \chi(\epsilon a) \\
& =f(a)
\end{aligned}
$$

Now let $a \in Z$ with $(a, N)=1$; we assert that $f(a) \neq 0$. Since $(a, N)=1$, there exists $b \in \mathbb{Z}$ such that $a b=1+k N$ for some $k \in \mathbb{Z}$. We have $1=f(1)=$ $f(1+k N)=f(a b)=f(a) f(b)$. It follows that $f(a) \neq 0$. We now define a function $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$by $\chi(a+N \mathbb{Z})=f(a)$ for $a \in \mathbb{Z}$ with $(a, N)=1$. By what we have already proven, α is a well-defined function. It is also clear that χ is a homomorphism. Finally, it is evident that the extension of χ to \mathbb{Z} is f, so that f corresponds to χ. The uniqueness assertion is clear.

Let p be an odd prime. For $m \in \mathbb{Z}$ define the Legendre symbol by

$$
\left(\frac{m}{p}\right)=\left\{\begin{aligned}
0 & \text { if } p \text { divides } m, \\
-1 & \text { if }(m, p)=1 \text { and } x^{2} \equiv m(\bmod \mathrm{p}) \text { has no solution } x \in \mathbb{Z} \\
1 & \text { if }(m, p)=1 \text { and } x^{2} \equiv m(\bmod \mathrm{p}) \text { has a solution } x \in \mathbb{Z}
\end{aligned}\right.
$$

The function $(\dot{\bar{p}}): \mathbb{Z} \rightarrow \mathbb{C}$ satisfies the conditions of Lemma 1.1.1 with $N=p$. We will also denote the Dirichlet character modulo p to which $(\dot{\bar{p}})$ corresponds by $(\dot{\bar{p}})$. We note that $(\dot{\bar{p}})$ is real valued, i.e., takes values in $\{-1,0,1\}$.

Let β be a Dirichlet character modulo M. We can construct other Dirichlet characters from β by forgetting information, as follows. Let N be a positive multiple of M. Since M divides N, there is a natural surjective homomorphism

$$
(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow(\mathbb{Z} / M \mathbb{Z})^{\times}
$$

and we can form the composition χ

$$
(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow(\mathbb{Z} / M \mathbb{Z})^{\times} \xrightarrow{\beta} \mathbb{C}^{\times}
$$

Then χ is a Dirichlet character modulo N, and we say that χ is induced from the Dirichlet character β modulo M. If N is a positive integer and χ is a Dirichlet character modulo N, and χ is not induced from any Dirichlet character β modulo M for a proper divisor M of N, then we say that χ is primitive.

Let N be a positive integer, and let χ be a Dirichlet character. Consider the set of positive integers N_{1} such that $N_{1} \mid N$ and

$$
\chi(a)=1
$$

for $a \in \mathbb{Z}$ such that $(a, N)=1$ and $a \equiv 1\left(\bmod N_{1}\right)$. This set is non-empty since it contains N; we refer to the smallest such N_{1} as the conductor of χ and denote it by $f(\chi)$.

Lemma 1.1.2. Let N be positive integer, and let χ be a Dirichlet character modulo N. Let N_{1} be a positive integer such that $N_{1} \mid N$ and $\chi(a)=1$ for $a \in \mathbb{Z}$ such that $(a, N)=1$ and $a \equiv 1\left(\bmod N_{1}\right)$. Then $f(\chi) \mid N_{1}$.

Proof. We may assume that $N>1$. Let $M=\operatorname{gcd}\left(f(\chi), N_{1}\right)$. We will prove that $\chi(a)=1$ for $a \in \mathbb{Z}$ such that $(a, N)=1$ and $a \equiv 1(\bmod M)$; by the minimality of $f(\chi)$ this will imply that $M=f(\chi)$, so that $f(\chi) \mid N_{1}$. Let

$$
N=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

be the prime factorization of $r(\chi)$ into positive powers e_{1}, \ldots, e_{t} of the distinct primes p_{1}, \ldots, p_{t}. Also, write

$$
f(\chi)=p_{1}^{\ell_{1}} \cdots p_{t}^{\ell_{t}}, \quad N_{1}=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}
$$

By definition,

$$
M=p_{1}^{\min \left(\ell_{1}, k_{1}\right)} \cdots p_{t}^{\min \left(\ell_{t}, k_{t}\right)}
$$

Let $a \in \mathbb{Z}$ be such that $(a, N)=1$ and $a \equiv 1(\bmod M)$. By the Chinese remainder theorem, there exists an integer b such that

$$
b \equiv\left\{\begin{array}{l}
1\left(\bmod p_{i}^{\ell_{i}}\right) \text { if } \ell_{i} \geq k_{i} \\
a\left(\bmod p_{i}^{k_{i}}\right) \text { if } \ell_{i}<k_{i}
\end{array}\right.
$$

for $i \in\{1, \ldots, t\}$, and $(b, r(\chi))=1$. Let c be an integer such that $(c, N)=1$ and $a \equiv b c(\bmod N)$. Evidently, $b \equiv 1\left(\bmod p_{i}^{\ell_{i}}\right)$ and $c \equiv 1\left(\bmod p_{i}^{k_{i}}\right)$ for $i \in\{1, \ldots, t\}$, so that $b \equiv 1(\bmod f(\chi))$ and $c \equiv 1\left(\bmod N_{1}\right)$. It follows that $\chi(a)=\chi(b c)=\chi(b) \chi(c)=1$.

Lemma 1.1.3. Let N be a positive integer, and let χ be a Dirichlet character modulo N. Then χ is primitive if and only if $f(\chi)=N$.

Proof. Assume that χ is primitive. By Lemma 1.1.2 $f(\chi)$ is a divisor of N. By the definition of $f(\chi)$, the character χ is trivial on the kernel of the natural map

$$
(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow(\mathbb{Z} / f(\chi) \mathbb{Z})^{\times}
$$

This implies that χ factors through this map. Since χ is primitive, $f(\chi)$ is not a proper divisor of N, so that $f(\chi)=N$. The converse statement has a similar proof.

Evidently, the conductor of $(\dot{\bar{p}})$ is also p, so that $(\dot{\bar{p}})$ is primitive.
Lemma 1.1.4. Let N_{1} and N_{2} be positive integers, and let χ_{1} and χ_{2} be Dirichlet characters modulo N_{1} and N_{2}, respectively. Let N be the least common multiple of N_{1} and N_{2}. The function $f: \mathbb{Z} \rightarrow \mathbb{C}$ defined by $f(a)=\chi_{1}(a) \chi_{2}(a)$ for $a \in \mathbb{Z}$ corresponds to a unique Dirichlet χ character modulo N.

Proof. It is clear that f satisfies properties 1,2 and 4 of Lemma 1.1.1. To see that f satisfies property 3 , assume that $a \in \mathbb{Z}$ and $(a, N)>1$. We need to prove that $f(a)=0$. There exists a prime p such that $p \mid a$ and $p \mid N$. Write $a=p b$ for some $b \in \mathbb{Z}$. Since $f(a)=f(p) f(b)$ it will suffice to prove that $f(p)=0$, i.e, $\chi_{1}(p)=0$ or $\chi_{2}(p)=0$. Since $p \mid N$, we have $p \mid N_{1}$ or $p \mid N_{2}$. This implies that $\chi_{1}(p)=0$ or $\chi_{2}(p)=0$.

Let the notation be as in Lemma 1.1.4. We refer to the Dirichlet character χ modulo N as the product of χ_{1} and χ_{2}, and we write $\chi_{1} \chi_{2}$ for χ.

Lemma 1.1.5. Let N_{1} and N_{2} be positive integers such that $\left(N_{1}, N_{2}\right)=1$, and let χ_{1} and χ_{2} be Dirichlet characters modulo N_{1} and modulo N_{2}, respectively. Let $\chi=\chi_{1} \chi_{2}$, the product of χ_{1} and χ_{2}; this is a Dirichlet character modulo $N=N_{1} N_{2}$. The conductor of χ is $f(\chi)=f\left(\chi_{1}\right) f\left(\chi_{2}\right)$. Moreover, χ is primitive if and only if χ_{1} and χ_{2} are primitive.
Proof. By Lemma 1.1.2 we have $f\left(\chi_{1}\right) \mid N_{1}$ and $f\left(\chi_{2}\right) \mid N_{2}$. Since $N=N_{1} N_{2}$, we obtain $f\left(\chi_{1}\right) f\left(\chi_{2}\right) \mid N$. Assume that $a \in \mathbb{Z}$ is such that $(a, N)=1$ and $a \equiv$ $1\left(\bmod f\left(\chi_{1}\right) f\left(\chi_{2}\right)\right)$. Then $\left(a, N_{1}\right)=\left(a, N_{2}\right)=1, a \equiv 1\left(\bmod f\left(\chi_{1}\right)\right)$, and $a \equiv$ $1\left(\bmod f\left(\chi_{2}\right)\right)$. Therefore, $\chi_{1}(a)=\chi_{2}(a)=1$, so that $\chi(a)=\chi_{1}(a) \chi_{2}(a)=1$. By Lemma 1.1.2 it follows that we have $f(\chi) \mid f\left(\chi_{1}\right) f\left(\chi_{2}\right)$. Write $f(\chi)=M_{1} M_{2}$ where M_{1} and M_{2} are relatively prime positive integers such that $M_{1} \mid f\left(\chi_{1}\right)$ and $M_{2} \mid f\left(\chi_{2}\right)$. We need to prove that $M_{1}=f\left(\chi_{1}\right)$ and $M_{2}=f\left(\chi_{2}\right)$. Let $a \in \mathbb{Z}$ be such that $\left(a, N_{1}\right)=1$ and $a \equiv 1\left(\bmod M_{1}\right)$. By the Chinese remainder theorem, there exists an integer b such that $b \equiv a\left(\bmod M_{1}\right), b \equiv 1\left(\bmod f\left(\chi_{2}\right)\right)$, and $(b, N)=1$. Evidently, $b \equiv 1(\bmod f(\chi))$. Hence, $1=\chi(b)=\chi_{1}(b) \chi_{2}(b)=$ $\chi_{1}(a)$. By the minimality of $f\left(\chi_{1}\right)$ we must now have $M_{1}=f\left(\chi_{1}\right)$. Similarly, $M_{2}=f\left(\chi_{2}\right)$. The final assertion of the lemma is straightforward.

Lemma 1.1.6. Let p be an odd prime. The Legendre symbol $(\dot{\bar{p}})$ is the only real valued primitive Dirichlet character modulo p. If e is a positive integer with $e>1$, then there exist no real valued primitive Dirichlet characters modulo p^{e}.

Proof. We have already remarked that $(\dot{\bar{p}})$ is a real valued primitive Dirichlet character modulo p. To prove the remaining assertions, let e be a positive integer, and assume that χ is a real valued primitive Dirichlet character modulo p^{e}; we will prove that $\chi=(\dot{\bar{p}})$ if $e=1$ and obtain a contradiction if $e>1$. Consider $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$. It is known that this group is cyclic; let $x \in Z$ be such that $(x, p)=1$ and $x+p^{e} \mathbb{Z}$ is a generator of $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$. Since χ has conductor p^{e}, and since $x+p^{e} \mathbb{Z}$ is a generator of $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$, we must have $\chi(x) \neq 1$. Since χ is real valued we obtain $\chi(x)=-1$. On the other hand, the function $(\dot{\bar{p}})$ is also a real valued Dirichlet character modulo p^{e} such that $\left(\frac{a}{p}\right)=-1$ for some $a \in \mathbb{Z}$; since $x+p^{e} \mathbb{Z}$ is a generator of $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$, this implies that $\left(\frac{x}{p}\right)=-1$, so that $\chi(x)=\left(\frac{x}{p}\right)$. Since $x+p^{e} \mathbb{Z}$ is a generator of $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$and $\chi(x)=-1=\chi^{\prime}(x)$ we must have $\chi=(\dot{\bar{p}})$. We see that if $e=1$, then the Legendre symbol $(\dot{\bar{p}})$ is the only real valued primitive Dirichlet character modulo p. Assume that $e>1$. It is easy to verify that the conductor of the Dirichlet character $(\dot{\bar{p}})$ modulo p^{e} is p; this is a contradiction since by Lemma 1.1.3 the conductor of χ is p^{e}.

Lemma 1.1.7. There are no primitive characters modulo 2. There exists a unique primitive Dirichlet character ε_{4} modulo $4=2^{2}$ which is defined by

$$
\begin{aligned}
& \varepsilon_{4}(1)=1 \\
& \varepsilon_{4}(3)=-1
\end{aligned}
$$

There exist two primitive Dirichlet characters ε_{8}^{\prime} and $\varepsilon_{8}^{\prime \prime}$ modulo $8=2^{3}$ which are defined by

$$
\begin{array}{ll}
\varepsilon_{8}^{\prime}(1)=1, & \varepsilon_{8}^{\prime \prime}(1)=1 \\
\varepsilon_{8}^{\prime}(3)=-1, & \varepsilon_{8}^{\prime \prime}(3)=1 \\
\varepsilon_{8}^{\prime}(5)=-1, & \varepsilon_{8}^{\prime \prime}(5)=-1 \\
\varepsilon_{8}^{\prime}(7)=1, & \varepsilon_{8}^{\prime \prime}(7)=-1
\end{array}
$$

There exist no real valued primitive Dirichlet characters modulo p^{e} for $e \geq 4$.
Proof. We have $(\mathbb{Z} / 2 \mathbb{Z})^{\times}=\{1\}$. It follows that the unique Dirichlet character modulo 2 has conductor conductor 1 ; by Lemma 1.1.3, this character is not primitive.

We have $(\mathbb{Z} / 4 \mathbb{Z})^{\times}=\{1,3\}$. Hence, there exist two Dirichlet characters modulo 4. The non-principal Dirichlet character modulo 4 is ε_{4}; since $\varepsilon_{4}(1+2)=$ -1 , it follows that the conductor of ε_{4} is 4 . By Lemma 1.1.3, ε_{4} is primitive.

We have

$$
(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{1,3,5,7\}=\{1,3\} \times\{1,5\}
$$

The non-principal Dirichlet characters modulo 8 are $\varepsilon_{8}^{\prime}, \varepsilon_{8}^{\prime \prime}$ and $\varepsilon_{8}^{\prime} \varepsilon_{8}^{\prime \prime}$. Since $\varepsilon_{8}^{\prime}(1+4)=\varepsilon_{8}^{\prime \prime}(1+4)=-1$ we have $f\left(\varepsilon_{8}^{\prime}\right)=f\left(\varepsilon_{8}^{\prime \prime}\right)=8$. Since $\left(\varepsilon_{8}^{\prime} \varepsilon_{8}^{\prime \prime}\right)(1+4)=1$ we have $f\left(\varepsilon_{8}^{\prime} \varepsilon_{8}^{\prime \prime}\right)=4$. Hence, by Lemma 1.1.3, ε_{8}^{\prime} and $\varepsilon_{8}^{\prime \prime}$ are primitive, and $\varepsilon_{8}^{\prime} \varepsilon_{8}^{\prime \prime}$ is not primitive.

Finally, assume that $e \geq 4$ and let χ be a real valued Dirichlet character modulo p^{e}. Let $n \in \mathbb{Z}$ be such that $(n, 2)=1$ and $n \equiv 1(\bmod 8)$. It is known that there exists $a \in \mathbb{Z}$ such that $n \equiv a^{2}\left(\bmod p^{e}\right)$. We obtain $\chi(n)=\chi\left(a^{2}\right)=$ $\chi(a)^{2}=1$ because $\chi(a)= \pm 1$ (since χ is real valued). By Lemma 1.1.2 the conductor $f(\chi)$ divides 8 . By Lemma 1.1.3, χ is not primitive.

1.2 Fundamental discriminants

Let D be a non-zero integer. We say that D is a fundamental discriminant if

$$
D \equiv 1(\bmod 4) \text { and } D \text { is square-free, }
$$

or

$$
D \equiv 0(\bmod 4), D / 4 \text { is square-free, and } D / 4 \equiv 2 \text { or } 3(\bmod 4)
$$

We say that D is a prime fundamental discriminant if

$$
D=-8 \text { or } D=-4 \text { or } D=8
$$

or

$$
D=-p \text { for } p \text { a prime such that } p \equiv 3(\bmod 4)
$$

or
$D=p$ for p a prime such that $p \equiv 1(\bmod 4)$.
it is clear that if D is a prime fundamental discriminant, then D is a fundamental discrimiant.

Lemma 1.2.1. Let D_{1} and D_{2} be relatively prime fundamental discriminants. Then $D_{1} D_{2}$ is a fundamental discriminant.

Proof. The proof is straightforward. Note that since D_{1} and D_{2} are relatively prime, at most one of D_{1} and D_{2} is divisible by 4 .

Lemma 1.2.2. Let D be a fundamental discriminant such that $D \neq 1$. There exist prime fundamental discriminants D_{1}, \ldots, D_{k} such that

$$
D=D_{1} \cdots D_{k}
$$

and D_{1}, \ldots, D_{k} are pairwise relatively prime.
Proof. Assume that $D<0$ and $D \equiv 1(\bmod 4)$. We may write $D=-p_{1} \cdots p_{t}$ for a non-empty collection of distinct primes p_{1}, \ldots, p_{t}. Since D is odd, each of p_{1}, \ldots, p_{t} is odd and is hence congruent to 1 or $3 \bmod 4$. Let r be the number of the primes p from p_{1}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
\begin{aligned}
1 & \equiv D(\bmod 4) \\
& \equiv(-1) 3^{r}(\bmod 4) \\
1 & \equiv(-1)^{r+1}(\bmod 4) .
\end{aligned}
$$

It follows that r is odd. Hence,

$$
\begin{aligned}
D & =-\prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p \\
& =-\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right) \\
D & =\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right) .
\end{aligned}
$$

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case.

Assume that $D<0$ and $D \equiv 0(\bmod 4)$. If $D=-4$, then D is a prime fundamental discriminant. Assume that $D \neq-4$. We may write $D=-4 p_{1} \cdots p_{t}$ for a non-empty collection of distinct primes p_{1}, \ldots, p_{t} such that $-p_{1} \cdots p_{t} \equiv 2$ or $3(\bmod 4)$. Assume first that $-p_{1} \cdots p_{t} \equiv 2(\bmod 4)$. Then exactly one of p_{1}, \ldots, p_{t} is even, say $p_{1}=2$. Let r be the number of the primes p from p_{2}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
D=-4 \prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p
$$

$$
\begin{aligned}
D & =-8 \prod_{p \in\left\{p_{2}, \ldots, p_{t}\right\}} p \\
& =-8\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right) \\
D & =\left((-1)^{r+1} 8\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right) .
\end{aligned}
$$

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case. Now assume that $-p_{1} \cdots p_{t} \equiv 3(\bmod 4)$. Then p_{1}, \ldots, p_{t} are all odd. Let r be the number of the primes p from p_{1}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
\begin{aligned}
3 & \equiv-p_{1} \cdots p_{t}(\bmod 4) \\
-1 & \equiv(-1) 3^{r}(\bmod 4) \\
1 & \equiv(-1)^{r}(\bmod 4) .
\end{aligned}
$$

It follows that r is even. Hence,

$$
\begin{aligned}
D & =-4 \prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p \\
& =-4\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right) \\
D & =(-4) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right) .
\end{aligned}
$$

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.

Assume that $D>0$ and $D \equiv 1(\bmod 4)$. Since $D \neq 1$ by assumption, we have $D=p_{1} \cdots p_{t}$ for a non-empty collection of distinct odd primes p_{1}, \ldots, p_{t}. Let r be the number of the primes p from p_{1}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
\begin{aligned}
1 & \equiv D(\bmod 4) \\
& \equiv 3^{r}(\bmod 4) \\
1 & \equiv(-1)^{r}(\bmod 4)
\end{aligned}
$$

We see that r is even. Therefore,

$$
\begin{aligned}
D & =\prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p \\
& =\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right)
\end{aligned}
$$

$$
D=\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right)
$$

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.

Finally, assume that $D>0$ and $D \equiv 0(\bmod 4)$. We may write $D=4 p_{1} \cdots p_{t}$ for a non-empty collection of distinct primes p_{1}, \ldots, p_{t} such that $p_{1} \cdots p_{t} \equiv 2$ or $3(\bmod 4)$. Assume first that $p_{1} \cdots p_{t} \equiv 2(\bmod 4)$. Then exactly one of p_{1}, \ldots, p_{t} is even, say $p_{1}=2$. Let r be the number of the primes p from p_{2}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
\begin{aligned}
D & =4 \prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p \\
D & =8 \prod_{p \in\left\{p_{2}, \ldots, p_{t}\right\}} p \\
& =8\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right) \\
D & =\left((-1)^{r} 8\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{2}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right) .
\end{aligned}
$$

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case. Now assume that $p_{1} \cdots p_{t} \equiv 3(\bmod 4)$. Then p_{1}, \ldots, p_{t} are all odd. Let r be the number of the primes p from p_{1}, \ldots, p_{t} such that $p \equiv 3(\bmod 4)$. We have

$$
\begin{aligned}
3 & \equiv p_{1} \cdots p_{t}(\bmod 4) \\
-1 & \equiv 3^{r}(\bmod 4) \\
-1 & \equiv(-1)^{r}(\bmod 4) \\
1 & \equiv(-1)^{r+1}(\bmod 4)
\end{aligned}
$$

It follows that r is odd. Hence,

$$
\begin{aligned}
D & =4 \prod_{p \in\left\{p_{1}, \ldots, p_{t}\right\}} p \\
& =4\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}} p\right) \\
D & =(-4) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 1(\bmod 4)}} p\right) \times\left(\prod_{\substack{p \in\left\{p_{1}, \ldots, p_{t}\right\}, p \equiv 3(\bmod 4)}}-p\right) .
\end{aligned}
$$

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.

The fundamental discriminants between -1 and -100 are listed in Table A. 1 and the fundamental discriminants between 1 and 100 are listed in Table A.2.

Let D be a fundamental discriminant. We define a function

$$
\chi_{D}: \mathbb{Z} \longrightarrow \mathbb{C}
$$

in the following way. First, let p be a prime. We define

$$
\chi_{D}(p)=\left\{\begin{array}{cl}
\left(\frac{D}{p}\right) & \text { if } p \text { is odd } \\
1 & \text { if } p=2 \text { and } D \equiv 1(\bmod 8) \\
-1 & \text { if } p=2 \text { and } D \equiv 5(\bmod 8) \\
0 & \text { if } p=2 \text { and } D \equiv 0(\bmod 4)
\end{array}\right.
$$

Note that since D is a fundamental discriminant, we have $D \not \equiv 3(\bmod 8)$ and $D \not \equiv 7(\bmod 8)$. If n is a positive integer, and

$$
n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

is the prime factorization of n, where p_{1}, \ldots, p_{t} are primes, then we define

$$
\begin{equation*}
\chi_{D}(n)=\chi_{D}\left(p_{1}\right)^{e_{1}} \cdots \chi_{D}\left(p_{t}\right)^{e_{t}} \tag{1.1}
\end{equation*}
$$

This defines $\chi_{D}(n)$ for all positive integers n. We also define

$$
\chi_{D}(-n)=\chi_{D}(-1) \chi_{D}(n)
$$

for all positive integers n, where we define

$$
\chi_{D}(-1)=\left\{\begin{aligned}
1 & \text { if } D>0 \\
-1 & \text { if } D<0
\end{aligned}\right.
$$

Finally, we define

$$
\chi_{D}(0)= \begin{cases}0 & \text { if } D \neq 1 \\ 1 & \text { if } D=1\end{cases}
$$

We note that if $D=1$, then $\chi_{1}(a)=1$ for $a \in \mathbb{Z}$. Thus, χ_{1} is the unique Dirichlet character modulo 1 (which has conductor 1 , and is thus primitive).
Lemma 1.2.3. Let D_{1} and D_{2} be relatively prime fundamental discriminants. Then

$$
\chi_{D_{1} D_{2}}(a)=\chi_{D_{1}}(a) \chi_{D_{2}}(a)
$$

for all $a \in \mathbb{Z}$.
Proof. It is easy to verify that $\chi_{D_{1} D_{2}}(p)=\chi_{D_{1}}(p) \chi_{D_{2}}(p)$ for all primes p, $\chi_{D_{1} D_{2}}(-1)=\chi_{D_{1}}(-1) \chi_{D_{2}}(-1)$, and $\chi_{D_{1} D_{2}}(0)=0=\chi_{D_{1}}(0) \chi_{D_{2}}(0)$. The assertion of the lemma now follows from the definitions of $\chi_{D}, \chi_{D_{1}}$ and $\chi_{D_{2}}$ on composite numbers.

Lemma 1.2.4. Let D be a fundamental discriminant. The function χ_{D} corresponds to a primitive Dirichlet character modulo $|D|$.

Proof. By Lemma 1.2.2 we can write

$$
D=D_{1} \cdots D_{k}
$$

where D_{1}, \ldots, D_{k} are prime fundamental discriminants and D_{1}, \ldots, D_{k} are pairwise relatively prime. By Lemma 1.2.3,

$$
\chi_{D}(a)=\chi_{D_{1}}(a) \cdots \chi_{D_{k}}(a)
$$

for $a \in \mathbb{Z}$. Lemma 1.1.4 and Lemma 1.1.5 now imply that we may assume that D is a prime fundamental discriminant. For the following argument we recall the Dirichlet characters $\varepsilon_{4}, \varepsilon_{8}^{\prime}$ and $\varepsilon_{8}^{\prime \prime}$ from Lemma 1.1.7.

Assume first that $D=-8$ so that $|D|=8$. Let p be an odd prime. Then

$$
\begin{aligned}
\chi_{-8}(p) & =\left(\frac{-8}{p}\right) \\
& =\left(\frac{-2}{p}\right)^{3} \\
& =\left(\frac{-2}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) \\
& =(-1)^{\frac{p-1}{2}}(-1)^{\frac{p^{2}-1}{8}} \\
& =\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1,3 & (\bmod 8) \\
-1 & \text { if } p \equiv 5,7 & (\bmod 8)
\end{array}\right.
\end{aligned}
$$

Also,

$$
\chi_{-8}(2)=0
$$

We see that $\chi_{-8}(p)=\varepsilon_{8}^{\prime \prime}(p)$ for all primes p. Also, $\chi_{-8}(-1)=-1=\varepsilon_{8}^{\prime \prime}(-1)$ and $\chi_{-8}(0)=0=\varepsilon_{8}^{\prime \prime}(0)$. Since χ_{-8} and $\varepsilon_{8}^{\prime \prime}$ are multiplicative, it follows that

$$
\chi-8=\varepsilon_{8}^{\prime \prime}
$$

so that χ_{-8} corresponds to a primitive Dirichlet character $\bmod |-8|=8$.
Assume that $D=-4$ so that $|D|=4$. Let p be an odd prime. Then

$$
\begin{aligned}
\chi_{-4}(p) & =\left(\frac{-4}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{2} \\
& =\left(\frac{-1}{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{\frac{p-1}{2}} \\
& =\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & (\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
\end{aligned}
$$

Also, $\chi_{-4}(2)=0, \chi_{-4}(-1)=-1$, and $\chi_{-4}(0)=0$. We see that $\chi_{-4}(p)=\varepsilon_{4}(p)$ for all primes p. Also, $\chi_{-4}(-1)-1=\varepsilon_{4}(-1)$ and $\chi_{-4}(0)=0=\varepsilon_{4}(0)$. Since χ_{-4} and ε_{4} are multiplicative, it follows that

$$
\chi_{-4}=\varepsilon_{4},
$$

so that χ_{-4} corresponds to a primitive Dirichlet character $\bmod |-4|=4$.
Assume that $D=8$. Let p be an odd prime. Then

$$
\begin{aligned}
\chi_{8}(p) & =\left(\frac{8}{p}\right) \\
& =\left(\frac{2}{p}\right)^{3} \\
& =\left(\frac{2}{p}\right) \\
& =(-1)^{\frac{p^{2}-1}{8}} \\
& = \begin{cases}1 & \text { if } p \equiv 1,7(\bmod 8), \\
-1 & \text { if } p \equiv 3,5(\bmod 8) .\end{cases}
\end{aligned}
$$

Also, $\chi_{8}(2)=0, \chi_{8}(-1)=1$, and $\chi_{8}(0)=0$. We see that $\chi_{8}(p)=\varepsilon_{8}^{\prime}(p)$ for all primes p. Also, $\chi_{8}(-1)=1=\varepsilon_{8}^{\prime}(-1)$ and $\chi_{8}(0)=0=\varepsilon_{8}^{\prime}(0)$. Since χ_{8} and ε_{8}^{\prime} are multiplicative, it follows that

$$
\chi_{8}=\varepsilon_{8}^{\prime}
$$

so that χ_{8} corresponds to a primitive Dirichlet character mod $|8|=8$.
Assume that $D=-q$ for a prime q such that $q \equiv 3(\bmod 4)$. Let p be an odd prime. Then

$$
\begin{aligned}
\chi_{D}(p) & =\left(\frac{-q}{p}\right) \\
& =\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) \\
& =(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\left(\frac{p}{q}\right) \\
& =(-1)^{\frac{p-1}{2}}\left((-1)^{\frac{q-1}{2}}\right)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) \\
& =(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) \\
& =(-1)^{p-1}\left(\frac{p}{q}\right)
\end{aligned}
$$

$$
=\left(\frac{p}{q}\right)
$$

Also,

$$
\begin{aligned}
\chi_{D}(2) & = \begin{cases}1 & \text { if }-q \equiv 1(\bmod 8) \\
-1 & \text { if }-q \equiv 5(\bmod 8)\end{cases} \\
& = \begin{cases}1 & \text { if } q \equiv 7(\bmod 8) \\
-1 & \text { if } q \equiv 3(\bmod 8)\end{cases} \\
& =(-1)^{\frac{q^{2}-1}{8}} \\
& =\left(\frac{2}{q}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\chi_{D}(-1) & =-1 \\
& =(-1)^{\frac{q-1}{2}} \\
& =\left(\frac{-1}{q}\right) .
\end{aligned}
$$

Since $(\dot{\bar{q}})$ and χ_{D} are multiplicative, it follows that $\left(\frac{a}{q}\right)=\chi_{D}(a)$ for all $a \in$ \mathbb{Z}. Since $(\dot{\bar{q}})$ is a primitive Dirichlet character modulo q, it follows that χ_{D} corresponds to a primitive Dirichlet character modulo $q=|-q|=|D|$.

Assume that $D=q$ for a prime q such that $q \equiv 1(\bmod 4)$. Let p be an odd prime. Then

$$
\begin{aligned}
\chi_{D}(p) & =\left(\frac{q}{p}\right) \\
& =(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\left(\frac{p}{q}\right) \\
& =(-1)^{\frac{p-1}{2} \cdot 2}\left(\frac{p}{q}\right) \\
& =\left(\frac{p}{q}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\chi_{D}(2) & = \begin{cases}1 & \text { if } q \equiv 1(\bmod 8) \\
-1 & \text { if } q \equiv 5(\bmod 8)\end{cases} \\
& =(-1)^{\frac{q^{2}-1}{8}} \\
& =\left(\frac{2}{q}\right)
\end{aligned}
$$

and

$$
\chi_{D}(-1)=1
$$

$$
\begin{aligned}
& =(-1)^{\frac{q-1}{2}} \\
& =\left(\frac{-1}{q}\right)
\end{aligned}
$$

Since $(\dot{\bar{q}})$ and χ_{D} are multiplicative, it follows that $\left(\frac{a}{q}\right)=\chi_{D}(a)$ for all $a \in$ \mathbb{Z}. Since $(\dot{\dot{q}})$ is a primitive Dirichlet character modulo q, it follows that χ_{D} corresponds to a primitive Dirichlet character modulo $q=|q|=|D|$.

From the proof of Lemma 1.2.4 we see that if D is a prime fundamental discriminant with $D>1$, then

$$
\chi_{D}= \begin{cases}\varepsilon_{8}^{\prime \prime} & \text { if } D=-8 \tag{1.2}\\ \varepsilon_{4} & \text { if } D=-4, \\ \varepsilon_{8}^{\prime} & \text { if } D=8 \\ \left(\frac{\cdot}{p}\right) & \text { if } D=-p \text { is a prime with } p \equiv 3(\bmod 4) \\ \left(\frac{\cdot}{p}\right) & \text { if } D=p \text { is a prime with } p \equiv 1(\bmod 4)\end{cases}
$$

Proposition 1.2.5. Let N be a positive integer, and let χ be a Dirichlet character modulo N. Assume that χ is primitive and real valued (i.e., $\chi(a) \in\{0,1,-1\}$ for $a \in \mathbb{Z}$). Then there exists a fundamental discriminant D such that $|D|=N$ and $\chi=\chi_{D}$.

Proof. If $N=1$, then χ is the unique Dirichlet character modulo 1; we have already remarked that χ_{1} is also the unique Dirichlet character modulo 1. Assume that $N>1$. Let

$$
N=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

be the prime factorization of N into positive powers e_{1}, \ldots, e_{t} of the distinct primes p_{1}, \ldots, p_{t}. We have

$$
(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\sim}\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{t}^{e_{t}} \mathbb{Z}\right)^{\times}
$$

where the isomorphism sends $x+N \mathbb{Z}$ to $\left(x+p_{1}^{e_{1}} \mathbb{Z}, \ldots, x+p_{t}^{e_{t}} \mathbb{Z}\right)$ for $x \in \mathbb{Z}$. Let $i \in\{1, \ldots, t\}$. Let χ_{i} be the character of $\left(\mathbb{Z} / p_{i}^{e_{i}} \mathbb{Z}\right)^{\times}$which is the composition

$$
\left(\mathbb{Z} / p_{i}^{e_{i}} \mathbb{Z}\right)^{\times} \hookrightarrow\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{t}^{e_{t}} \mathbb{Z}\right)^{\times} \xrightarrow{\sim}(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

where the first map is inclusion. We have

$$
\chi(a)=\chi_{1}(a) \cdots \chi_{t}(a)
$$

for $a \in \mathbb{Z}$. By Lemma 1.1.5 the Dirichlet characters $\chi_{1}, \ldots, \chi_{t}$ are primitive. Also, it is clear that $\chi_{1}, \ldots, \chi_{t}$ are all real valued. Again let $i \in\{1, \ldots, t\}$.

Assume first that p_{i} is odd. Since χ_{i} is primitive, Lemma 1.1.6 implies that $e_{i}=1$, and that $\chi_{i}=\left(\dot{\overline{p_{i}}}\right)$, the Legendre symbol. By (1.2), $\chi_{i}=\chi_{D_{i}}$ where

$$
D_{i}= \begin{cases}p_{i} & \text { if } p_{i} \equiv 1(\bmod 4) \\ -p_{i} & \text { if } p_{i} \equiv 3(\bmod 4)\end{cases}
$$

Evidently, $\left|-D_{i}\right|=p_{i}^{e_{i}}$. Next, assume that $p_{i}=2$. By Lemma 1.1.7 we see that $e_{i}=2$ or $e_{i}=3$ with $\chi_{i}=\varepsilon_{4}$ if $e_{i}=2$, and $\chi_{i}=\varepsilon_{8}^{\prime}$ or $\varepsilon_{8}^{\prime \prime}$ if $e_{i}=3$. By (1.2), $\chi_{i}=\chi_{D_{i}}$, where

$$
D_{i}= \begin{cases}-4 & \text { if } e_{i}=2 \\ 8 & \text { if } e_{i}=3 \text { and } \chi_{i}=\varepsilon_{8}^{\prime} \\ -8 & \text { if } e_{i}=3 \text { and } \chi_{i}=\varepsilon_{8}^{\prime \prime}\end{cases}
$$

Clearly, $\left|-D_{i}\right|=p_{i}^{e_{i}}$. To now complete the proof, we note that by Lemma 1.2.1 the product $D=D_{1} \cdots D_{t}$ is a fundamental discriminant, and by Lemma 1.2.3 we have $\chi_{D}=\chi_{D_{1}} \cdots \chi_{D_{t}}$. Since $\chi_{D_{1}} \cdots \chi_{D_{t}}=\chi_{1} \cdots \chi_{t}=\chi$ and $|D|=N$, this completes the proof.

1.3 Quadratic extensions

Proposition 1.3.1. The map
$\{$ quadratic extensions K of $\mathbb{Q}\} \xrightarrow{\sim}$ \{fundamental discriminants $D, D \neq 1\}$
that sends K to its discriminant $\operatorname{disc}(K)$ is a well-defined bijection. Let K be a quadratic extension of \mathbb{Q}, and let p be a prime. Then the prime factorization of the ideal (p) generated by p in \mathfrak{o}_{K} is given as follows:

$$
(p)=\left\{\begin{array}{lll}
\mathfrak{p}^{2} & (p \text { is ramified }) & \text { if } \chi_{D}(p)=0 \\
\mathfrak{p} \cdot \mathfrak{p}^{\prime} & (p \text { splits }) & \text { if } \chi_{D}(p)=1 \\
\mathfrak{p} & (p \text { is inert }) & \text { if } \chi_{D}(p)=-1
\end{array}\right.
$$

Here, in the first and third case, \mathfrak{p} is the unique prime ideal of \mathfrak{o}_{K} lying over (p), and in the second case, \mathfrak{p} and \mathfrak{p}^{\prime} are the two distinct prime ideals of \mathfrak{o}_{K} lying over (p).

Proof. Let K be a quadratic extension of \mathbb{Q}. There exists a square-free integer d such that $K=\mathbb{Q}(\sqrt{d})$. Let \mathfrak{o}_{K} be the ring of integers of K. It is known that

$$
\mathfrak{o}_{K}= \begin{cases}\mathbb{Z} \cdot 1+\mathbb{Z} \cdot \sqrt{d} & \text { if } d \equiv 2,3(\bmod 4) \\ \mathbb{Z} \cdot 1+\mathbb{Z} \cdot \frac{1+\sqrt{d}}{2} & \text { if } d \equiv 1(\bmod 4)\end{cases}
$$

By the definition of $\operatorname{disc}(K)$, we have

$$
\begin{aligned}
\operatorname{disc}(K) & = \begin{cases}\operatorname{det}\left(\left[\begin{array}{cc}
1 & \sqrt{d} \\
1 & -\sqrt{d}
\end{array}\right)^{2}\right. & \text { if } d \equiv 2,3(\bmod 4) \\
\operatorname{det}\left(\left[\begin{array}{cc}
1 & \frac{1+\sqrt{d}}{2} \\
1 & \frac{1-\sqrt{d}}{2}
\end{array}\right]\right)^{2} & \text { if } d \equiv 1(\bmod 4)\end{cases} \\
& = \begin{cases}4 d & \text { if } d \equiv 2,3(\bmod 4) \\
d & \text { if } d \equiv 1(\bmod 4)\end{cases}
\end{aligned}
$$

It follows that the map is well-defined, and a bijection. For a proof of the remaining assertion see Satz 1 on page 100 of [29], or Theorem 25 on page 74 of [16].

Lemma 1.3.2. Let D be a fundamental discriminant such that $D \neq 1$. Let $K=\mathbb{Q}(\sqrt{D})$, so that K is a quadratic extension of \mathbb{Q}. Then $\operatorname{disc}(K)=D$.

Proof. Assume that $D \equiv 1(\bmod 4)$. Then D is square-free. From the proof of Proposition 1.3.1 we have $\operatorname{disc}(K)=D$. Assume that $D \equiv 0(\bmod 4)$. Then $K=\mathbb{Q}(\sqrt{D / 4})$, with $D / 4$ square-free and $D / 4 \equiv 2,3(\bmod 4)$. From the proof of Proposition 1.3.1 we again obtain $\operatorname{disc}(K)=4 \cdot(D / 4)=D$.

1.4 Kronecker Symbol

Let Δ be a non-zero integer such that $\Delta \equiv 0,1$ or $2(\bmod 4)$. We define a function,

$$
\left(\frac{\Delta}{\cdot}\right): \mathbb{Z} \longrightarrow \mathbb{C}
$$

called the Kronecker symbol, in the following way. First, let p be a prime. We define

$$
\left(\frac{\Delta}{p}\right)=\left\{\begin{aligned}
&\left(\frac{\Delta}{p}\right)(\text { Legendre symbol }) \\
& 0 \text { if } p \text { is odd } \\
& 1 \text { if } p=2 \text { and } \Delta \text { is even } \\
&-1 \text { if } p=2 \text { and } \Delta \equiv 1(\bmod 8) \\
& \text { if } p=2 \text { and } \Delta \equiv 5(\bmod 8)
\end{aligned}\right.
$$

Note that, since by assumption $\Delta \equiv 0,1$ or $2(\bmod 4)$, the cases $\Delta \equiv 3(\bmod 8)$ and $\Delta \equiv 7(\bmod 8)$ do not occur. We see that if p is a prime, then $p \mid \Delta$ if and only if $\left(\frac{\Delta}{p}\right)=0$. If n is a positive integer, and

$$
n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

is the prime factorization of n, where p_{1}, \ldots, p_{t} are primes, then we define

$$
\left(\frac{\Delta}{n}\right)=\left(\frac{\Delta}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{\Delta}{p_{t}}\right)^{e_{t}}
$$

This defines $\left(\frac{\Delta}{n}\right)$ for all positive integers n. We also define

$$
\left(\frac{\Delta}{-n}\right)=\left(\frac{\Delta}{-1}\right)\left(\frac{\Delta}{n}\right)
$$

for all positive integers n, where we define

$$
\left(\frac{\Delta}{-1}\right)=\left\{\begin{aligned}
1 & \text { if } \Delta>0 \\
-1 & \text { if } \Delta<0
\end{aligned}\right.
$$

Finally, we define

$$
\left(\frac{\Delta}{0}\right)= \begin{cases}0 & \text { if } \Delta \neq 1 \\ 1 & \text { if } \Delta=1\end{cases}
$$

We note that if $\Delta=1$, then $\left(\frac{\Delta}{a}\right)\left(\frac{1}{a}\right)=1$ for $a \in \mathbb{Z}$. Thus, $\left(\frac{1}{9}\right)$ is the unique Dirichlet character modulo 1. It is straightfoward to verify that

$$
\left(\frac{\Delta}{a b}\right)=\left(\frac{\Delta}{a}\right)\left(\frac{\Delta}{b}\right)
$$

for $a, b \in \mathbb{Z}$. Also, we note that $\left(\frac{\Delta}{a}\right)=0$ if and only if $(a, \Delta)>1$.
Lemma 1.4.1. Let D be a non-zero integer such that $D \equiv 1(\bmod 4)$ or $D \equiv$ $0(\bmod 4)$. There exists a unique fundamental discriminant D_{fd} and a unique positive integer m such that

$$
D=m^{2} D_{\mathrm{fd}}
$$

Proof. We first prove the existence of m and D_{fd}. We may write $D=2^{e} a^{2} b$, where e is a positive non-negative integer, a is a positive integer, and b is an odd square-free integer.

Assume that $e=0$. Then $D \equiv 1(\bmod 4)$. Since a is odd, $a^{2} \equiv 1(\bmod 4)$; therefore, $b \equiv 1(\bmod 4)$. It follows that $D=m^{2} D_{\mathrm{fd}}$ with $m=a$ and $D_{\mathrm{fd}}=b$ a fundamental discriminant.

The case $e=1$ is impossible because $D \equiv 1(\bmod 4)$ or $D \equiv 0(\bmod 4)$.
Assume that $e \geq 2$ and e is odd. Write $e=2 k+1$ for a positive integer k. Then $D=m^{2} D_{\mathrm{fd}}$ with $m=2^{k-1} a$ and $D_{\mathrm{fd}}=8 b$ a fundamental discriminant.

Assume that $e \geq 2$ and e is even. Write $e=2 k$ for a positive integer k. If $b \equiv 1(\bmod 4)$, then $D=m^{2} D_{\mathrm{fd}}$ with $m=2^{k} a$ and $D_{\mathrm{fd}}=b$ a fundamental discriminant. If $b \equiv 3(\bmod 4)$, then $D=m^{2} D_{\mathrm{fd}}$ with $m=2^{k-1} a$ and $D_{\mathrm{fd}}=4 b$ a fundamental discriminant. This completes the proof the existence of m and D_{fd}.

To prove the uniqueness assertion, assume that m and m^{\prime} are positive integers and D_{fd} and D_{fd}^{\prime} are fundamental discriminants such that $D=m^{2} D_{\mathrm{fd}}=$ $\left(m^{\prime}\right)^{2} D_{\mathrm{fd}}^{\prime}$. Assume first that $D_{\mathrm{fd}}=1$. Then $m^{2}=\left(m^{\prime}\right)^{2} D_{\mathrm{fd}}^{\prime}$. This implies
that D_{fd}^{\prime} is a square; hence, $D_{\mathrm{fd}}^{\prime}=1$. Therefore, $m^{2}=\left(m^{\prime}\right)^{2}$, implying that $m=m^{\prime}$. Now assume that $D_{\mathrm{fd}} \neq 1$. Then also $D_{\mathrm{fd}}^{\prime} \neq 1$, and D is not a square. Set $K=\mathbb{Q}(\sqrt{D})$. We have $K=\mathbb{Q}\left(\sqrt{D_{\mathrm{fd}}}\right)=\mathbb{Q}\left(\sqrt{D_{\mathrm{fd}}^{\prime}}\right)$. By Lemma 1.3.2, $\operatorname{disc}(K)=D_{\mathrm{fd}}$ and $\operatorname{disc}(K)=D_{\mathrm{fd}}^{\prime}$, so that $D_{\mathrm{fd}}=D_{\mathrm{fd}}^{\prime}$. Since this holds we also conclude that $m=m^{\prime}$.

Proposition 1.4.2. Let Δ be a non-zero integer with $\Delta \equiv 0,1$ or $2(\bmod 4)$. Define

$$
D= \begin{cases}\Delta & \text { if } \Delta \equiv 0 \text { or } 1(\bmod 4) \\ 4 \Delta & \text { if } \Delta \equiv 2(\bmod 4)\end{cases}
$$

Write $D=m^{2} D_{\mathrm{fd}}$ with m a positive integer, and D_{fd} a fundamental discriminant, as in Lemma 1.4.1. The Kronecker symbol $(\underline{\Delta})$ is a Dirichlet character modulo $|D|$, and is the Dirichlet character induced by the mod $\left|D_{\mathrm{fd}}\right|$ Dirichlet character $\chi_{D_{\mathrm{fd}}}$.
Proof. Let α be the Dirichlet character modulo $|D|$ induced by $\chi_{D_{\mathrm{fd}}}$. Thus, α is the composition

$$
(\mathbb{Z} /|D| \mathbb{Z})^{\times} \longrightarrow\left(\mathbb{Z} /\left|D_{\mathrm{fd}}\right| \mathbb{Z}\right)^{\times} \xrightarrow{\chi_{\mathrm{fd}}} \mathbb{C}^{\times}
$$

extended to \mathbb{Z}. Since α and $(\stackrel{\Delta}{.})$ are multiplicative, to prove that $\alpha=(\underline{\Delta})$ it will suffice to prove that these two functions agree on all primes, on -1 , and on 0 . Let p be a prime.

Assume first that p is odd. If $p \mid D$, then also $p \mid \Delta$, so that $\alpha(p)$ and $(\underline{\Delta})$ evaluated at p are both 0 . Assume that $(p, D)=1$. Then also $(p, \Delta)=1$. Then

$$
\begin{aligned}
\left(\frac{\Delta}{.}\right) \text { evaluated at } p & =\left(\frac{\Delta}{p}\right)(\text { Legendre symbol }) \\
& = \begin{cases}\left(\frac{\Delta}{p}\right) & \text { if } \Delta \equiv 0 \text { or } 1(\bmod 4) \\
\left(\frac{2}{p}\right)^{2}\left(\frac{\Delta}{p}\right) & \text { if } \Delta \equiv 2(\bmod 4)\end{cases} \\
& = \begin{cases}\left(\frac{\Delta}{p}\right) & \text { if } \Delta \equiv 0 \operatorname{or} 1(\bmod 4) \\
\left(\frac{4 \Delta}{p}\right) & \text { if } \Delta \equiv 2(\bmod 4)\end{cases} \\
& =\left(\frac{D}{p}\right) \\
& =\left(\frac{m^{2} D_{\mathrm{fd}}}{p}\right) \\
& =\left(\frac{D_{\mathrm{fd}}}{p}\right) \\
& =\chi_{D_{\mathrm{fd}}(p)} \\
& =\alpha(p)
\end{aligned}
$$

Assume next that $p=2$. If $2 \mid D$, then also $2 \mid \Delta$, so that $\alpha(2)$ and $(\underline{\Delta})$ evaluated at 2 are both 0 . Assume that $(2, D)=1$, so that D is odd. Then $D=\Delta$, and in fact $D \equiv 1(\bmod 4)$. This implies that $\Delta \equiv 1$ or $7(\bmod 8)$. Also, as $D \equiv 1(\bmod 4)$, and $D=m^{2} D_{\mathrm{fd}}$, we must have $D_{\mathrm{fd}} \equiv D(\bmod 8)$ (since $a^{2} \equiv 1(\bmod 8)$ for any odd integer $\left.a\right)$. Therefore,

$$
\begin{aligned}
\left(\frac{\Delta}{\cdot}\right) \text { evaluated at } 2 & =\left\{\begin{aligned}
1 & \text { if } D \equiv 1(\bmod 8) \\
-1 & \text { if } D \equiv 5(\bmod 8)
\end{aligned}\right. \\
& =\left\{\begin{aligned}
1 & \text { if } D_{\mathrm{fd}} \equiv 1(\bmod 8) \\
-1 & \text { if } D_{\mathrm{fd}} \equiv 5(\bmod 8)
\end{aligned}\right. \\
& =\chi_{D_{\mathrm{fd}}}(2) \\
& =\alpha(2)
\end{aligned}
$$

To finish the proof we note that

$$
\begin{aligned}
\left(\frac{\Delta}{\cdot}\right) \text { evaluated at }-1 & =\operatorname{sign}(\Delta) \\
& =\operatorname{sign}(D) \\
& =\operatorname{sign}\left(D_{\mathrm{fd}}\right) \\
& =\chi_{D_{\mathrm{fd}}}(-1) \\
& =\alpha(-1)
\end{aligned}
$$

Since $\Delta=1$ if and only if $D_{\mathrm{fd}}=1$, the evaluation of $\left(\frac{D}{q}\right)$ at 0 is $\chi_{D_{\mathrm{fd}}}(0)=$ $\alpha(0)$.

Lemma 1.4.3. Assume that Δ_{1} and Δ_{2} are non-zero integers that satisfy the congruences $\Delta_{1} \equiv 0,1$ or $2(\bmod 4)$ and $\Delta_{2} \equiv 0,1$ or $2(\bmod 4)$. Then we have $\Delta_{1} \Delta_{2} \equiv 0,1$ or $2(\bmod 4)$, and

$$
\begin{equation*}
\left(\frac{\Delta_{1}}{a}\right)\left(\frac{\Delta_{2}}{a}\right)=\left(\frac{\Delta_{1} \Delta_{2}}{a}\right) \tag{1.3}
\end{equation*}
$$

for all integers a.
Proof. It is easy to verify that $\Delta_{1} \Delta_{2} \equiv 0,1$ or $2(\bmod 4)$, and that if $\Delta_{1}=1$ or $\Delta_{2}=1$, then (1.3) holds. Assume that $\Delta_{1} \neq 1$ and $\Delta_{2} \neq 1$. Since $\left(\frac{\Delta_{1}}{.}\right),\left(\frac{\Delta_{2}}{.}\right)$, and $\left(\frac{\Delta_{1} \Delta_{2}}{-}\right)$ are multiplicative, it suffices to verify (1.3) for all odd primes, for $2,-1$ and 0 . These cases follows from the definitions.

1.5 Quadratic forms

Let f be a positive integer, which will be fixed for the remainder of this section. In this section we regard the elements of \mathbb{Z}^{f} as column vectors.

Let $A=\left(a_{i, j}\right) \in \mathrm{M}(f, \mathbb{Z})$ be a integral symmetric matrix, so that $a_{i, j}=a_{j, i}$ for $i, j \in\{1, \ldots, f\}$. We say that A is even if each diagonal entry $a_{i, i}$ for $i \in\{1, \ldots, f\}$ is an even integer.

Lemma 1.5.1. Let $A \in \mathrm{M}(f, \mathbb{Z})$, and assume that A is symmetric. Then A is even if and only if ${ }^{\mathrm{t}} y A y$ is an even integer for all $y \in \mathbb{Z}^{f}$.

Proof. Let $y \in \mathbb{Z}^{f}$, with ${ }^{\mathrm{t}} y=\left(y_{1}, \ldots, y_{f}\right)$. Then

$$
\begin{aligned}
{ }^{\mathrm{t}} y A y & =\sum_{i, j=1}^{n} a_{i, j} y_{i} y_{j} \\
& =\sum_{i=1}^{f} a_{i, i} y_{i}^{2}+\sum_{1 \leq i<j \leq f} 2 a_{i, j} y_{i} y_{j} .
\end{aligned}
$$

It is clear that if A is even, then ${ }^{\mathrm{t}} y A y$ is an even integer for all $y \in \mathbb{Z}^{f}$. Assume that ${ }^{\mathrm{t}} y A y$ is an even integer for all $y \in \mathbb{Z}^{f}$. Let $i \in\{1, \ldots, f\}$. Let $y_{i} \in \mathbb{Z}^{f}$ be defined by

$$
{ }^{\mathrm{t}} y_{i}=(0, \ldots, 0,1,0, \ldots, 0)
$$

where 1 occurs in the i-th position. Then ${ }^{\mathrm{t}} y_{i} A y_{i}=a_{i, i}$. This is even, as required.

Suppose that A is an even integral symmetric matrix. To A we associate the polynomial

$$
Q\left(x_{1}, \ldots, x_{f}\right)=\frac{1}{2} \sum_{i, j=1}^{f} a_{i, j} x_{i} x_{j}
$$

and we refer to $Q\left(x_{1}, \ldots, x_{f}\right)$ as the quadratic form determined by A. Evidently,

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

with

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{f}
\end{array}\right]
$$

Since $a_{i, i}$ is even for $i \in\{1, \ldots, f\}$, the quadratic form $Q(x)$ can also be written as

$$
Q\left(x_{1}, \ldots, x_{f}\right)=\sum_{1 \leq i \leq j \leq f} b_{i, j} x_{i} x_{j}
$$

where

$$
b_{i, j}= \begin{cases}a_{i, j} & \text { for } 1 \leq i<j \leq f \\ a_{i, i} / 2 & \text { for } 1 \leq i \leq f\end{cases}
$$

is an integer. We denote the determinant of A by

$$
D=D(A)=\operatorname{det}(A)
$$

and the discriminant of A by

$$
\Delta=\Delta(A)=(-1)^{k} \operatorname{det}(A), \quad f= \begin{cases}2 k & \text { if } f \text { is even } \\ 2 k+1 & \text { if } f \text { is odd }\end{cases}
$$

For example, suppose that $f=2$. Then every even integral symmetric matrix has the form

$$
A=\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]
$$

where a, b and c are integers, and the associated quadratic form is:

$$
Q\left(x_{1}, x_{2}\right)=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}
$$

For this example we have

$$
D=4 a c-b^{2}, \quad \Delta=b^{2}-4 a c
$$

Lemma 1.5.2. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even integral symmetric matrix, and let $D=D(A)$ and $\Delta=\Delta(A)$. If f is odd, then $\Delta \equiv D \equiv 0(\bmod 2)$. If f is even, then $\Delta \equiv 0,1(\bmod 4)$.

Proof. Let $A=\left(a_{i, j}\right)$ with $a_{i, j} \in \mathbb{Z}$ for $i, j \in\{1, \ldots, f\}$. By assumption, $a_{i, j}=a_{j, i}$ and $a_{i, i}$ is even for $i, j \in\{1, \ldots, f\}$.

Assume that f is odd. For $\sigma \in S_{f}$ (the permutation group of $\{1, \ldots, f\}$, let

$$
t(\sigma)=\operatorname{sign}(\sigma) a_{1, \sigma(1)} \cdots a_{f, \sigma(f)}=\operatorname{sign}(\sigma) \prod_{i \in\{1, \ldots, n\}} a_{i, \sigma(i)}
$$

We have

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma \in S_{f}} t(\sigma) \\
& =\sum_{\sigma \in X} t(\sigma)+\sum_{\sigma \in S_{f}-X} t(\sigma)
\end{aligned}
$$

Here, X is the subset of $\sigma \in S_{f}$ such that $\sigma \neq \sigma^{-1}$. Let $\sigma \in S_{f}$. Then

$$
\begin{aligned}
t\left(\sigma^{-1}\right) & =\operatorname{sign}\left(\sigma^{-1}\right) \prod_{i \in\{1, \ldots f\}} a_{i, \sigma^{-1}(i)} \\
& =\operatorname{sign}(\sigma) \prod_{i \in\{1, \ldots f\}} a_{\sigma(i), \sigma^{-1}(\sigma(i))} \\
& =\operatorname{sign}(\sigma) \prod_{i \in\{1, \ldots f\}} a_{\sigma(i), i} \\
& =\operatorname{sign}(\sigma) \prod_{i \in\{1, \ldots f\}} a_{i, \sigma(i)}
\end{aligned}
$$

$$
=t(\sigma)
$$

Since the subset X is partitioned into two element subsets of the form $\left\{\sigma, \sigma^{-1}\right\}$ for $\sigma \in X$, and since $t(\sigma)=t\left(\sigma^{-1}\right)$ for $\sigma \in S_{f}$, it follows that

$$
\sum_{\sigma \in X} t(\sigma) \equiv 0(\bmod 2)
$$

Let $\sigma \in S_{f}-X$, so that $\sigma^{2}=1$. Write $\sigma=\sigma_{1} \cdots \sigma_{t}$, where $\sigma_{1}, \ldots, \sigma_{t} \in S_{f}$ are cycles and mutually disjoint. Since $\sigma^{2}=1$, each σ_{i} for $i \in\{1, \ldots, t\}$ is a two cycle. Since f is odd, there exists $i \in\{1, \ldots, f\}$ such that i does not occur in any of the two cycles $\sigma_{1}, \ldots, \sigma_{t}$. It follows that $\sigma(i)=i$. Now $a_{i, \sigma(i)}=a_{i, i}$; by hypothesis, this is an even integer. It follows that $t(\sigma)$ is also an even integer. Hence,

$$
\sum_{\sigma \in S_{f}-X} t(\sigma) \equiv 0(\bmod 2)
$$

and we conclude that $\Delta \equiv D \equiv 0(\bmod 2)$.
Now assume that f is even, and write $f=2 k$. We will prove that $\Delta \equiv$ $0,1(\bmod 4)$ by induction on f. Assume that $f=2$, so that

$$
A=\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]
$$

where a, b and c are integers. Then $\Delta=b^{2}-4 a c \equiv 0,1(\bmod 4)$. Assume now that $f \geq 4$, and that $\Delta\left(A_{1}\right) \equiv 0,1(\bmod 4)$ for all $f_{1} \times f_{1}$ even integral symmetric matrices A_{1} with f_{1} even and $f>f_{1} \geq 2$. Clearly, if all the offdiagonal entries of A are even, then all the entries of A are even, and $\Delta(A) \equiv$ $0(\bmod 4)$. Assume that some off-diagonal entry of A, say $a=a_{i, j}$ is odd with $1 \leq i<j \leq f$. Interchange the first and the i-th row of A, and then the first and the i-th column of A; the result is an even integral symmetric matrix A^{\prime} with a in the $(1, j)$ position and $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A)$. Next, interchange the second and the j-th column of A^{\prime}, and then the second and the j-th row of A^{\prime}; the result is an even integral symmetric matrix $A^{\prime \prime}$ with a in the (1,2)-position and $\operatorname{det}\left(A^{\prime \prime}\right)=\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A)$. It follows that we may assume that $(i, j)=(1,2)$. We may write

$$
A=\left[\begin{array}{cc}
A_{1} & B \\
{ }^{\mathrm{t}} B & A_{2}
\end{array}\right]
$$

where A_{2} is an $(f-2) \times(f-2)$ even integral symmetric matrix,

$$
A_{1}=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{1,2} & a_{2,2}
\end{array}\right]
$$

and B is a $2 \times(f-2)$ matrix with integral entries. Let

$$
\operatorname{adj}\left(A_{1}\right)=\left[\begin{array}{cc}
a_{2,2} & -a_{1,2} \\
-a_{1,2} & a_{1,1}
\end{array}\right]
$$

so that

$$
A_{1} \cdot \operatorname{adj}\left(A_{1}\right)=\operatorname{adj}\left(A_{1}\right) \cdot A_{1}=\operatorname{det}\left(A_{1}\right) \cdot 1_{2}
$$

Now

$$
\begin{gather*}
{\left[\begin{array}{cc}
1_{2} \\
-{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) & \operatorname{det}\left(A_{1}\right) \cdot 1_{f-2}
\end{array}\right]\left[\begin{array}{cc}
A_{1} & B \\
{ }^{\mathrm{t}} B & A_{2}
\end{array}\right]} \\
=\left[\begin{array}{cc}
A_{1} & B \\
& -{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) \cdot B+\operatorname{det}\left(A_{1}\right) A_{2}
\end{array}\right] \tag{1.4}
\end{gather*}
$$

Consider the $(f-2) \times(f-2)$ matrix $-{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) \cdot B$. This matrix clearly has integral entries. If $y \in \mathbb{Z}^{f-2}$, then $B y \in \mathbb{Z}^{f-2}$ and

$$
{ }^{\mathrm{t}}(y)\left(-{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) \cdot B\right) y=-{ }^{\mathrm{t}}(B y) \cdot \operatorname{adj}\left(A_{1}\right) \cdot(B y)
$$

since $\operatorname{adj}\left(A_{1}\right)$ is even, by Lemma 1.5.1 this integer is even. Since the last displayed integer is even for all $y \in \mathbb{Z}^{f-2}$, we can apply Lemma 1.5.1 again to conclude that $-{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) \cdot B$ is even. It follows that

$$
A_{3}=-{ }^{\mathrm{t}} B \cdot \operatorname{adj}\left(A_{1}\right) \cdot B+\operatorname{det}\left(A_{1}\right) A_{2}
$$

is an $(f-2) \times(f-2)$ even integral symmetric matrix. Taking determinants of both sides of (1.4), we obtain

$$
\begin{aligned}
\operatorname{det}\left(A_{1}\right)^{f-2} \cdot \operatorname{det}(A) & =\operatorname{det}\left(A_{1}\right) \cdot \operatorname{det}\left(A_{3}\right) \\
\operatorname{det}\left(A_{1}\right)^{f-2} \cdot(-1)^{k} \operatorname{det}(A) & =(-1) \operatorname{det}\left(A_{1}\right) \cdot(-1)^{k-1} \operatorname{det}\left(A_{3}\right) \\
\operatorname{det}\left(A_{1}\right)^{f-2} \cdot \Delta(A) & =\Delta\left(A_{1}\right) \cdot \Delta\left(A_{3}\right)
\end{aligned}
$$

By the induction hypothesis, $\Delta\left(A_{1}\right) \equiv 0,1(\bmod 4)$, and $\Delta\left(A_{3}\right) \equiv 0,1(\bmod 4)$. Hence,

$$
\operatorname{det}\left(A_{1}\right)^{f-2} \cdot \Delta(A) \equiv 0,1(\bmod 4)
$$

By hypothesis, $a_{1,2}$ is odd; since $f-2$ is even, this implies that $\operatorname{det}\left(A_{1}\right)^{f-2} \equiv$ $1(\bmod 4)$. We now conclude that $\Delta(A) \equiv 0,1(\bmod 4)$, as desired.

Let $A \in \mathrm{M}(f, \mathbb{R})$. The adjoint of A is the $f \times f$ matrix $\operatorname{adj}(A)$ with entries

$$
\operatorname{adj}(A)_{i, j}=(-1)^{i+j} \operatorname{det}(A(j \mid i))
$$

for $i, j \in\{1, \ldots, n\}$. Here, for $i, j \in\{1, \ldots, n\}, A(j \mid i)$ is the $(f-1) \times(f-1)$ matrix that is obtained from A by deleting the j-th row and the i-th column. For example, if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
\operatorname{adj}(A)=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

We have

$$
\operatorname{adj}(A) \cdot A=A \cdot \operatorname{adj}(A)=\operatorname{det}(A) \cdot 1_{f} .
$$

Thus,

$$
\begin{aligned}
A & =\operatorname{det}(A) \operatorname{adj}(A)^{-1}, \\
\operatorname{adj}(A) & =\operatorname{det}(A) \cdot A^{-1}, \\
A^{-1} & =\operatorname{det}(A)^{-1} \cdot \operatorname{adj}(A), \\
\operatorname{adj}(A)^{-1} & =\operatorname{det}(A)^{-1} \cdot A, \\
\operatorname{det}(\operatorname{adj}(A)) & =\operatorname{det}(A)^{f-1} .
\end{aligned}
$$

We let $\operatorname{Sym}(f, \mathbb{R})$ be the set of all symmetric elements of $\mathrm{M}(f, \mathbb{R})$. Let $A \in$ $\operatorname{Sym}(f, \mathbb{R})$. We say that A is positive-definite if the following two conditions hold:

1. If $x \in \mathbb{R}^{f}$, then $Q(x)=\frac{1}{2}^{t} x A x \geq 0$;
2. if $x \in \mathbb{R}^{f}$ and $Q(x)=\frac{1}{2}^{\mathrm{t}} x A x=0$, then $x=0$.

We will also write $A>0$ to mean that A is positive-definite. We say that A is positive semi-definite if the first condition holds; we will write $A \geq 0$ to indicate that A is positive semi-definite. Since A is symmetric with real entries, there exists a matrix $T \in \mathrm{GL}(f, \mathbb{R})$ such that ${ }^{\mathrm{t}} T T=T^{\mathrm{t}} T=1$ (so that $T^{-1}={ }^{\mathrm{t}} T$) and

$$
{ }^{\mathrm{t}} T A T=T^{-1} A T=\left[\begin{array}{lllll}
\lambda_{1} & & & & \tag{1.5}\\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
& & & \ddots & \\
& & & & \lambda_{f}
\end{array}\right]
$$

for some $\lambda_{1}, \ldots, \lambda_{f} \in \mathbb{R}$ (see the corollary on p. 314 of [9]). The symmetric matrix A is positive-definite if and only if $\lambda_{1}, \ldots, \lambda_{f}$ are all positive, and A is positive semi-definite if and only if $\lambda_{1}, \ldots, \lambda_{f}$ are all non-negative. It follows that if A is positive-definite, then $\operatorname{det}(A)>0$, and if A is positive semi-definite, then $\operatorname{det}(A) \geq 0$. Assume that A is positive semi-definite, and that T and $\lambda_{1}, \ldots, \lambda_{f}$ are as in (1.5); in particular, $\lambda_{1}, \ldots, \lambda_{f}$ are all non-negative real numbers. Let

$$
B=T\left[\begin{array}{ccccc}
\sqrt{\lambda_{1}} & & & & \tag{1.6}\\
& \sqrt{\lambda_{2}} & & & \\
& & \sqrt{\lambda_{3}} & & \\
& & & \ddots & \\
& & & & \sqrt{\lambda_{f}}
\end{array}\right] T^{-1} .
$$

The matrix B is evidently symmetric and positive semi-definite, and we have

$$
\begin{equation*}
A={ }^{\mathrm{t}} B B=B B=B^{2} . \tag{1.7}
\end{equation*}
$$

Also, it is clear that if A is positive-definite, then so is B.

Lemma 1.5.3. Assume f is even. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix. The matrix $\operatorname{adj}(A)$ is a positive-definite even integral symmetric matrix.

Proof. We have $\operatorname{adj}(A)=\operatorname{det}(A) \cdot A^{-1}$. Therefore, ${ }^{\mathrm{t}} \operatorname{adj}(A)=\operatorname{det}(A) \cdot{ }^{\mathrm{t}}\left(A^{-1}\right)=$ $\operatorname{det}(A) \cdot\left({ }^{\mathrm{t}} A\right)^{-1}=\operatorname{det}(A) \cdot A^{-1}=\operatorname{adj}(A)$, so that $\operatorname{adj}(A)$ is symmetric. To see that $\operatorname{adj}(A)$ is positive-definite, let $T \in \mathrm{GL}(f, \mathbb{R})$ and $\lambda_{1}, \ldots, \lambda_{f}$ be positive real numbers such that (1.5) holds. Then

$$
\begin{aligned}
{ }^{\mathrm{t}}\left({ }^{\mathrm{t}} T\right) \operatorname{adj}(A)^{\mathrm{t}} T & =\operatorname{det}(A) \cdot T A^{-1} \mathrm{t}^{\mathrm{t}} T \\
& =\left[\begin{array}{llll}
\operatorname{det}(A) \lambda_{1}^{-1} & & & \\
& \operatorname{det}(A) \lambda_{2}^{-1} & & \\
& & \operatorname{det}(A) \lambda_{3}^{-1} & \\
\\
& & \ddots & \\
& & & \operatorname{det}(A) \lambda_{f}^{-1}
\end{array}\right]
\end{aligned}
$$

This equality implies that $\operatorname{adj}(A)$ is positive-definite. It is clear that $\operatorname{adj}(A)$ has integral entries. To see that $\operatorname{adj}(A)$ is even, let $i \in\{1, \ldots, f\}$. Then $\operatorname{adj}(A)_{i, i}=$ $\operatorname{det}(A(i \mid i))$. The matrix $A(i \mid i)$ is an $(f-1) \times(f-1)$ even integral symmetric matrix. Since $f-1$ is odd, by Lemma 1.5 .2 we have $\operatorname{det}(A(i \mid i)) \equiv 0(\bmod 2)$. Thus, $\operatorname{adj}(A)_{i, i}$ is even.

Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even integral symmetric matrix with $\operatorname{det}(A)$ non-zero. The set of all integers N such that $N A^{-1}$ is an even integral symmetric matrix is an ideal of \mathbb{Z}. We define the level of A, and its associated quadratic form, to be the unique positive generator $N(A)$ of this ideal. Evidently, the level $N(A)$ of A is smallest positive integer N such that $N A^{-1}$ is an even integral symmetric matrix.

Proposition 1.5.4. Assume f is even. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix. Define

$$
G=\operatorname{gcd}\left(\left\{\begin{array}{ccccc}
\frac{\operatorname{adj}(A)_{1,1}}{2} & \operatorname{adj}(A)_{1,2} & \operatorname{adj}(A)_{1,3} & \cdots & \operatorname{adj}(A)_{1, f} \\
\operatorname{adj}(A)_{1,2} & \frac{\operatorname{adj}(A)_{2,2}}{2} & \operatorname{adj}(A)_{2,3} & \cdots & \operatorname{adj}(A)_{2, f} \\
\operatorname{adj}(A)_{1,3} & \operatorname{adj}(A)_{2,3} & \frac{\operatorname{adj}(A)_{3,3}}{2} & \cdots & \operatorname{adj}(A)_{3, f} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\operatorname{adj}(A)_{1, f} & \operatorname{adj}(A)_{2, f} & \operatorname{adj}(A)_{3, f} & \cdots & \frac{\operatorname{adj}(A)_{f, f}}{2}
\end{array}\right\}\right)
$$

Then G divides $\operatorname{det}(A)$, and the level of A is

$$
N=\frac{\operatorname{det}(A)}{G}
$$

The positive integers N and $\operatorname{det}(A)$ have the same set of prime divisors.

Proof. The integer G divides every entry of $\operatorname{adj}(A)$. Therefore, G^{f} divides $\operatorname{det}(\operatorname{adj}(A))$. Since $\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{f-1}, G^{f}$ divides $\operatorname{det}(A)^{f-1}$. This implies that G divides $\operatorname{det}(A)$. Now by definition, G is the largest integer g such that

$$
\frac{1}{g} \operatorname{adj}(A) \quad \text { is even. }
$$

Since $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$, we therefore have that

$$
\frac{\operatorname{det}(A)}{G} A^{-1} \quad \text { is even. }
$$

This implies that $\operatorname{det}(A) G^{-1}$ is in the ideal generated by the level N of A, i.e., N divides $\operatorname{det}(A) G^{-1}$; consequently,

$$
G N \leq \operatorname{det}(A)
$$

On the other hand, $N A^{-1}$ is even. Using $A^{-1}=\operatorname{det}(A)^{-1} \operatorname{adj}(A)$, this is equivalent to

$$
\frac{1}{\operatorname{det}(A) N^{-1}} \operatorname{adj}(A) \quad \text { is even. }
$$

Since $\operatorname{det}(A) N^{-1}$ is a positive integer (we have already proven that N divides $\operatorname{det}(A)$), the definition of G implies that $G \geq \operatorname{det}(A) N^{-1}$, or equivalently,

$$
G N \geq \operatorname{det}(A)
$$

We now conclude that $G N=\operatorname{det}(A)$, as desired.
To see that N and $\operatorname{det}(A)$ have the same set of prime divisors, we first note that (since N divides $\operatorname{det}(A)$) every prime divisor of N is a prime divisor of $\operatorname{det}(A)$. Let p be a prime divisor of $\operatorname{det}(A)$. If p does not divide G, then p divides N (because $N G=\operatorname{det}(A)$). Assume that p divides G. Write $\operatorname{det}(A)=p^{j} d$ and $G=p^{k} g$ with k and j positive integers and d and g integers such that $(d, p)=(g, p)=1$. From above, G^{f} divides $\operatorname{det}(A)^{f-1}$. This implies that $(f-1) j \geq f k$. Therefore,

$$
j \geq \frac{f}{f-1} k>k
$$

This means that p divides $N=\operatorname{det}(A) / G$.
Corollary 1.5.5. Let f be an even positive integer, let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix and let N be the level of A. Then $N=1$ if and only if $\operatorname{det}(A)=1$.

Proof. By Proposition 1.5.4, N and $\operatorname{det}(A)$ have the same set of prime divisors. It follows that $N=1$ if and only if $\operatorname{det}(A)=1$.

Corollary 1.5.6. Let A be a 2×2 even integral symmetric matrix, so that

$$
A=\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]
$$

where a, b and c are integers. Then A is positive-definite if and only if $\operatorname{det}(A)=$ $4 a c-b^{2}>0, a>0$, and $c>0$. Assume that A is positive-definite. The level of A is

$$
N=\frac{4 a c-b^{2}}{\operatorname{gcd}(a, b, c)}
$$

Proof. Assume that A is positive-definite. We have already pointed out that $\operatorname{det}(A)>0$. Now

$$
\begin{aligned}
& Q(1,0)=\frac{1}{2}{ }^{\mathrm{t}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=a \\
& Q(0,1)=\frac{1}{2}
\end{aligned}{ }^{\mathrm{t}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=c .
$$

Since A is positive-definite, these numbers are positive. Assume that $\operatorname{det}(A)=$ $4 a c-b^{2}>0, a>0$, and $c>0$. For $x, y \in \mathbb{R}$ we have

$$
\begin{aligned}
Q(x, y) & =a x^{2}+b x y+c y^{2} \\
& =\frac{1}{a}\left(a x+\frac{b}{2} y\right)^{2}+\frac{4 a c-b^{2}}{4 a} y^{2} \\
& =\frac{1}{a}\left(a x+\frac{b}{2} y\right)^{2}+\frac{\operatorname{det}(A)}{4 a} y^{2}
\end{aligned}
$$

Clearly, we have $Q(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. Assume that $x, y \in \mathbb{R}$ are such that $Q(x, y)=0$. Then since $\operatorname{det}(A)>0$ and $a>0$ we must have $a x+\frac{b}{2} y=0$ and $y=0$; hence also $x=0$. It follows that A is positive-definite. The final assertion follows from

$$
\operatorname{adj}(A)=\left[\begin{array}{cc}
2 c & -b \\
-b & 2 a
\end{array}\right]
$$

and Proposition 1.5.4.
Corollary 1.5.7. Let f be an even positive integer, let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix and let N be the level of A. Let c be a positive integer. Then the level of the positive-definite even integral symmetric matrix $c A$ is $c N$.

Proof. This follows from the formula for level from Proposition 1.5.4.
Lemma 1.5.8. Let f be an even positive integer, let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positivedefinite even integral symmetric matrix and let N be the level of A. Define the integral quadratic form $Q(x)$ by $Q(x)=\frac{1}{2}{ }^{\mathrm{t}} x A x$. Let $h \in \mathbb{Z}^{f}$ be such that $A h \equiv 0(\bmod N)$. Then $Q(h) \equiv 0(\bmod N)$. Also, if $n \in \mathbb{Z}^{f}$ is such that $n \equiv h(\bmod N)$, then $Q(n) \equiv Q(h)\left(\bmod N^{2}\right)$ and $Q(n) \equiv 0(\bmod N)$.

Proof. Since $A h \equiv 0(\bmod N)$, there exists $m \in \mathbb{Z}^{f}$ such that $A h=N m$. We have

$$
Q(q)=\frac{1}{2}^{\mathrm{t}} h A h
$$

$$
\begin{aligned}
& =\frac{1}{2}^{\mathrm{t}}(A h) A^{-1}(A h) \\
& =N \cdot \frac{1}{2}{ }^{\mathrm{t}} m\left(N A^{-1}\right) m
\end{aligned}
$$

By the definition of $N, N A^{-1}$ is an even symmetric integral matrix. Therefore, by Lemma 1.5.1, ${ }^{\mathrm{t}} m\left(N A^{-1}\right) m$ is an even integer. Hence $\frac{1}{2}^{\mathrm{t}} m\left(N A^{-1}\right) m$ is an integer, so that $Q(h) \equiv 0(\bmod N)$. Next, let $n \in \mathbb{Z}^{f^{2}}$ be such that $n \equiv$ $h(\bmod N)$. Let $b \in \mathbb{Z}^{f}$ be such that $n=h+N b$. Then

$$
\begin{aligned}
2 Q(n) & ={ }^{\mathrm{t}}(h+N b) A(h+N b) \\
& =\left({ }^{\mathrm{t}} h+N^{\mathrm{t}} b\right) A(h+N b) \\
& ={ }^{\mathrm{t}} h A h+2 N^{\mathrm{t}} b A h+N^{2}{ }^{\mathrm{t}} b A b \\
& \equiv{ }^{\mathrm{t}} h A h\left(\bmod 2 N^{2}\right) \\
& \equiv 2 Q(h)\left(\bmod 2 N^{2}\right) .
\end{aligned}
$$

Here ${ }^{\mathrm{t}} b A h \equiv 0(\bmod N)$ because $A h \equiv 0(\bmod N)$ and ${ }^{\mathrm{t}} b A b \equiv 0(\bmod 2)$ because A is even. It follows that $Q(n) \equiv Q(h)\left(\bmod N^{2}\right)$. Finally, since $Q(h) \equiv 0(\bmod N)$ and $Q(n) \equiv Q(h)\left(\bmod N^{2}\right)$, we have $Q(n) \equiv 0(\bmod N)$.

1.6 The upper half-plane

Let $\mathrm{GL}(2, \mathbb{R})^{+}$be the subgroup of $\sigma \in \mathrm{GL}(2, \mathbb{R})$ such that $\operatorname{det}(\sigma)>0$. We define and action of $\mathrm{GL}(2, \mathbb{R})^{+}$on the upper half-plane \mathbb{H}_{1} by

$$
\sigma \cdot z=\frac{a z+b}{c z+d}
$$

for $z \in \mathbb{H}_{1}$ and $\sigma \in \mathrm{GL}(2, \mathbb{R})^{+}$such that

$$
\sigma=\left[\begin{array}{ll}
a & b \tag{1.8}\\
c & d
\end{array}\right]
$$

We define the cocycle function

$$
j: \mathrm{GL}(2, \mathbb{R})^{+} \times \mathbb{H}_{1} \longrightarrow \mathbb{C}
$$

by

$$
j(\sigma, z)=c z+d
$$

for $z \in \mathbb{H}_{1}$ and $\sigma \in \operatorname{GL}(2, \mathbb{R})^{+}$as in (1.8). We have

$$
j(\alpha \beta, z)=j(\alpha, \beta \cdot z) j(\beta, z)
$$

for $\alpha, \beta \in \mathrm{GL}(2, \mathbb{R})^{+}$and $z \in \mathbb{H}_{1}$. Let $F: \mathbb{H}_{1} \rightarrow \mathbb{C}$ be a function, and let ℓ be an integer. Let $\sigma \in \operatorname{GL}(2, \mathbb{R})^{+}$. We define

$$
\left.F\right|_{\ell}: \mathbb{H}_{1} \longrightarrow \mathbb{C}
$$

by the formula

$$
\begin{aligned}
\left(\left.F\right|_{\ell} \sigma\right)(z) & =\operatorname{det}(\sigma)^{\ell / 2}(c z+d)^{-\ell} F\left(\frac{a z+b}{c z+d}\right) \\
& =\operatorname{det}(\sigma)^{\ell / 2} j(\sigma, z)^{-\ell} F(\sigma \cdot z)
\end{aligned}
$$

for $z \in \mathbb{H}_{1}$. We have

$$
\left.\left(\left.F\right|_{\ell} \alpha\right)\right|_{\ell} \beta=\left.F\right|_{\ell}(\alpha \beta)
$$

for $\alpha, \beta \in \mathrm{GL}(2, \mathbb{R})^{+}$.

1.7 Congruence subgroups

Let N be a positive integer. The principal congruence subgroup of level N is defined to be

$$
\Gamma(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z}): a \equiv d \equiv 1(\bmod N), b \equiv c \equiv 0(\bmod N)\right\}
$$

The Hecke congruence subgroup of level N is defined to be

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z}): c \equiv 0(\bmod N)\right\}
$$

If Γ is a subgroup of $\mathrm{SL}(2, \mathbb{Z})$, then we say that Γ is a congruence subgroup of $\mathrm{SL}(2, \mathbb{Z})$ of $\mathrm{SL}(2, \mathbb{Z})$ if there exists a positive integer N such that $\Gamma(N) \subset \Gamma$.

1.8 Modular forms

Let N be a positive integer, and let $R>0$ be positive number. Let

$$
H(N, R)=\left\{z \in \mathbb{H}_{1}: \operatorname{Im}(z)>\frac{N \log (1 / R)}{2 \pi}\right\}
$$

and

$$
D(R)=\{q \in \mathbb{C}:|q|<R\}
$$

The function

$$
H(N, R) \longrightarrow D(R)
$$

defined by

$$
z \mapsto q(z)=e^{2 \pi i z / N}
$$

is well-defined. We have $q(z+N)=q(z)$ for $z \in H(N, R)$.
Lemma 1.8.1. Let $f: \mathbb{H}_{1} \rightarrow \mathbb{C}$ be an analytic function, and let N be a positive integer such that $f(z+N)=f(z)$ for $z \in \mathbb{H}_{1}$. Assume that there exists a real number such that $0<R<1$ and a complex power series

$$
\sum_{n=0}^{\infty} a(n) q^{n}
$$

that converges for $q \in D(R)$ such that

$$
f(z)=\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z / N}
$$

for $z \in H(N, R)$. If M is another positive integer such that $f(z+M)=f(z)$ for $z \in \mathbb{H}_{1}$, then there exists a real number such that $0<T<1$ and a complex power series

$$
\sum_{k=0}^{\infty} b(k) q^{k}
$$

that converges for $q \in D(T)$ such that

$$
\left(\left.F\right|_{k} \sigma\right)(z)=\sum_{k=0}^{\infty} b(k) e^{2 \pi i k z / M}
$$

for $z \in H(M, T)$.
Proof. For $z \in H(N, R)$,

$$
\begin{aligned}
f(z) & =f(z+M) \\
& =\sum_{n=0}^{\infty} a(n) e^{2 \pi i n(z+M) / N} \\
\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z / N} & =\sum_{n=0}^{\infty} a(n) e^{2 \pi i n M / N} \cdot e^{2 \pi i n z / N} .
\end{aligned}
$$

It follows that

$$
a(n)=a(n) e^{2 \pi i n M / N}
$$

for all non-negative integers n. Hence, for every non-negative integer n, if $a(n) \neq 0$, then $n M / N$ is an integer, or equivalently, if $n M / N$ is not an integer, then $a(n)=0$. Let $z \in H(N, R)$. Then

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z / N} \\
& =\sum_{n=0}^{\infty} a(n) e^{2 \pi i(n M / N) z / M} \\
& =\sum_{k=0}^{\infty} b(k)\left(e^{2 \pi i z / M}\right)^{k}
\end{aligned}
$$

where

$$
b(k)= \begin{cases}a(k N / M) & \text { if } k N / M \text { is an integer } \\ 0 & \text { if } k N / M \text { is not an integer }\end{cases}
$$

Because the series $\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z / N}$ converges for $z \in H(N, R)$, the above equalities imply that the power series $\sum_{k=0}^{\infty} b(k) q^{k}$ converges for $q \in D\left(R^{N / M}\right)$. Since $H\left(M, R^{N / M}\right)=H(N, R)$, the proof is complete.

Definition 1.8.2. Let k be a non-negative integer, and let Γ be a congruence subgroup of $\operatorname{SL}(2, \mathbb{Z})$. Let $F: \mathbb{H}_{1} \rightarrow \mathbb{C}$ be a function on the upper-half plane \mathbb{H}_{1}. We say that F is a modular form of weight k with respect to Γ if the following conditions hold:

1. For all $\alpha \in \Gamma$ we have

$$
\left.f\right|_{k} \alpha=f
$$

2. The function F is analytic on \mathbb{H}_{1}.
3. If $\sigma \in \mathrm{SL}(2, \mathbb{Z})$, then there exists a positive integer N such that $\Gamma(N) \subset \Gamma$, a real number R such that $0<R<1$, and a complex power series

$$
\sum_{n=0}^{\infty} a(n) q^{n}
$$

that converges for $q \in D(R)$, such that

$$
\left(\left.F\right|_{k} \sigma\right)(z)=\sum_{n=0}^{\infty} a(n) q(z)^{n}=\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z / N}
$$

for $z \in H(N, R)$.
The third condition of Definition 1.8.2 is often summarized by saying that F is holomorphic at the cusps of Γ. We say that F is a cusp form if the three conditions in the definition of a modular form hold, and in addition it is always the case that $a(0)=0$; this additional condition is summarized by saying that F vanishes at the cusps of Γ. The set of modular forms of weight k with respect to Γ is a vector space over \mathbb{C}, which we denote by $M_{k}(\Gamma)$. The set of cusp forms of weight k with respect to Γ is a subspace of $M_{k}(\Gamma)$, and will be denoted by $S_{k}(\Gamma)$.

1.9 The symplectic group

Let R be a commutative ring with identity 1 , and let n be a positive integer. As usual, we define

$$
\operatorname{GL}(2 n, R)=\left\{g \in \mathrm{M}(2 n, R): \operatorname{det}(g) \in R^{\times}\right\}
$$

Then $\mathrm{GL}(2 n, R)$ is a group under multiplication of matrices; the identity of $\mathrm{GL}(2 n, R)$ is the $2 n \times 2 n$ identity matrix $1=1_{2 n}$. Let

$$
J=\left[\begin{array}{ll}
& 1_{n} \\
-1_{n} &
\end{array}\right]
$$

We note that

$$
J^{2}=-1, \quad J^{-1}=-J
$$

We define

$$
\mathrm{Sp}(2 n, R)=\left\{g \in \mathrm{GL}(2 n, R):{ }^{\mathrm{t}} g J g=J\right\}
$$

We refer to $\operatorname{Sp}(2 n, R)$ as the symplectic group of degree n over R.

Lemma 1.9.1. If R is a commutative ring with identity and n is a positive integer, then $\mathrm{Sp}(2 n, R)$ is a subgroup of $\mathrm{GL}(2 n, R)$. If $g \in \operatorname{Sp}(2 n, R)$, then ${ }^{\mathrm{t}} g \in \operatorname{Sp}(2 n, R)$.

Proof. Evidently, $1 \in \operatorname{Sp}(2 n, R)$. Also, it is easy to see that if $g, h \in \operatorname{Sp}(2 n, R)$, then $g h \in \operatorname{Sp}(2 n, R)$. To complete the proof that $\operatorname{Sp}(2 n, R)$ is a subgroup of $\mathrm{GL}(2 n, R)$ it will suffice to prove that if $g \in \operatorname{Sp}(2 n, R)$, then $g^{-1} \in \operatorname{Sp}(2 n, R)$. Let $g \in \operatorname{Sp}(n, R)$. Then ${ }^{\mathrm{t}} g J g=J$. This implies that $g^{-1}=J^{-1}{ }^{\mathrm{t}} g J=-J^{\mathrm{t}} g J$. Now

$$
\begin{aligned}
{ }^{\mathrm{t}}\left(g^{-1}\right) J g^{-1} & ={ }^{\mathrm{t}} J g{ }^{\mathrm{t}} J J J^{\mathrm{t}} g J \\
& =J g J J J{ }^{\mathrm{t}} g J \\
& =-J g J{ }^{\mathrm{t}} g J \\
& =-J g J \cdot{ }^{\mathrm{t}} g J g \cdot g^{-1} \\
& =-J g J J g^{-1} \\
& =J .
\end{aligned}
$$

Next, suppose that $g \in \operatorname{Sp}(2 n, R)$. Then

$$
\begin{aligned}
g J^{\mathrm{t}} g & =g J^{\mathrm{t}} g J g g^{-1} J^{-1} \\
& =g J J g^{-1} J^{-1} \\
& =-J^{-1} \\
& =J
\end{aligned}
$$

This implies that $g \in \operatorname{Sp}(2 n, R)$.
Lemma 1.9.2. Let R be a commutative ring with identity and let n be a positive integer. Let

$$
g=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \mathrm{GL}(2 n, R)
$$

Then $g \in \operatorname{Sp}(2 n, R)$ if and only if

$$
{ }^{\mathrm{t}} A C={ }^{\mathrm{t}} C A, \quad{ }^{\mathrm{t}} B D={ }^{\mathrm{t}} D B, \quad{ }^{\mathrm{t}} A D-{ }^{\mathrm{t}} C B=1
$$

If $g \in \operatorname{Sp}(2 n, R)$, then

$$
g^{-1}=\left[\begin{array}{cc}
{ }^{\mathrm{t}} D & -{ }^{\mathrm{t}} B \\
-{ }^{\mathrm{t}} C & { }^{\mathrm{t}} A
\end{array}\right]
$$

and

$$
A^{\mathrm{t}} B=B^{\mathrm{t}} A, \quad C^{\mathrm{t}} D=D^{\mathrm{t}} C, \quad A^{\mathrm{t}} D-B^{\mathrm{t}} C=1
$$

Proof. The first assertion follows by direct computations from the definition of $\operatorname{Sp}(2 n, R)$. To prove the second assertion, assume that $g \in \operatorname{Sp}(2 n, R)$. Then

$$
\left[\begin{array}{cc}
{ }^{\mathrm{t}} D & -{ }^{\mathrm{t}} B \\
-{ }^{\mathrm{t}} C & { }^{\mathrm{t}} A
\end{array}\right]\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
{ }^{\mathrm{t}} D A-{ }^{\mathrm{t}} B C & { }^{\mathrm{t}} D B-{ }^{\mathrm{t}} B D \\
{ }^{\mathrm{t}} A C-{ }^{\mathrm{t}} C A & { }^{\mathrm{t}} A D-{ }^{\mathrm{t}} C B
\end{array}\right]=1
$$

by the first assertion. It follows that g^{-1} has the indicated form. But we also have

$$
1=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
{ }^{\mathrm{t}} D & -{ }^{\mathrm{t}} B \\
-{ }^{\mathrm{t}} C & { }^{\mathrm{t}} A
\end{array}\right]=\left[\begin{array}{cc}
A{ }^{\mathrm{t}} D-B{ }^{\mathrm{t}} C & B{ }^{\mathrm{t}} A-A{ }^{\mathrm{t}} B \\
C{ }^{\mathrm{t}} D-D{ }^{\mathrm{t}} C & D^{\mathrm{t}} A-C
\end{array}{ }^{\mathrm{t}} B .\right]
$$

This implies the remaining claims.
Lemma 1.9.3. Let R be a commutative ring with identity. Then $\operatorname{Sp}(2, R)=$ $\mathrm{SL}(2, R)$.

Proof. Let $g \in \mathrm{GL}(2, R)$, and write

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

for some $a, b, c, d \in R$. A calculations shows that

$$
{ }^{\mathrm{t}} g J g=\left[\begin{array}{ll}
& a d-b c \\
-(a d-b c) &
\end{array}\right]=\operatorname{det}(g) \cdot J
$$

It follows that $g \in \operatorname{Sp}(2, R)$ if and only if $\operatorname{det}(g)=1$, i.e., $g \in \operatorname{SL}(2, R)$.
Lemma 1.9.4. Let R be a commutative ring with identity, and let n be a positive integer. The following matrices are contained in $\operatorname{Sp}(2 n, R)$:

$$
\begin{aligned}
& J=\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], \quad\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right] \\
& {\left[\begin{array}{cc}
A & \\
& { }^{\mathrm{t}} A^{-1}
\end{array}\right], \quad A \in \mathrm{GL}(n, R)} \\
& {\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right], \quad X \in \mathrm{M}(n, R),{ }^{\mathrm{t}} X=X} \\
& {\left[\begin{array}{cc}
1 & \\
Y & 1
\end{array}\right], \quad Y \in \mathrm{M}(n, R),{ }^{\mathrm{t}} Y=Y}
\end{aligned}
$$

Proof. These assertions follow by direct computations.
Lemma 1.9.5. Let R be a commutative ring with identity, and let n be a positive integer. The sets

$$
\begin{aligned}
& P=\left\{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \mathrm{Sp}(2 n, R): C=0\right\}, \\
& M
\end{aligned}=\left\{\left[\begin{array}{ll}
A & \\
& { }^{\mathrm{t}} A^{-1}
\end{array}\right]: A \in \mathrm{GL}(n, R)\right\}, \quad \begin{array}{ll}
\\
U & =\left\{\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right]: X \in \mathrm{M}(n, R),{ }^{\mathrm{t}} X=X\right\}
\end{array}
$$

are subgroups of $\operatorname{Sp}(2 n, R)$. The subgroup M normalizes U, and $P=M U=$ $U M$.

Proof. These assertions follow by direct computations.
Let R be a commutative ring with identity. Assume further that R is a domain. We say that R is Euclidean domain if there exists a function $|\cdot|$: $R \rightarrow \mathbb{Z}$ satisfying the following three properties:

1. If $a \in R$, then $|a| \geq 0$.
2. If $a \in R$, then $|a|=0$ if and only if $a=0$.
3. If $a, b \in R$ and $b \neq 0$, then there exist $x, y \in R$ such that $a=b x+y$ with $|y|<|b|$.

Any field F is an Euclidean domain with the definition $|a|=1$ for $a \in F$ with $a \neq 0$ and $|0|=0$. Also, \mathbb{Z} is an Euclidean domain with the usual absolute value.

Theorem 1.9.6. Let R be an Euclidean domain, and let n be a positive integer. The group $\mathrm{Sp}(2 n, R)$ is generated by the elements

$$
J=\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], \quad\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right]
$$

for $X \in \mathrm{M}(n, R)$ with $^{\mathrm{t}} X=X$.
Proof. See Satz A 5.4 on page 326 of [5].
Corollary 1.9.7. Let R be an Euclidean domain, and let n be a positive integer. If $g \in \operatorname{Sp}(2 n, R)$, then $\operatorname{det}(g)=1$.

Proof. This follows from Theorem 1.9.6.
Theorem 1.9.8. Let F be a field, and let n be a positive integer. Assume that the pair $(2 n, F)$ is not $(2, \mathbb{Z} / 2 \mathbb{Z}),(2, \mathbb{Z} / 3 \mathbb{Z})$ or $(4, \mathbb{Z} / 2 \mathbb{Z})$. Then the only normal subgroups of $\operatorname{Sp}(2 n, F)$ are $\{1\},\{1,-1\}$, and $\operatorname{Sp}(2 n, F)$.

Proof. See Theorem 5.1 of [3].

1.10 The Siegel upper half-space

Let n be a positive integer. We define \mathbb{H}_{n} to be the subset of $\mathrm{M}(n, \mathbb{C})$ consisting of the matrices $Z=X+i Y$ with $X, Y \in \mathrm{M}(n, \mathbb{R})$ such that ${ }^{\mathrm{t}} X=X,{ }^{\mathrm{t}} Y=Y$, and Y is positive-definite. We refer to \mathbb{H}_{n} as the Siegel upper half-space of degree n.

Lemma 1.10.1. Let n be a positive integer. The set $\operatorname{Sym}(n, \mathbb{R})^{+}$is open in $\operatorname{Sym}(n, \mathbb{R})$.

Proof. For $1 \leq k \leq n$ and $V \in \operatorname{Sym}(n, \mathbb{R})$, let $V(k \times k)=\left(V_{i j}\right)_{1 \leq i, j \leq k}$. An element $V \in \operatorname{Sym}(n, \mathbb{R})$ is positive-definite if and only if $\operatorname{det} V(k \times k)>0$ for $1 \leq k \leq n$. Consider the function

$$
f: \operatorname{Sym}(n, \mathbb{R}) \longrightarrow \mathbb{R}^{n}, \quad f(V)=(\operatorname{det} V(1 \times 1), \ldots, \operatorname{det} V(n \times n))
$$

The function f is continuous, and therefore $f^{-1}\left(\left(\mathbb{R}_{>0}\right)^{n}\right)$ is an open subset of $\operatorname{Sym}(n, \mathbb{R})$; since $f^{-1}\left(\left(\mathbb{R}_{>0}\right)^{n}\right)$ is exactly $\operatorname{Sym}(n, \mathbb{R})^{+}$, the proof is complete.
Proposition 1.10.2. Let n be a positive integer. The set \mathbb{H}_{n} is an open subset of $\operatorname{Sym}(n, \mathbb{C})$.

Proof. There is a natural homeomorphism $\operatorname{Sym}(n, \mathbb{C}) \cong \operatorname{Sym}(n, \mathbb{R}) \times \operatorname{Sym}(n, \mathbb{R})$. Under this homeomorphism, $\mathbb{H}_{n} \cong \operatorname{Sym}(n, \mathbb{R}) \times \operatorname{Sym}(n, \mathbb{R})^{+}$. By Lemma 1.10.1, the set $\operatorname{Sym}(n, \mathbb{R})^{+}$is open in $\operatorname{Sym}(n, \mathbb{R})$. It follows that \mathbb{H}_{n} is an open subset of $\operatorname{Sym}(n, \mathbb{C})$.

Proposition 1.10.3. Let n be a positive integer. Let $Z_{1}, Z_{2} \in \mathbb{H}_{n}$. Then $(1-t) Z_{1}+t Z_{2} \in \mathbb{H}_{n}$ for all $t \in[0,1]$. Therefore, \mathbb{H}_{n} is convex, and in particular, connected.

Proof. Write $Z_{1}=U_{1}+i V_{1}$ and $Z_{2}=U_{2}+i V_{2}$. Then $(1-t) Z_{1}+t Z_{2}=$ $(1-t) U_{1}+t U_{2}+i\left((1-t) V_{1}+t V_{2}\right)$ for $t \in[0,1]$. Since $(1-t) U_{1}+t U_{2} \in$ $\operatorname{Sym}(n, \mathbb{R})$ for $t \in[0,1]$, to prove the proposition it will suffice to prove that $f(t)=(1-t) V_{1}+t V_{2} \in \operatorname{Sym}(n, \mathbb{R})^{+}$for $t \in[0,1]$. Write $V_{1}=W^{2}$ where $W \in \operatorname{Sym}(n, \mathbb{R})^{+}($see $(1.7))$. Then $W^{-1} f(t) W^{-1}=(1-t) \cdot 1_{n}+t W^{-1} V_{2} W^{-1}$ for $t \in[0,1]$. We have $W^{-1} V_{2} W^{-1} \in \operatorname{Sym}(n, \mathbb{R})^{+}$, and for each $t \in[0,1]$, $W^{-1} f(t) W^{-1} \in \operatorname{Sym}(n, \mathbb{R})^{+}$if and only if $f(t) \in \operatorname{Sym}(n, \mathbb{R})$. It follows that we may assume that $V_{1}=1$. Let $t \in[0,1]$; we need to prove that $A=f(t)$ is positive-definite. It is clear that A is positive semi-definite. If $B \in \mathrm{M}(n, \mathbb{R})$, and $k \in\{1, \ldots, n\}$, then we define $B(k)=\left(B_{i j}\right)_{1 \leq i, j \leq k}$. Since A is positive semidefinite, by Sylvester's Criterion for positive semi-definite matrices, we have $\operatorname{det}(A(k)) \geq 0$ for $k \in\{1, \ldots, n\}$; by Sylvester's Criterion for positive-definite matrices, we need to prove that $\operatorname{det}(A(k))>0$ for $k \in\{1, \ldots, n\}$. Assume that there exists $k \in\{1, \ldots, n\}$ such that $\operatorname{det}(A(k))=0$. Then

$$
\operatorname{det}\left((1-t) 1_{k}+V_{2}(k)\right)=0
$$

so that

$$
\operatorname{det}\left((t-1) 1_{k}-V_{2}(k)\right)=0
$$

It follows that $t-1$ is an eigenvalue for $V_{2}(k)$; this implies that $t-1$ is an eigenvalue for V_{2}. This is a contradiction since all the eigenvalues of V_{2} are positive, and $t-1 \leq 0$.

Corollary 1.10.4. Let n be a positive integer. The topological space \mathbb{H}_{n} is simply connected.

Lemma 1.10.5. Let k be positive integer. Let $f: \mathbb{H}_{k} \rightarrow \mathbb{C}$ be an analytic function. If $f(i U)=0$ for all U in an open subset S of $\operatorname{Sym}(k, \mathbb{R})^{+}$, then $f=0$.

Proof. By Proposition 1.10.3, the open subset \mathbb{H}_{k} of $\operatorname{Sym}(k, \mathbb{C})$ is connected. By Proposition 1 on page 3 of [19] it suffices to prove that f vanishes on a non-empty open subset of \mathbb{H}_{k}. Let U be any element of S. Since f is analytic at $i U$ and \mathbb{H}_{k} is an open subset of $\operatorname{Sym}(k, \mathbb{C})$, there exists $\epsilon>0$ such that

$$
D=\left\{Z \in \operatorname{Sym}(n, \mathbb{C}):\left|Z_{i j}-i U_{i j}\right|<\epsilon, 1 \leq i \leq j \leq k\right\} \subset \mathbb{H}_{k}
$$

and a power series

$$
\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{k}} c_{\alpha}(Z-i U)^{\alpha}
$$

that converges absolutely and uniformly on compact subsets of D, such that this power series converges to $f(Z)$ for $Z \in D$. Evidently, $i U \in D$. Define

$$
D^{\prime}=\left\{Y \in \operatorname{Sym}(n, \mathbb{R}):\left|Y_{i j}-U_{i j}\right|<\epsilon, 1 \leq i \leq j \leq k\right\}
$$

Then $U \in D^{\prime}$. We may assume that $D^{\prime} \subset S$. If $Y \in D^{\prime}$, then $i Y \in D$. Define $h: D^{\prime} \rightarrow \mathbb{C}$ by $h(Y)=f(i Y)$. We have

$$
h(Y)=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{k}} c_{\alpha}(i Y-i U)^{\alpha}=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{k}} i^{|\alpha|} c_{\alpha}(Y-U)^{\alpha}
$$

for $Y \in D^{\prime}$. The function h is C^{∞}, and we have

$$
i^{|\alpha|} c_{\alpha}=\frac{1}{\alpha!}\left(D^{\alpha} h\right)(U)
$$

Since by assumption $f(i Y)=0$ for $Y \in S$, we have $h=0$. This implies that $c_{\alpha}=0$ for $\alpha \in \mathbb{Z}_{\geq 0}^{k}$, which in turn implies that f vanishes on the open subset $D \subset \mathbb{H}_{k}$.

Lemma 1.10.6. Let n be a positive integer. Let

$$
g=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \mathrm{Sp}(2 n, \mathbb{R})
$$

and $Z \in \mathbb{H}_{n}$. Then $C Z+D$ is invertible, and

$$
(A Z+B)(C Z+D)^{-1} \in \mathbb{H}_{n}
$$

Proof. We follow the argument from [13]. Write $Z=X+i Y$ with $X, Y \in$ $\mathrm{M}(n, \mathbb{R})$. Define

$$
P=A Z+B, \quad Q=C Z+D
$$

We will first prove that Q is invertible. Assume that $v \in \mathbb{C}^{n}$ is such that $Q v=0$; we need to prove that $v=0$. We then have:

$$
\begin{aligned}
{ }^{\mathrm{t}} P \bar{Q}-{ }^{\mathrm{t}} Q \bar{P} & =\left(Z^{\mathrm{t}} A+{ }^{\mathrm{t}} B\right)(C \bar{Z}+D)-\left(Z^{\mathrm{t}} C+{ }^{\mathrm{t}} D\right)(A \bar{Z}+B) \\
& =Z^{\mathrm{t}} A C \bar{Z}+Z^{\mathrm{t}} A D+{ }^{\mathrm{t}} B C \bar{Z}+{ }^{\mathrm{t}} B D
\end{aligned}
$$

$$
\begin{align*}
& -Z^{\mathrm{t}} C A \bar{Z}-Z{ }^{\mathrm{t}} C B-{ }^{\mathrm{t}} D A \bar{Z}-{ }^{\mathrm{t}} D B \\
= & Z-\bar{Z} \quad(\mathrm{cf.} \text { Lemma 1.9.2) } \\
= & 2 i Y . \tag{1.9}
\end{align*}
$$

It follows that

$$
\begin{aligned}
{ }^{\mathrm{t}} v\left({ }^{\mathrm{t}} P \bar{Q}-{ }^{\mathrm{t}} Q \bar{P}\right) \bar{v} & =2 i^{\mathrm{t}} v Y \bar{v} \\
{ }^{\mathrm{t}} v^{\mathrm{t}} P \bar{Q} \bar{v}-{ }^{\mathrm{t}} v^{\mathrm{t}} Q \bar{P} \bar{v} & =2 i^{\mathrm{t}} v Y \bar{v} \\
{ }^{\mathrm{t}} v^{\mathrm{t}} P \overline{Q v}-{ }^{\mathrm{t}}(Q v) \bar{P} \bar{v} & =2 i^{\mathrm{t}} v Y \bar{v} \\
0 & =2 i^{\mathrm{t}} v Y \bar{v} \\
0 & ={ }^{\mathrm{t}} v Y \bar{v} .
\end{aligned}
$$

Write $v=v_{1}+i v_{2}$ with $v_{1}, v_{2} \in \mathbb{R}^{n}$. Then

$$
0={ }^{\mathrm{t}} v Y \bar{v}={ }^{\mathrm{t}} v_{1} Y v_{1}+{ }^{\mathrm{t}} v_{2} Y v_{2}
$$

Since Y is positive-definite, the real numbers ${ }^{\mathrm{t}} v_{1} Y v_{1}$ and ${ }^{\mathrm{t}} v_{2} Y v_{2}$ are both nonnegative; since the sum of these two numbers is zero, both are zero. Again, since Y is positive-definite, this implies that $v_{1}=v_{2}=0$ so that $v=0$. Hence, Q is invertible. Now we prove that $P Q^{-1}$ is symmetric. Evidently, $P Q^{-1}$ is symmetric if and only if ${ }^{\mathrm{t}} P Q={ }^{\mathrm{t}} Q P$. Now

$$
\begin{aligned}
{ }^{\mathrm{t}} P Q-{ }^{\mathrm{t}} Q P= & { }^{\mathrm{t}}(A Z+B)(C Z+D)-{ }^{\mathrm{t}}(C Z+D)(A Z+B) \\
= & \left({ }^{\mathrm{t}} Z^{\mathrm{t}} A+{ }^{\mathrm{t}} B\right)(C Z+D)-\left({ }^{\mathrm{t}} Z{ }^{\mathrm{t}} C+{ }^{\mathrm{t}} D\right)(A Z+B) \\
= & { }^{\mathrm{t}} Z^{\mathrm{t}} A C Z+{ }^{\mathrm{t}} Z{ }^{\mathrm{t}} A D+{ }^{\mathrm{t}} B C Z+{ }^{\mathrm{t}} B D \\
& \quad-{ }^{\mathrm{t}} Z{ }^{\mathrm{t}} C A Z-{ }^{\mathrm{t}} Z{ }^{\mathrm{t}} C B-{ }^{\mathrm{t}} D A Z-{ }^{\mathrm{t}} D B \\
= & 0 \quad(\text { cf Lemma 1.9.2) }
\end{aligned}
$$

as desired. It follows that $P Q^{-1}$ is symmetric. Write $P Q^{-1}=X^{\prime}+i Y^{\prime}$ where $X^{\prime}, Y^{\prime} \in \mathrm{M}(n, \mathbb{R})$ with ${ }^{\mathrm{t}} X^{\prime}=X^{\prime}$ and ${ }^{\mathrm{t}} Y^{\prime}=Y^{\prime}$. To complete the proof of the lemma we need to show that Y^{\prime} is positive-definite. Now

$$
\begin{aligned}
Y^{\prime} & =\frac{1}{2 i}\left(\left(X^{\prime}+i Y^{\prime}\right)-\overline{\left(X^{\prime}+i Y^{\prime}\right)}\right) \\
& =\frac{1}{2 i}\left(P Q^{-1}-\overline{P Q^{-1}}\right) \\
& =\frac{1}{2 i}\left({ }^{\mathrm{t}}\left(P Q^{-1}\right)-\overline{P Q^{-1}}\right) \\
& =\frac{1}{2 i}\left({ }^{\mathrm{t}} Q^{-1}{ }^{\mathrm{t}} P-\overline{P Q^{-1}}\right) \\
& =\frac{1}{2 i}{ }^{\mathrm{t}} Q^{-1}\left({ }^{\mathrm{t}} P \bar{Q}-{ }^{\mathrm{t}} Q \bar{P}\right) \overline{Q^{-1}} \\
& =\frac{1}{2 i}{ }^{\mathrm{t}} Q^{-1}(2 i Y) \overline{Q^{-1}} \quad(\text { cf. (1.9) }) \\
& ={ }^{\mathrm{t}} Q^{-1} Y \overline{Q^{-1}} .
\end{aligned}
$$

Using that Y is positive-definite, it is easy to verify that $Y^{\prime}={ }^{\mathrm{t}} Q^{-1} Y \overline{Q^{-1}}$ is positive-definite.

Lemma 1.10.7. Let n be a positive integer. For $g=\left[\begin{array}{cc}A & B \\ C\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{R})$ and $Z \in \mathbb{H}_{n}$ we define

$$
g \cdot Z=(A Z+B)(C Z+D)^{-1}, \quad j(g, Z)=\operatorname{det}(C Z+D)
$$

We have

$$
\begin{aligned}
(g h) \cdot Z & =g \cdot(h \cdot Z) \\
j(g h, Z) & =j(g, h \cdot Z) j(h, Z)
\end{aligned}
$$

for $g, h \in \operatorname{Sp}(2 n, \mathbb{R})$ and $Z \in \mathbb{H}_{n}$.
Proposition 1.10.8. Let n be a positive integer, and let

$$
g=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

There exists an analytic function

$$
s(g, \cdot): \mathbb{H}_{n} \longrightarrow \mathbb{C}
$$

such that

$$
s(g, Z)^{2}=\operatorname{det}(C Z+D)
$$

for $Z \in \mathbb{H}_{n}$. Moreover, there exists an eighth root of unity ξ such that

$$
s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], i U\right)=\xi \operatorname{det}(U)^{1 / 2}
$$

for all $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$. Here, $\operatorname{det}(U)^{1 / 2}$ is the positive square root of the positive number $\operatorname{det}(U)$ for $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$.

Proof. We follow an idea from [5], page 19. Define a function

$$
\alpha:[0,1] \times \mathbb{H}_{n} \longrightarrow \mathbb{C}
$$

by

$$
\begin{aligned}
\alpha(t, Z) & =\operatorname{det}\left((1-t)\left(C\left(i 1_{n}\right)+D\right)+t(C Z+D)\right) \\
& \left.=\operatorname{det}\left(C\left((1-t)\left(i 1_{n}\right)+t Z\right)+D\right)\right)
\end{aligned}
$$

for $t \in[0,1]$ and $Z \in \mathbb{H}_{n}$. Here, given $Z \in \mathbb{H}_{n}$, the points $W(t)=(1-t)\left(i 1_{n}\right)+t Z$ for $t \in[0,1]$ are the points on the line between $i I_{n}$ and Z; by Proposition 1.10.3, all these points are in \mathbb{H}_{n}, and by Lemma 1.10.6, $\operatorname{det}(C W(t)+D)$ is non-zero for $t \in[0,1]$. Thus, α actually takes values in $\mathbb{C}-\{0\}$. Evidently, for fixed $Z \in \mathbb{H}_{n}$, the $\alpha(\cdot, Z)$ is a polynomial in t, and hence $\alpha(\cdot, Z):[0,1] \rightarrow \mathbb{C}-\{0\}$
is a piecewise C^{1} curve (see [17], page 75. Also, for fixed $t \in[0,1], \alpha(t, \cdot)$ is a function on \mathbb{H}_{n} that is a polynomial in each entry of $Z \in \mathbb{H}_{n}$, and is hence analytic in each variable. Define

$$
H: \mathbb{H}_{n} \longrightarrow \mathbb{C}
$$

by the contour integral (see [17], page 76)

$$
H(Z)=\int_{\alpha(\cdot, Z)} \frac{1}{w} d w
$$

or more concretely,

$$
H(Z)=\int_{0}^{1} \frac{\alpha^{\prime}(t, Z)}{\alpha(t, Z)} d t
$$

for $Z \in \mathbb{H}_{n}$. Here, the derivative is taken with respect to $t \in[0,1]$ for fixed $Z \in \mathbb{H}_{n}$. We claim that $e^{H(Z)}=\operatorname{det}(-i Z)$ for $Z \in \mathbb{H}_{n}$. To see this, fix $Z \in \mathbb{H}_{n}$. Since $|\alpha(\cdot, Z)|$ is continuous, $[0,1]$ is compact, and $|\alpha(t, Z)|>0$ for $t \in[0,1]$, the number $\epsilon=\inf (\{|\alpha(t, Z)|: t \in[0,1]\}$ is positive (see Theorem 5 on page 88 of [18]). The function $\alpha(\cdot, Z):[0,1] \rightarrow \mathbb{C}$ is uniformly continuous (see Theorem 7 on page 92 of [18]). Hence, there exists a positive integer n such that if $t_{1}, t_{2} \in[0,1]$ and $\left|t_{1}-t_{2}\right| \leq 1 / n$, then $\left|\alpha\left(t_{1}, Z\right)-\alpha\left(t_{2}, Z\right)\right|<\epsilon / 2$. Let $k \in\{0,1,2, \ldots, n-1\}$. If $t \in[k / n,(k+1) / n]$, then $\alpha(t, Z)$ lies in the disc $D_{k}=\{w \in \mathbb{C}:|\alpha(k / n, Z)-w|<\epsilon / 2\}$. By the definition of ϵ, the disc D_{k} does not contain 0 . Therefore, there exists $\theta_{k} \in[0,2 \pi)$ such that none of the points on the ray $R\left(\theta_{k}\right)=\left\{r e^{i \theta_{k}}: r \in[0, \infty)\right\}$ lie in D_{k}. For $\theta \in[0,2 \pi)$, let $\log _{\theta}: \mathbb{C}-R(\theta) \rightarrow \mathbb{C}$ be the branch of the logarithm function given by

$$
\log _{\theta}(z)=\log (|z|)+i \arg _{\theta}(z)
$$

where $z \in \mathbb{C}-R(\theta)$ and $\theta<\arg _{\theta}(z)<\theta+2 \pi i$. The function $\log _{\theta}$ is analytic in its domain, and we have

$$
\frac{d}{d z}\left(\log _{\theta}\right)(z)=\frac{1}{z}
$$

for $z \in \mathbb{C}-R(\theta)$. Now using Theorem 4 on page 83 of [17],

$$
\begin{aligned}
H(Z) & =\int_{\alpha(\cdot, Z)} \frac{1}{z} d z \\
& =\sum_{k=0}^{n-1} \int_{k / n}^{(k+1) / n} \frac{\alpha^{\prime}(t, Z)}{\alpha(t, Z)} d t \\
& =\sum_{k=0}^{n-1} \log _{\theta_{k}}(\alpha((k+1) / n, Z))-\log _{\theta_{k}}(\alpha(k / n, Z))
\end{aligned}
$$

For each $k \in\{0, \ldots, n-1\}, \log _{\theta_{k}}(\alpha((k+1) / n, Z))=\log _{\theta_{k+1}}(\alpha((k+1) / n, Z)+$ $2 \pi i m$ for some integer m. It follows that

$$
H(Z)=\log _{\theta_{n-1}}(\alpha(1, Z))-\log _{\theta_{0}}(\alpha(0, Z))+2 \pi i N
$$

for some integer N. Therefore,

$$
\begin{aligned}
e^{H(Z)} & =e^{\log _{\theta_{n-1}}(\alpha(1, Z))-\log _{\theta_{0}}(\alpha(0, Z))+2 \pi i N} \\
& =\alpha(1, Z) \alpha(0, Z)^{-1} \\
& =\operatorname{det}(C Z+D) \operatorname{det}\left(C\left(i 1_{n}\right)+D\right)^{-1}
\end{aligned}
$$

Next, we claim that $H: \mathbb{H}_{n} \rightarrow \mathbb{C}$ is an analytic function on \mathbb{H}_{n}. To see this, we note that the function sending $(t, Z) \in[0,1] \times \mathbb{H}_{n}$ to

$$
\frac{\alpha^{\prime}(t, Z)}{\alpha(t, Z)}
$$

is continuous, and for fixed $t \in[0,1]$, is analytic on \mathbb{H}_{n}. We thus may differentiate under the integral sign in the definition of H (see 2. on page 324 of [18]), and use the Cauchy-Riemann equations criterion (see Theorem 19 on page 48 of [17]) to see that H is analytic on \mathbb{H}_{n}. Fix $w \in \mathbb{C}^{\times}$such that $w^{2}=\operatorname{det}\left(C\left(i 1_{n}\right)+D\right)$. We now define $s(g, \cdot): \mathbb{H}_{n} \rightarrow \mathbb{C}$ by

$$
s(g, Z)=w e^{H(Z) / 2}
$$

Then for $Z \in \mathbb{H}_{n}$ we have

$$
\begin{aligned}
s(g, Z)^{2} & =w^{2} e^{H(Z)} \\
& =\operatorname{det}\left(C\left(i 1_{n}\right)+D\right) \operatorname{det}(C Z+D) \operatorname{det}\left(C\left(i 1_{n}\right)+D\right)^{-1} \\
& =\operatorname{det}(C Z+D)
\end{aligned}
$$

To prove the uniqueness statement, we first note that

$$
s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], i U\right)^{2}=\operatorname{det}((-1) i U)=(-i)^{n} \operatorname{det}(U)
$$

for $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$. Fix $\zeta \in \mathbb{C}^{\times}$such that $\zeta^{2}=(-i)^{n}$. Then ζ is an eighth root of unity. It follows that for every $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$there exists $\epsilon(U) \in\{ \pm 1\}$ such that

$$
s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], i U\right)=\epsilon(U) \zeta \operatorname{det}(U)^{1 / 2}
$$

for $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$. Consider the function $\operatorname{Sym}(n, \mathbb{R})^{+} \rightarrow \mathbb{R}$ defined by $U \mapsto$ $s\left(\left[\begin{array}{ll} & 1 \\ -1 & \end{array}\right], i U\right) / \operatorname{det}(U)^{1 / 2}$ for $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$. This function is continuous and defined on the connected set $\operatorname{Sym}(n, \mathbb{R})^{+}$. Since this function takes values in the eighth roots of unity, it follows from the intermediate value theorem (see

Theorem 6 on page 90 of [18]) that this function is constant. Hence, there exists an eighth root of unity ξ such that

$$
s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], i U\right)=\xi \operatorname{det}(U)^{1 / 2}
$$

for all $U \in \operatorname{Sym}(n, \mathbb{R})^{+}$.
Corollary 1.10.9. Let n be a positive integer. Let $s: \operatorname{Sp}(2 n, \mathbb{R}) \times \mathbb{H}_{n} \rightarrow \mathbb{C}$ be the function from Proposition 1.10.8. If $g, h \in \operatorname{Sp}(2 n, \mathbb{R})$, then there exists $\varepsilon \in\{ \pm 1\}$ such that

$$
s(g h, Z)=\varepsilon s(g, h \cdot Z) s(h, Z)
$$

for all $Z \in \mathbb{H}_{n}$.
Proof. Let $g, h \in \operatorname{Sp}(2 n, \mathbb{R})$. If $Z \in \mathbb{H}_{n}$, then

$$
\begin{aligned}
s(g h, Z)^{2} & =j(g h, Z) \\
& =j(g, h \cdot Z) j(h, Z) \quad \text { (see Lemma 1.10.7) } \\
& =s(g, h \cdot Z)^{2} s(h, Z)^{2} \\
& =(s(g, h \cdot Z) s(h, Z))^{2} .
\end{aligned}
$$

It follows that for each $Z \in \mathbb{H}_{n}$ there exists $\varepsilon(Z) \in\{ \pm 1\}$ such that $s(g h, Z)=$ $\varepsilon(Z) s(g, h \cdot Z) s(h, Z)$. The function on \mathbb{H}_{n} that sends Z to $\varepsilon(Z)$ is continuous and takes values in $\{ \pm 1\}$. Since \mathbb{H}_{n} is connected (see Proposition 1.10.3), the intermediate value theorem (see Theorem 6 on page 90 of [18]) implies now that this function is constant.

1.11 The theta group

Let k be a positive integer, and let $M \in \mathrm{M}(k, \mathbb{C})$. We define an element of $\mathrm{M}(k, 1, \mathbb{C})$ by

$$
\operatorname{diag}(M)=\left[\begin{array}{c}
m_{11} \\
\vdots \\
m_{k k}
\end{array}\right]
$$

Lemma 1.11.1. Let k be a positive integer, Assume that $M \in \mathrm{M}(k, \mathbb{Z})$ and $X \in \operatorname{Sym}(k, \mathbb{Z})$. Then

$$
\operatorname{diag}\left(M X^{\mathrm{t}} M\right) \equiv M \operatorname{diag}(X)(\bmod 2)
$$

Proof. If A is a $k \times k$ matrix, and $i, j \in\{1, \ldots, k\}$, then we let $A_{i j}$ be the (i, j)-th entry of A. Let $i \in\{1, \ldots, k\}$. Then the i-th entry of $\operatorname{diag}\left(M X^{\mathrm{t}} M\right)$ is:

$$
\sum_{\ell=1}^{k} M_{i \ell}\left(X^{\mathrm{t}} M\right)_{\ell i}=\sum_{\ell=1}^{k} M_{i \ell} \sum_{j=1}^{k} X_{\ell j}\left({ }^{\mathrm{t}} M\right)_{j i}
$$

$$
\begin{aligned}
& =\sum_{\ell=1}^{k} \sum_{j=1}^{k} M_{i \ell} M_{i j} X_{\ell j} \\
& =\sum_{\substack{\ell, j \in\{1, \ldots, k\} \\
\ell=j}} M_{i \ell} M_{i j} X_{\ell j}+\sum_{\substack{\ell, j \in\{1, \ldots, k\} \\
\ell \neq j}} M_{i \ell} M_{i j} X_{\ell j} \\
& =\sum_{j \in\{1, \ldots, k\}} M_{i j}^{2} X_{j j}+\sum_{\substack{\ell, j \in\{1, \ldots, k\}}}\left(M_{i \ell} M_{i j} X_{\ell j}+M_{i j} M_{i \ell} X_{j \ell}\right) \\
& =\sum_{j \in\{1, \ldots, k\}} M_{i j}^{2} X_{j j}+\sum_{\ell, j \in\{1, \ldots, k\}} 2 M_{i \ell} M_{i j} X_{\ell j} \\
& \equiv \sum_{j \in\{1, \ldots, k\}} M_{i j}^{2} X_{j j}(\bmod 2) \\
& \equiv \sum_{j \in\{1, \ldots, k\}} M_{i j} X_{j j}(\bmod 2) .
\end{aligned}
$$

Since $\sum_{j=1}^{k} M_{i j} X_{j j}$ is the i-th entry of $M \operatorname{diag}(X)$, the proof is complete.
For the next proposition, we follow Lemma 7.6 from p. 457 of [7].
Proposition 1.11.2. Let n be a positive integer. Define a function

$$
\operatorname{Sp}(2 n, \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})^{2 n} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{2 n}
$$

by

$$
g\{m\}={ }^{\mathrm{t}} g^{-1} m+\left[\begin{array}{l}
\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right]
$$

for $g=\left[\begin{array}{cc}A & B \\ C & B\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{Z})$ and $m \in(\mathbb{Z} / 2 \mathbb{Z})^{2 n}$. Then this function is an action, i.e.,

$$
g\{h\{m\}\}=(g h)\{m\}
$$

for $g, h \in \operatorname{Sp}(2 n, \mathbb{Z})$ and $m \in(\mathbb{Z} / 2 \mathbb{Z})^{2 n}$.
Proof. Let $g, h \in \operatorname{Sp}(2 n, \mathbb{Z})$ with

$$
g=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{Z})
$$

and let $m \in(\mathbb{Z} / 2 \mathbb{Z})^{2 n}$. To prove that $g\{h\{m\}\}=(g h)\{m\}$ we may assume that h is a generator for $\operatorname{Sp}(2 n, \mathbb{Z})$ as described in Theorem 1.9.6. Assume first that h has the form

$$
h=\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right]
$$

for some $X \in \operatorname{Sym}(n, \mathbb{Z})$. Then

$$
(g h)\{m\} \equiv\left[\begin{array}{cc}
A & A X+B \\
C & C X+D
\end{array}\right]\{m\}(\bmod 2)
$$

$$
\begin{aligned}
& \equiv{ }^{\mathrm{t}}(g h)^{-1} m+\left[\begin{array}{l}
\operatorname{diag}\left(C^{\mathrm{t}}(C X+D)\right) \\
\operatorname{diag}\left(A^{\mathrm{t}}(A X+B)\right)
\end{array}\right](\bmod 2) \\
& \equiv^{\mathrm{t}}(g h)^{-1} m+\left[\begin{array}{l}
\operatorname{diag}\left(C X^{\mathrm{t}} C+C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A X^{\mathrm{t}} A+A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2) \\
& \equiv^{\mathrm{t}}(g h)^{-1} m+\left[\begin{array}{l}
\operatorname{diag}\left(C X^{\mathrm{t}} C\right)+\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A X^{\mathrm{t}} A\right)+\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2)
\end{aligned}
$$

And

$$
\begin{aligned}
& g\{h\{m\}\} \equiv g\left\{{ }^{\mathrm{t}} h^{-1} m+[\operatorname{diag}(X)]\right\}(\bmod 2) \\
& \equiv{ }^{\mathrm{t}} g^{-1}{ }^{\mathrm{t}} h^{-1} m+{ }^{\mathrm{t}} g^{-1}[\operatorname{diag}(X)]+\left[\begin{array}{c}
\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2) \\
& \equiv{ }^{\mathrm{t}}(g h)^{-1} m+\left[\begin{array}{cc}
D & -C \\
-B & A
\end{array}\right][\operatorname{diag}(X)]+\left[\begin{array}{l}
\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2) \\
& \equiv{ }^{\mathrm{t}}(g h)^{-1} m+\left[\begin{array}{c}
-C \cdot \operatorname{diag}(X)+\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
A \cdot \operatorname{diag}(X)+\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2) .
\end{aligned}
$$

The equality $g\{h\{m\}\}=(g h)\{m\}$ follows now from Lemma 1.11.1. Next, assume that

$$
h=\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]
$$

Then

$$
\begin{aligned}
\left(g\left[\begin{array}{rr}
& 1 \\
-1 &
\end{array}\right]\right)\{m\} & \equiv{ }^{\mathrm{t}} g^{-1}{ }^{\mathrm{t}}\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]-1 m+\left[\begin{array}{l}
\operatorname{diag}\left(-D^{\mathrm{t}} C\right) \\
\operatorname{diag}\left(-B^{\mathrm{t}} A\right)
\end{array}\right](\bmod 2) \\
& \equiv{ }^{\mathrm{t}} g^{-1}{ }^{\mathrm{t}}\left[\begin{array}{rr}
1 \\
-1 &
\end{array}\right]-1 m+\left[\begin{array}{l}
\operatorname{diag}\left(D^{\mathrm{t}} C\right) \\
\operatorname{diag}\left(B^{\mathrm{t}} A\right)
\end{array}\right](\bmod 2)
\end{aligned}
$$

And

$$
\begin{aligned}
& g\{h\{m\}\} \equiv g\left\{{ } ^ { \mathrm { t } } \left[\begin{array}{ll}
1 \\
-1 &]^{-1} m\right\}(\bmod 2)
\end{array}\right.\right. \\
& \equiv{ }^{\mathrm{t}} g^{-1}{ }^{\mathrm{t}}\left[\begin{array}{rr}
& 1 \\
-1 &
\end{array}\right]-1 m+\left[\begin{array}{l}
\operatorname{diag}\left(C^{\mathrm{t}} D\right) \\
\operatorname{diag}\left(A^{\mathrm{t}} B\right)
\end{array}\right](\bmod 2) .
\end{aligned}
$$

Because $g \in \operatorname{Sp}(2 n, \mathbb{Z})$, the matrices $C^{\mathrm{t}} D$ and $A^{\mathrm{t}} B$ are symmetric; this now implies that $(g h)\{m\}=g\{h\{m\}\}$.

Let n be a positive integer. By Proposition 1.11.2, the group $\operatorname{Sp}(2 n, \mathbb{Z})$ acts on $(\mathbb{Z} / 2 \mathbb{Z})^{2 n}$. We define the theta group Γ_{θ} to be the stabilizer of the point 0 in $(\mathbb{Z} / 2 \mathbb{Z})^{2 n}$. When we need to indicate that Γ_{θ} is contained in $\operatorname{Sp}(2 n, \mathbb{Z})$ we will write $\Gamma_{\theta, 2 n}$ for Γ_{θ}. The definition of this action implies that the theta group is the subset of all $\left[\begin{array}{c}A \\ C\end{array}\right]$ $\operatorname{diag}\left(C^{\mathrm{t}} D\right) \equiv 0(\bmod 2)$. Let $g=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{Z})$. Then

$$
g^{-1}=\left[\begin{array}{cc}
{ }^{\mathrm{t}} D & -{ }^{\mathrm{t}} B \\
-{ }^{\mathrm{t}} C & { }^{\mathrm{t}} A
\end{array}\right]
$$

Since Γ_{θ} is a group, we have $g \in \Gamma_{\theta}$ if and only if $g^{-1} \in \Gamma_{\theta}$. Thus, for $\left[\begin{array}{c}A \\ C\end{array} \underset{D}{B}\right] \in$ $\operatorname{Sp}(2 n, \mathbb{Z})$,

$$
\begin{aligned}
& \operatorname{diag}\left(A^{\mathrm{t}} B\right) \equiv 0(\bmod 2) \\
& \operatorname{diag}\left(C^{\mathrm{t}} D\right) \equiv 0(\bmod 2) \Longleftrightarrow g \in \Gamma_{\theta} \\
& \Longleftrightarrow g^{-1} \in \Gamma_{\theta} \Longleftrightarrow \begin{array}{l}
\operatorname{diag}\left({ }^{\mathrm{t}} B D\right) \equiv 0(\bmod 2) \\
\operatorname{diag}\left({ }^{\mathrm{t}} C A\right) \equiv 0(\bmod 2)
\end{array}
\end{aligned}
$$

1.12 Elementary divisors

Theorem 1.12.1 (Theorem on elementary divisors). Let n be a positive integer. Let $M \in \mathrm{M}(n, \mathbb{Z})$. There exist a non-negative integer k, positive integers d_{1}, \ldots, d_{k} and $g_{1}, g_{2} \in \operatorname{SL}(n, \mathbb{Z})$ such that $k \leq n$,

$$
g_{1} M g_{2}=\left[\begin{array}{llllllll}
d_{1} & & & & & & & \\
& d_{2} & & & & & & \\
& & d_{3} & & & & & \\
& & & \ddots & & & & \\
& & & & d_{k} & & & \\
& & & & & 0 & & \\
& & & & & & \ddots & \\
& & & & & & & 0
\end{array}\right]
$$

and

$$
d_{1}\left|d_{2}, \quad d_{2}\right| d_{3}, \quad \ldots, \quad d_{k-1} \mid d_{k}
$$

If M is non-zero, then the greatest common divisor of the entries of M is d_{1}.
Proof. For the first assertion see Proposition 2.11 on p. 339 of [10], or p. 8 of [4]. Assume that M is non-zero. If $X \in \mathrm{M}(n, \mathbb{Z})$ is non-zero, then let $I(X)$ be the ideal of \mathbb{Z} generated by X. If $X \in \mathrm{M}(n, \mathbb{Z})$ is non-zero, then the greatest common divisor of the entries of X is the positive generator of $I(X)$. Since $g_{1}, g_{2} \in \mathrm{SL}(n, \mathbb{Z})$ we have $I(M)=I\left(g_{1} M g_{2}\right)=\left(d_{1}\right)$; thus, the greatest common divisor of the entries of M is d_{1}.

Chapter 2

Classical theta series on \mathbb{H}_{1}

2.1 Definition and convergence

Lemma 2.1.1. Let f be a positive integer. Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix, and for $x \in \mathbb{R}^{f}$ let

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x .
$$

For $z \in \mathbb{H}_{1}$, define

$$
\theta(A, z)=\sum_{m \in \mathbb{Z}^{f}} e^{\pi i z^{\mathrm{t}} m A m}=\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i z Q(m)}
$$

For every $\delta>0$, this series converges absolutely and uniformly on the set

$$
\left\{z \in \mathbb{H}_{1}: \operatorname{Im}(z) \geq \delta\right\}
$$

The function $\theta(A, \cdot)$ is an analytic function on \mathbb{H}_{1}.
Proof. Since A is positive-definite, the function defined by $x \mapsto \sqrt{Q(x)}$ defines a norm on \mathbb{R}^{f}. All norms on \mathbb{R}^{f} equivalent; in particular, this norm is equivalent to the standard norm $\|\cdot\|$ on \mathbb{R}^{f}. Hence, there exists $\epsilon>0$ such that

$$
\varepsilon\|x\| \leq \sqrt{Q(x)}
$$

or equivalently,

$$
\varepsilon^{2}\|x\|^{2}=\varepsilon^{2}\left(x_{1}^{2}+\cdots x_{f}^{2}\right) \leq Q(x)
$$

for $x={ }^{\mathrm{t}}\left(x_{1}, \ldots, x_{f}\right) \in \mathbb{R}^{f}$.
Now let $\delta>0$, and let $z \in \mathbb{H}_{1}$ be such that $\operatorname{Im}(z) \geq \delta$. Let $m=$ ${ }^{\mathrm{t}}\left(m_{1}, \ldots, m_{f}\right) \in \mathbb{Z}^{f}$. Then

$$
\left|e^{2 \pi i z Q(m)}\right|=e^{-2 \pi \operatorname{Im}(z) Q(m)}
$$

$$
\begin{aligned}
& \leq e^{-2 \pi \delta Q(m)} \\
& \leq e^{-2 \pi \delta \varepsilon^{2}\|m\|^{2}} \\
& =q^{\|m\|^{2}} \\
& =q^{m_{1}^{2}+\cdots+m_{f}^{2}}
\end{aligned}
$$

where $q=e^{-2 \pi \delta \varepsilon^{2}}$. Since $0<q<1$, the series

$$
\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

converges absolutely. This implies that the series

$$
\left(\sum_{n \in \mathbb{Z}} q^{n^{2}}\right)^{f}=\sum_{m \in \mathbb{Z}^{f}} q^{m_{1}^{2}+\cdots+m_{f}^{2}}=\sum_{m \in \mathbb{Z}^{f}} q^{\|m\|^{2}}
$$

converges absolutely. It follows from the Weierstrass M-test that our series

$$
\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i z Q(m)}
$$

converges absolutely and uniformly on $\left\{z \in \mathbb{H}_{1}: \operatorname{Im}(z) \geq \delta\right\}$ (see, for example, [17], p. 160). Since for each $m \in \mathbb{Z}^{f}$ the function on \mathbb{H}_{1} defined by $z \mapsto e^{2 \pi i z Q(m)}$ is an analytic function, and since our series converges absolutely and uniformly on every closed disk in \mathbb{H}_{1}, it follows that $\theta(A, \cdot)$ is analytic on \mathbb{H}_{1} (see [17], p. 162).

Proposition 2.1.2. Let f be a positive integer. Let ε be a real number such that $0<\varepsilon<1$. Let K_{1} be a compact subset of \mathbb{H}_{1}, and let K_{2} be a compact subset of \mathbb{C}^{f}. Then there exists a positive real number $R>0$ such that

$$
\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(w+g)(w+g)\right) \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right)
$$

or equivalently

$$
-\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(w+g)(w+g)\right) \leq-\varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right)
$$

for $z \in K_{1}, w \in K_{2}$ and $g \in \mathbb{R}^{f}$ such that $\|g\| \geq R$.
Proof. Let $M>0$ be a positive real number such that

$$
M \geq|\operatorname{Re}(z)|,|\operatorname{Im}(z)|,\|\operatorname{Re}(w)\|,\|\operatorname{Im}(w)\|
$$

for $z \in K_{1}$ and $w \in K_{2}$. Let $\delta>0$ be such that

$$
\operatorname{Im}(z) \geq \delta>0
$$

for $z \in K_{1}$. Let $R>0$ be such that if $x \in \mathbb{R}$ and $x \geq R$, then

$$
0 \leq(1-\varepsilon) \delta x^{2}-4 M^{2} x-4 M^{3}
$$

or equivalently,

$$
4 M^{2}(x+M) \leq(1-\varepsilon) \delta x^{2}
$$

Now let $z \in K_{1}, w \in K_{2}$, and let $g \in \mathbb{R}^{f}$ with $\|g\| \geq R$. Write $z=\sigma+i t$ for some $\sigma, t \in \mathbb{R}$ with $t>0$. Also, write $w=a+b i$ with $a, b \in \mathbb{R}^{f}$. Then calculations show that

$$
\begin{aligned}
2 \cdot \operatorname{Im}\left(z^{\mathrm{t}} w g\right) & =2 t^{\mathrm{t}} a g+2 \sigma^{\mathrm{t}} b g, \\
\operatorname{Im}\left(z^{\mathrm{t}} w w\right) & =\sigma\left({ }^{\mathrm{t}} a a-{ }^{\mathrm{t}} b b\right)-2 t^{\mathrm{t}} a b .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& -2 \cdot \operatorname{Im}\left(z^{\mathrm{t}} w g\right)-\operatorname{Im}\left(z^{\mathrm{t}} w w\right) \\
& \leq\left|2 \cdot \operatorname{Im}\left(z^{\mathrm{t}} w g\right)\right|+\left|\operatorname{Im}\left(z^{\mathrm{t}} w w\right)\right| \\
& \leq\left. 2 t\right|^{\mathrm{t}} a g|+2| \sigma| |^{\mathrm{t}} b g|+|\sigma||^{\mathrm{t}} a a\left|+\left|\sigma \|^{\mathrm{t}} b b\right|+2 t\right|^{\mathrm{t}} a b \mid \\
& \leq 2 t\|a\|\|g\|+2|\sigma|\|b\|\|g\|+|\sigma|\|a\|^{2}+|\sigma|\|b\|^{2}+2 t\|a\|\|b\| \\
& \leq 2 M^{2}\|g\|+2 M^{2}\|g\|+M^{3}+M^{3}+2 M^{3} \\
& =4 M^{2}\|g\|+4 M^{3} \\
& =4 M^{2}(\|g\|+M) \\
& \leq(1-\varepsilon) \delta\|g\|^{2} \\
& \leq(1-\varepsilon) t\|g\|^{2} \\
& =(1-\varepsilon) \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-2 \cdot \operatorname{Im}\left(z^{\mathrm{t}} w g\right)-\operatorname{Im}\left(z^{\mathrm{t}} w w\right) & \leq(1-\varepsilon) \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right) \\
\varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right) & \leq \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right)+2 \cdot \operatorname{Im}\left(z^{\mathrm{t}} w g\right)+\operatorname{Im}\left(z^{\mathrm{t}} w w\right) \\
& \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g g\right)
\end{aligned} \leq \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(w+g)(w+g)\right) .
$$

This is the desired inequality.
Corollary 2.1.3. Let f be a positive integer. Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix. Let ε be real number such that $0<\varepsilon<1$. Let K_{1} be a compact subset of \mathbb{H}_{1}, and let K_{2} be a compact subset of \mathbb{C}^{f}. For $x \in \mathbb{C}^{f}$, define

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x .
$$

Then there exists a positive real number $R>0$ such that

$$
\operatorname{Im}(z \cdot Q(w+g)) \geq \varepsilon \operatorname{Im}(z \cdot Q(g))
$$

or equivalently,

$$
-\operatorname{Im}(z \cdot Q(w+g)) \leq-\varepsilon \operatorname{Im}(z \cdot Q(g))
$$

for $z \in K_{1}, w \in K_{2}$, and all $g \in \mathbb{R}^{f}$ such that $\|g\| \geq R$.

Proof. Since A is a positive-definite symmetric matrix, there exists a positivedefinite symmetric matrix $B \in \mathrm{M}(f, \mathbb{R})$ such that $A={ }^{\mathrm{t}} B B=B B$ (see (1.7)). The set $B\left(K_{2}\right)$ is a compact subset of \mathbb{C}^{f}. By Proposition 2.1 .2 there exists a positive real number $T>0$ such that

$$
\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}\left(w^{\prime}+g^{\prime}\right)\left(w^{\prime}+g^{\prime}\right)\right) \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g^{\prime} g^{\prime}\right)
$$

for $z \in K_{1}, w^{\prime} \in B\left(K_{2}\right)$, and $g^{\prime} \in \mathbb{R}^{f}$ with $\left\|g^{\prime}\right\| \geq T$. We may regard the matrix B^{-1} as a operator from \mathbb{R}^{f} to \mathbb{R}^{f}; as such, B^{-1} is bounded. Hence,

$$
\left\|B^{-1}(g)\right\| \leq\left\|B^{-1}\right\|\|g\|
$$

for $g \in \mathbb{R}^{f}$. Define $R=\left\|B^{-1}\right\| T$. Let $z \in K_{1}, w \in K_{2}$ and $g \in \mathbb{R}^{f}$ with $\|g\| \geq R$. Then $w^{\prime}=B w \in B\left(K_{2}\right)$, and:

$$
\begin{aligned}
\left\|B^{-1}(B(g))\right\| & \leq\left\|B^{-1}\right\|\|B(g)\| \\
\|g\| & \leq\left\|B^{-1}\right\|\|B(g)\| \\
R & \leq\left\|B^{-1}\right\|\|B(g)\| \\
\left\|B^{-1}\right\|^{-1} R & \leq\|B(g)\| \\
T & \leq\|B(g)\|
\end{aligned}
$$

Therefore, with $g^{\prime}=B(g)$,

$$
\begin{aligned}
\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}\left(w^{\prime}+g^{\prime}\right)\left(w^{\prime}+g^{\prime}\right)\right) & \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g^{\prime} g^{\prime}\right) \\
\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(B w+B g)(B w+B g)\right) & \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(B g) B g\right) \\
\left.\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(w+g){ }^{\mathrm{t}} B B(w+g)\right)\right) & \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g^{\mathrm{t}} B B g\right) \\
\left.\operatorname{Im}\left(z \cdot{ }^{\mathrm{t}}(w+g) A(w+g)\right)\right) & \geq \varepsilon \operatorname{Im}\left(z \cdot{ }^{\mathrm{t}} g A g\right) \\
\operatorname{Im}(z \cdot Q(w+g))) & \geq \varepsilon \operatorname{Im}(z \cdot Q(g))
\end{aligned}
$$

This completes the proof.
Proposition 2.1.4. Let f be a positive integer. Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix, and for $x \in \mathbb{R}^{f}$ let

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

For $z \in \mathbb{H}_{1}$ and $w={ }^{\mathrm{t}}\left(w_{1}, \ldots, w_{f}\right) \in \mathbb{C}^{f}$, define

$$
\theta(A, z, w)=\sum_{m \in \mathbb{Z}^{f}} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}=\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i z Q(m+w)}
$$

Let D be a closed disk in \mathbb{H}_{1}, and let D_{1}, \ldots, D_{f} be closed disks in \mathbb{C}^{f}. Then $\theta\left(A, z, w_{1}, \ldots, w_{f}\right)$ converges absolutely and uniformly on $D \times D_{1} \times \cdots \times D_{f}$. The function $\theta\left(A, z, w_{1}, \ldots, w_{f}\right)$ on $\mathbb{H}_{1} \times \mathbb{C}^{f}$ is analytic in each variable.

Proof. We apply Corollary 2.1.3 with $\varepsilon=1 / 2, K_{1}=D$ and $K_{2}=D_{1} \times \cdots \times D_{f}$. By this corollary, there exists a finite set X of \mathbb{Z}^{f} such that for $m \in \mathbb{Z}^{f}-X$, $z \in K_{1}$ and $w \in K_{2}$ we have:

$$
\begin{aligned}
\left|e^{2 \pi i z Q(m+w)}\right| & =e^{\operatorname{Re}(2 \pi i z Q(m+w))} \\
& =e^{-2 \pi \operatorname{Im}(z Q(m+w))} \\
& \leq e^{-2 \pi \cdot(1 / 2) \cdot \operatorname{Im}(z Q(m))} \\
& =e^{-2 \pi Q(m) \operatorname{Im}(z / 2)} \\
& \leq e^{-2 \pi \delta Q(m)} \\
& =\left|e^{2 \pi i(\delta i) Q(m)}\right|
\end{aligned}
$$

Here, $\delta>0$ is such that $\delta \leq \operatorname{Im}(z / 2)$ for $z \in D$. By Lemma 2.1.1 the series

$$
\sum_{m \in \mathbb{Z}^{f}}\left|e^{2 \pi i(\delta i) Q(m)}\right|
$$

converges. The Weierstrass M-test (see [17], p. 160) now implies that the series

$$
\theta(A, z, w)=\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i z Q(m+w)}
$$

converges absolutely and uniformly on $D \times D_{1} \times \cdots \times D_{f}$. Since for each $m \in \mathbb{Z}^{f}$ the function on $\mathbb{H}_{1} \times \mathbb{C}^{f}$ defined by $(z, w) \mapsto e^{2 \pi i z Q(m+w)}$ is an analytic function in each variable z, w_{1}, \ldots, w_{f}, and since our series converges absolutely and uniformly on all products of closed disks, it follows that $\theta\left(A, z, w_{1}, \ldots, w_{f}\right)$ is analytic in each variable (see [17], p. 162).

2.2 The Poisson summation formula

Let f be a positive integer. Let $g: \mathbb{R}^{f} \rightarrow \mathbb{C}$ be a function, and write $g=u+i v$, where $u, v: \mathbb{R}^{f} \rightarrow \mathbb{R}$ are functions. We say that g is smooth if u and v are both infinitely differentiable. Assume that g is smooth. Let $\left(\alpha_{1}, \ldots, \alpha_{f}\right) \in \mathbb{Z}_{>0}^{f}$. We define

$$
D^{\alpha} g=\left(\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{f}}}{\partial x_{f}^{\alpha_{f}}}\right) g
$$

We say that f is a Schwartz function if

$$
\sup _{x \in \mathbb{R}^{f}}\left|P(x)\left(D^{\alpha}\right)(x)\right|
$$

is finite for all $P(X)=P\left(X_{1}, \ldots, X_{f}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{f}\right]$ and $\alpha \in \mathbb{Z}_{>0}^{f}$. The set $\mathcal{S}\left(\mathbb{R}^{f}\right)$ of all Schwartz functions is a complex vector space, called the Schwartz
space on \mathbb{R}^{f}. If $g \in \mathcal{S}\left(\mathbb{R}^{f}\right)$, then we define the Fourier transform of g to be the function $\mathcal{F} g: \mathbb{R}^{f} \rightarrow \mathbb{C}$ defined by

$$
(\mathcal{F} g)(x)=\int_{\mathbb{R}^{f}} g(y) e^{-2 \pi i^{t} x y} d y
$$

for $x \in \mathbb{R}^{f}$. If $g \in \mathcal{S}\left(\mathbb{R}^{f}\right)$, then the integral defining $\mathcal{F} g$ converges absolutely for every $x \in \mathbb{R}^{f}$. In fact, if $g \in \mathcal{S}\left(\mathbb{R}^{f}\right)$, then $\mathcal{F} g \in \mathcal{S}\left(\mathbb{R}^{f}\right)$, and a number of other properties hold; see, for example, chapter 7 of [23], or chapter 13 of [15].

Lemma 2.2.1. Let f be a positive integer. Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix, and for $x \in \mathbb{R}^{f}$ let

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Let $w \in \mathbb{C}^{f}$. The function $g: \mathbb{R}^{f} \rightarrow \mathbb{C}$ defined by

$$
g(x)=e^{-2 \pi Q(x+w)}=e^{-\pi^{\mathrm{t}}(x+w) A(x+w)}
$$

for $x \in \mathbb{R}^{f}$ is in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{f}\right)$.
Proof. We begin with some simplifications. Also, there exists a positive-definte symmetric matrix $B \in \mathrm{GL}(f, \mathbb{R})$ such that $A={ }^{\mathrm{t}} B B=B B$ (see (1.7)). The function g is in $\mathcal{S}\left(\mathbb{R}^{f}\right)$ if and only if $g \circ B^{-1}$ in in $\mathcal{S}\left(\mathbb{R}^{f}\right)$. Now

$$
\begin{aligned}
g\left(B^{-1} x\right) & =e^{-\pi^{\mathrm{t}}\left(B^{-1} x+w\right) A\left(B^{-1} x+w\right)} \\
& =e^{-\pi^{\mathrm{t}}\left(B^{-1} x+w\right)^{\mathrm{t}} B B\left(B^{-1} x+w\right)} \\
& =e^{-\pi^{\mathrm{t}}(x+B w)(x+B w)} .
\end{aligned}
$$

It follows that we may assume that $A=1$. Next, let $w=u+i v$ where $u, v \in \mathbb{R}^{f}$. Since g is in $\mathcal{S}\left(\mathbb{R}^{f}\right)$ if and only if the function defined by $x \mapsto g(x-u)$ for $x \in \mathbb{R}^{f}$ is in $\mathcal{S}\left(\mathbb{R}^{f}\right)$, we may also assume that $u=0$. Now

$$
\begin{aligned}
g(x) & =e^{-\pi^{\mathrm{t}}(x+i v)(x+i v)} \\
& =e^{-\pi^{\mathrm{t}} x x-2 \pi i^{\mathrm{t}} x v+\pi^{\mathrm{t}} v v} \\
& =e^{\pi^{\mathrm{t}} v v} e^{-\pi^{\mathrm{t}} x x-2 \pi i^{\mathrm{t}} x v} .
\end{aligned}
$$

Since $e^{\pi^{t} v v}$ is a constant, it suffices to prove that the function $h: \mathbb{R}^{f} \rightarrow \mathbb{C}$ defined by

$$
h(x)=e^{-\pi^{t} x x-2 \pi i^{t} x v}
$$

for $x \in \mathbb{R}^{f}$ is contained in $\mathcal{S}\left(\mathbb{R}^{f}\right)$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{f}\right) \in \mathbb{Z}_{\geq 0}^{f}$. Then there exists a polynomial $Q_{\alpha}\left(X_{1}, \ldots, X_{f}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{f}\right]$ such that

$$
\left(D^{\alpha} h\right)(x)=Q_{\alpha}(x) e^{-\pi^{t} x x-2 \pi i^{t} x v}
$$

for $x \in \mathbb{R}^{f}$. Hence, if $P\left(X_{1}, \ldots, X_{f}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{f}\right]$, then

$$
\begin{aligned}
\left|P(x)\left(D^{\alpha} h\right)(x)\right| & =\left|P(x) Q_{\alpha}(x) e^{-\pi^{\mathrm{t}} x x-2 \pi i^{\mathrm{t}} x v}\right| \\
& =\left|P(x) Q_{\alpha}(x) e^{-\pi^{\mathrm{t}} x x}\right|
\end{aligned}
$$

for $x \in \mathbb{R}^{f}$. This equality implies that it now suffices to prove that the function defined by $x \mapsto e^{-\pi^{t} x x}$ for $x \in \mathbb{R}^{f}$ is contained in $\mathcal{S}\left(\mathbb{R}^{f}\right)$. This is a well-known fact that can be proven using L'Hôpital's rule.

Lemma 2.2.2. Let f be a positive integer. If $w \in \mathbb{C}^{f}$, then

$$
\int_{\mathbb{R}^{f}} e^{-\pi^{\mathrm{t}}(y+w)(y+w)} d y=\int_{\mathbb{R}^{f}} e^{-\pi^{\mathrm{t}} y y} d y
$$

Proof. By Fubini's theorem

$$
\begin{aligned}
\int_{\mathbb{R}^{f}} e^{-\pi^{\mathrm{t}}(y+w)(y+w)} d y & =\int_{\mathbb{R}^{f}} e^{-\pi\left(y_{1}+w_{1}\right)^{2}-\cdots-\pi\left(y_{f}+w_{f}\right)^{2}} d y \\
& =\int_{\mathbb{R}^{f}} e^{-\pi\left(y_{1}+w_{1}\right)^{2}} \cdots e^{-\pi\left(y_{f}+w_{f}\right)^{2}} d y \\
& =\left(\int_{\mathbb{R}} e^{-\pi\left(y_{1}+w_{1}\right)^{2}} d y_{1}\right) \cdots\left(\int_{\mathbb{R}} e^{-\pi\left(y_{f}+w_{f}\right)^{2}} d y_{f}\right)
\end{aligned}
$$

It thus suffices to prove the lemma when $f=1$. Write $w=u+i v$ with $u, v \in \mathbb{R}$. Then

$$
\int_{\mathbb{R}} e^{-\pi(y+u+i v)^{2}} d y=\int_{\mathbb{R}} e^{-\pi(y+i v)^{2}} d y
$$

To complete the proof we will use Cauchy's theorem. Assume, say, $v>0$. Let $a>0$, and let $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$ be the closed piecewise smooth curve as below:

By Cauchy's theorem (see chapter 2 of [17]) applied to the analytic function $z \mapsto e^{-\pi z^{2}}$ we have

$$
0=\int_{\gamma} e^{-\pi z^{2}} d z=\int_{\gamma_{1}} e^{-\pi z^{2}} d z+\int_{\gamma_{2}} e^{-\pi z^{2}} d z+\int_{\gamma_{3}} e^{-\pi z^{2}} d z+\int_{\gamma_{4}} e^{-\pi z^{2}} d z
$$

Using the definitions of these contour integrals, this is:

$$
0=\int_{-a}^{a} e^{-\pi y^{2}} d y+\int_{\gamma_{2}} e^{-\pi z^{2}} d z-\int_{-a}^{a} e^{-\pi(y+i v)^{2}} d y+\int_{\gamma_{4}} e^{-\pi z^{2}} d z
$$

or equivalently,

$$
\begin{equation*}
\int_{-a}^{a} e^{-\pi(y+i v)^{2}} d y=\int_{-a}^{a} e^{-\pi y^{2}} d y+\int_{\gamma_{2}} e^{-\pi z^{2}} d z++\int_{\gamma_{4}} e^{-\pi z^{2}} d z \tag{2.1}
\end{equation*}
$$

On the curves γ_{2} and γ_{4} the function $z \mapsto e^{-\pi z^{2}}$ is bounded by $e^{-\pi a^{2}+\pi v^{2}}$. Therefore (see Theorem 3 on page 81 of [17]),

$$
\left|\int_{\gamma_{2}} e^{-\pi z^{2}} d z\right| \leq v e^{-\pi a^{2}+\pi v^{2}}, \quad\left|\int_{\gamma_{3}} e^{-\pi z^{2}} d z\right| \leq v e^{-\pi a^{2}+\pi v^{2}}
$$

These bounds imply that

$$
\lim _{a \rightarrow \infty} \int_{\gamma_{2}} e^{-\pi z^{2}} d z=\lim _{a \rightarrow \infty} \int_{\gamma_{4}} e^{-\pi z^{2}} d z=0
$$

Letting $a \rightarrow \infty$ in (2.1), we thus obtain

$$
\int_{-\infty}^{\infty} e^{-\pi(y+i v)^{2}} d y=\int_{-\infty}^{\infty} e^{-\pi y^{2}} d y
$$

This is the desired result. If $v<0$, then there is a similar proof.
Lemma 2.2.3. Let f be a positive integer. Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix, and for $x \in \mathbb{R}^{f}$ let

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Let $w \in \mathbb{C}^{f}$. Define $g: \mathbb{R}^{f} \rightarrow \mathbb{C}$ by

$$
g(x)=e^{-2 \pi Q(x+w)}=e^{-\pi^{\mathrm{t}}(x+w) A(x+w)}
$$

for $x \in \mathbb{R}^{f}$. Then

$$
(\mathcal{F} g)(x)=\operatorname{det}(A)^{-1 / 2} e^{2 \pi i^{t} x w} e^{-\pi^{\mathrm{t}} x A^{-1} x}
$$

for $x \in \mathbb{R}^{f}$.
Proof. There exists positive-definite symmetric matrix $B \in \mathrm{GL}(f, \mathbb{R})$ such that $A={ }^{\mathrm{t}} B B=B B\left(\right.$ see (1.7)). Let $x \in \mathbb{R}^{f}$. Then:

$$
(\mathcal{F} g)(x)=\int_{\mathbb{R}^{f}} \exp (-2 \pi Q(y+w)) \exp \left(-2 \pi i^{\mathrm{t}} x y\right) d y
$$

$$
\begin{aligned}
&=\int_{\mathbb{R}^{f}} \exp \left(-\pi\left(2 Q(y+w)+2 i^{\mathrm{t}} x y\right)\right) d y \\
&= \int_{\mathbb{R}^{f}} \exp \left(-\pi\left(^{\mathrm{t}}(y+w) A(y+w)+2 i^{\mathrm{t}} x y\right)\right) d y \\
&= \int_{\mathbb{R}^{f}} \exp \left(-\pi\left(^{\mathrm{t}}(y+w) A(y+w)+2 i^{\mathrm{t}} y x\right)\right) d y \\
&=\int_{\mathbb{R}^{f}} \exp \left(-\pi\left(^{\mathrm{t}}(y+w)^{\mathrm{t}} B B(y+w)+2 i^{\mathrm{t}}(B y)^{\mathrm{t}} B^{-1} x\right)\right) d y \\
&=\int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}}(B y+B w)(B y+B w)+2 i^{\mathrm{t}}(B y)^{\mathrm{t}} B^{-1} x\right)\right) d y \\
&(\mathcal{F} g)(x)=\operatorname{det}(B)^{-1} \int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}}(y+B w)(y+B w)+2 i^{\mathrm{t}} y^{\mathrm{t}} B^{-1} x\right)\right) d y
\end{aligned}
$$

In the last step we used the formula for a linear change of variables (see Theorem 2.20 , (e) on page 50 and section 2.23 of [24]; note also that $\operatorname{det}(A)$ and $\operatorname{det}(B)$ are positive, as A and B are positive-definite symmetric matrices). Now $\operatorname{det}(B)^{2}=$ $\operatorname{det}(A)$, so that $\operatorname{det}(A)^{1 / 2}=\operatorname{det}(B)$. Hence,

$$
\begin{aligned}
& (\mathcal{F} g)(x) \\
& =\operatorname{det}(A)^{-1 / 2} \int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}} y y+2^{\mathrm{t}} y B w+{ }^{\mathrm{t}}(B w) B w+2 i^{\mathrm{t}} y^{\mathrm{t}} B^{-1} x\right)\right) d y \\
& =\operatorname{det}(A)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} w A w\right) \int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}} y y+2^{\mathrm{t}} y B w+2 i^{\mathrm{t}} y^{\mathrm{t}} B^{-1} x\right)\right) d y \\
& =\operatorname{det}(A)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} w A w\right) \int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}} y y+2^{\mathrm{t}} y\left(B w+i^{\mathrm{t}} B^{-1} x\right)\right)\right) d y \\
& =\operatorname{det}(A)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} w A w\right) \exp \left(\pi^{\mathrm{t}}\left(B w+i^{\mathrm{t}} B^{-1} x\right)\left(B w+i^{\mathrm{t}} B^{-1} x\right)\right) \\
& \quad \times \int_{\mathbb{R}^{f}} \exp \left(-\pi\left({ }^{\mathrm{t}} y y+2^{\mathrm{t}} y\left(B w+i^{\mathrm{t}} B^{-1} x\right)\right.\right. \\
& \left.\left.\quad \quad+{ }^{\mathrm{t}}\left(B w+i^{\mathrm{t}} B^{-1} x\right)\left(B w+i^{\mathrm{t}} B^{-1} x\right)\right)\right) d y \\
& =\operatorname{det}(A)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} w A w\right) \exp \left(\pi^{\mathrm{t}} w A w+2 \pi i^{\mathrm{t}} x w-\pi^{\mathrm{t}} x A^{-1} x\right) \\
& \quad \times \int_{\mathbb{R}^{f}} \exp \left(-\pi^{\mathrm{t}}\left(y+B w+i^{\mathrm{t}} B^{-1} x\right)\left(y+B w+i^{\mathrm{t}} B^{-1} x\right)\right) d y
\end{aligned}
$$

Applying now Lemma 2.2.2, we obtain:

$$
(\mathcal{F} g)(x)=\operatorname{det}(A)^{-1 / 2} \exp \left(2 \pi i^{\mathrm{t}} x w-\pi^{\mathrm{t}} x A^{-1} x\right) \int_{\mathbb{R}^{f}} \exp \left(-\pi^{\mathrm{t}} y y\right) d y
$$

$$
(\mathcal{F} g)(x)=\operatorname{det}(A)^{-1 / 2} \exp \left(2 \pi i^{\mathrm{t}} x w-\pi^{\mathrm{t}} x A^{-1} x\right)
$$

Here, we have used the well-known classical fact that

$$
\int_{\mathbb{R}^{f}} \exp \left(-\pi^{\mathrm{t}} y y\right) d y=1
$$

This completes the calculation.
Theorem 2.2.4 (Poisson summation formula). Let f be a positive integer. Let $g \in \mathcal{S}\left(\mathbb{R}^{f}\right)$. Then

$$
\sum_{m \in \mathbb{Z}^{f}} g(m)=\sum_{m \in \mathbb{Z}^{f}}(\mathcal{F} g)(m)
$$

where both series converge absolutely.
Proof. See page 249 of [15].
Lemma 2.2.5. Let f be a positive integer. Let $A \in M(f, \mathbb{R})$ be a positivedefinite symmetric matrix. Let ε be real number such that $0<\varepsilon<1$. Let K_{1} be a compact subset of \mathbb{H}_{1}, and let K_{2} be a compact subset of \mathbb{C}^{f}. For $x \in \mathbb{C}^{f}$, define

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Then there exists a positive real number $R>0$ such that

$$
-\operatorname{Im}\left((-1 / z)^{\mathrm{t}} g A^{-1} g+2{ }^{\mathrm{t}} g w\right) \leq-\varepsilon \operatorname{Im}\left((-1 / z) \cdot{ }^{\mathrm{t}} g A^{-1} g\right)
$$

for $z \in K_{1}, w \in K_{2}$, and all $g \in \mathbb{R}^{f}$ such that $\|g\| \geq R$.
Proof. This proof is similar to the proof of Proposition 2.1.2. First of all, there exists a positive-definite symmetric matrix $B \in \mathrm{GL}(f, \mathbb{R})$ such that $A={ }^{\mathrm{t}} B B$ (see (1.7)). If $m \in \mathbb{R}^{f}$, then we note that

$$
\begin{aligned}
{ }^{\mathrm{t}} g A^{-1} g & =\left|{ }^{\mathrm{t}} g A^{-1} g\right| \\
& =\left|{ }^{\mathrm{t}} g B^{-1}{ }^{\mathrm{t}} B^{-1} g\right| \\
& =\left|{ }^{\mathrm{t}}\left({ }^{\mathrm{t}} B^{-1} g\right) \cdot\left({ }^{\mathrm{t}} B^{-1} g\right)\right| \\
& =\left\|^{\mathrm{t}} B^{-1} g\right\|^{2} \\
& =\left(\frac{1}{\left\|{ }^{\mathrm{t}} B\right\|} \cdot\left\|{ }^{\mathrm{t}} B\right\|\left\|^{\mathrm{t}} B^{-1} g\right\|\right)^{2} \\
& \geq\left(\frac{1}{\left\|^{\mathrm{t}} B\right\|} \cdot\|g\|\right)^{2} \\
& =\frac{1}{\left\|^{\mathrm{t}} B\right\|^{2}} \cdot\|g\|^{2} .
\end{aligned}
$$

Next, let $M>0$ be such that

$$
|\operatorname{Im}(-1 / z)|,|\operatorname{Im}(w)| \leq M
$$

for $z \in K_{1}$ and $w \in K_{2}$; note that the set consisting of $-1 / z$ for $z \in K_{1}$ is also a compact subset of \mathbb{H}_{1}. Let $\delta>0$ be such that

$$
\operatorname{Im}(-1 / z) \geq \delta>0
$$

Let $R>0$ be such that if $x \geq R$, then

$$
\delta(1-\varepsilon) \cdot \frac{1}{\left\|{ }^{\mathrm{t}} B\right\|^{2}} \cdot x^{2} \geq 2 M x
$$

Now $z \in K_{1}, w \in K_{2}$, and $g \in \mathbb{R}^{f}$ with $\|g\| \geq R$. Write $-1 / z=\sigma+i t$ for $\sigma, t \in \mathbb{R}$ and $w=a+b i$ for $a, b \in \mathbb{R}^{f}$. We have

$$
\begin{aligned}
-\operatorname{Im}\left(2^{\mathrm{t}} g w\right) & =-2{ }^{\mathrm{t}} g b \\
& \leq\left. 2\right|^{\mathrm{t}} g b \mid \\
& \leq 2 M\|g\|
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(1-\varepsilon) \cdot \operatorname{Im}\left((-1 / z){ }^{\mathrm{t}} g A^{-1} g\right) & =t \cdot{ }^{\mathrm{t}} g A^{-1} g \\
& \geq \delta(1-\varepsilon) \cdot \frac{1}{\left\|^{\mathrm{t}} B\right\|^{2}} \cdot\|g\|^{2}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
-\operatorname{Im}\left(2^{\mathrm{t}} g w\right) & \leq(1-\varepsilon) \cdot \operatorname{Im}\left((-1 / z)^{\mathrm{t}} g A^{-1} g\right) \\
-\operatorname{Im}\left((-1 / z){ }^{\mathrm{t}} g A^{-1} g+2{ }^{\mathrm{t}} g w\right) & \leq-\varepsilon \cdot \operatorname{Im}\left((-1 / z)^{\mathrm{t}} g A^{-1} g\right)
\end{aligned}
$$

This is the desired result.
Theorem 2.2.6. Let f be a positive integer. Assume that f is even, and set

$$
k=\frac{f}{2}
$$

Let $A \in \mathrm{M}(f, \mathbb{R})$ be a positive-definite symmetric matrix, and for $x \in \mathbb{R}^{f}$ let

$$
Q_{A}(x)=\frac{1}{2}{ }^{\mathrm{t}} x A x, \quad Q_{A^{-1}}(x)=\frac{1}{2}{ }^{\mathrm{t}} x A^{-1} x
$$

The series

$$
\sum_{m \in \mathbb{Z}^{f}} e^{\pi i(-1 / z)^{t} m A^{-1} m+2 \pi i^{t} m w}
$$

converges absolutely and uniformly for $(z, w) \in D \times D_{1} \times \cdots \times D_{f}$, where D is any closed disk in \mathbb{H}_{1}, and D_{1}, \ldots, D_{f} are any closed disks in \mathbb{C}^{f}. The function that sends $(z, w) \in \mathbb{H}_{1} \times \mathbb{C}^{f}$ to this series is analytic in each variable. We have

$$
\theta(A, z, w)=\frac{i^{k}}{z^{k} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
$$

for $z \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$.

Proof. We apply Lemma 2.2 .5 with $\varepsilon=1 / 2, K_{1}=D$, and $K_{2}=D_{1} \times \cdots \times D_{f}$. By this corollary, there exists a finite set X of \mathbb{Z}^{f} such that for $m \in \mathbb{Z}^{f}-X$, $z \in K_{1}$ and $w \in K_{2}$ we have:

$$
\begin{aligned}
\left|e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}\right| & =e^{-\pi \operatorname{Im}\left((-1 / z)^{\mathrm{t}} m A^{-1} m+2^{\mathrm{t}} m w\right)} \\
& =e^{-\pi \cdot(1 / 2) \cdot \operatorname{Im}\left((-1 / z) \cdot{ }^{\mathrm{t}} m A^{-1} m\right)} \\
& \leq e^{-\pi \cdot \operatorname{Im}\left((-1 / z) \cdot Q_{A^{-1}}(m)\right)} \\
& =e^{-2 \pi Q_{A^{-1}}(m) \cdot \operatorname{Im}(-1 /(2 z))} \\
& \leq e^{-2 \pi \delta Q_{A^{-1}}(m)} \\
& =\left|e^{2 \pi i(\delta i) Q_{A^{-1}}(m)}\right|
\end{aligned}
$$

Here, $\delta>0$ is such that $\delta \leq \operatorname{Im}(-1 /(2 z))$ for $z \in D$. By Lemma 2.1.1 the series

$$
\sum_{m \in \mathbb{Z}^{f}}\left|e^{2 \pi i(\delta i) Q_{A^{-1}}(m)}\right|
$$

converges. The Weierstrass M-test (see [17], p. 160) now implies that the series

$$
\sum_{m \in \mathbb{Z}^{f}} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
$$

converges absolutely and uniformly on $D \times D_{1} \times \cdots \times D_{f}$. Since for each $m \in \mathbb{Z}^{f}$ the function on $\mathbb{H}_{1} \times \mathbb{C}^{f}$ defined by $(z, w) \mapsto e^{\pi i(-1 / z)^{{ }^{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}$ is an analytic function in each variable z, w_{1}, \ldots, w_{f}, and since our series converges absolutely and uniformly on all products of closed disks, it follows that this series is analytic in each variable (see [17], p. 162).

Now fix $w \in \mathbb{C}^{f}$. Define $g: \mathbb{R}^{f} \rightarrow \mathbb{C}$ by

$$
g(x)=e^{-2 \pi Q_{A}(x+w)}=e^{-\pi^{\mathrm{t}}(x+w) A(x+w)}
$$

for $x \in \mathbb{R}^{f}$. Then by Lemma 2.2.3,

$$
(\mathcal{F} g)(x)=\operatorname{det}(A)^{-1 / 2} e^{-\pi^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w}
$$

for $x \in \mathbb{R}^{f}$. By Theorem 2.2.4, the Poisson summation formula, we have:

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}^{f}} e^{-2 \pi Q_{A}(m+w)} & =\sum_{m \in \mathbb{Z}^{f}} \operatorname{det}(A)^{-1 / 2} e^{-\pi^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w} \\
\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i \cdot i \cdot Q_{A}(m+w)} & =\operatorname{det}(A)^{-1 / 2} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i \cdot(-1 / i)^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w}
\end{aligned}
$$

Let $t>0$. Replacing A by $t A$, we obtain similarly,

$$
\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i \cdot i t \cdot Q_{A}(m+w)}=\frac{1}{\operatorname{det}(t A)^{1 / 2}} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i \cdot(-1 /(i t))^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w}
$$

$$
\begin{aligned}
& =\frac{i^{k}}{(i t)^{k} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i \cdot(-1 /(i t))^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w} \\
\sum_{m \in \mathbb{Z}^{f}} e^{2 \pi i \cdot z \cdot Q_{A}(m+w)} & =\frac{i^{k}}{z^{k} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i \cdot(-1 / z)^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w} \\
\theta(A, z, w) & =\frac{i^{k}}{z^{k} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}} e^{\pi i \cdot(-1 / z)^{\mathrm{t}} x A^{-1} x+2 \pi i^{\mathrm{t}} x w}
\end{aligned}
$$

for $z \in \mathbb{H}_{1}$ of the form $z=i t$ for $t>0$. Since both sides of the last equation are analytic functions in z for $z \in \mathbb{H}_{1}$, the Identity Principle (see p. 307 of [17]) implies that this equality holds for all $z \in \mathbb{H}_{1}$.

2.3 Differential operators

Let f be a positive integer. Let $H\left(\mathbb{C}^{f}\right)$ be the \mathbb{C}-algebra of all functions

$$
F: \mathbb{C}^{f} \rightarrow \mathbb{C}
$$

that are analytic in each variable. Let $\ell={ }^{\mathrm{t}}\left(\ell_{1}, \ldots, \ell_{f}\right) \in \mathbb{C}^{f}$. We define a \mathbb{C} linear map

$$
L_{\ell}: H\left(\mathbb{C}^{f}\right) \longrightarrow H\left(\mathbb{C}^{f}\right)
$$

by

$$
L_{\ell}(F)=\sum_{i=1}^{f} \ell_{i} \frac{\partial F}{\partial w_{i}}
$$

Lemma 2.3.1. Let f be a positive integer, and let $\ell \in \mathbb{C}^{f}$. Then

$$
L_{\ell}\left(F_{1} \cdot F_{2}\right)=L_{\ell}\left(F_{1}\right) \cdot F_{2}+F_{1} \cdot L_{\ell}\left(F_{2}\right)
$$

for $F_{1}, F_{2} \in H\left(\mathbb{C}^{f}\right)$. Also,

$$
L_{\ell}\left(e^{F}\right)=L_{\ell}(F) \cdot e^{F}
$$

for $F \in H\left(\mathbb{C}^{f}\right)$.
Proof. Let $F_{1}, F_{2} \in H\left(\mathbb{C}^{f}\right)$. We have

$$
\begin{aligned}
L_{\ell}\left(F_{1} \cdot F_{2}\right) & =\sum_{i=1}^{f} \ell_{i} \frac{\partial}{\partial w_{i}}\left(F_{1} \cdot F_{2}\right) \\
& =\sum_{i=1}^{f} \ell_{i}\left(\frac{\partial F_{1}}{\partial w_{i}} \cdot F_{2}+F_{1} \cdot \frac{\partial F_{2}}{\partial w_{i}}\right) \\
& =\sum_{i=1}^{f} \ell_{i} \frac{\partial F_{1}}{\partial w_{i}} \cdot F_{2}+\sum_{i=1}^{f} \ell_{i} F_{1} \cdot \frac{\partial F_{2}}{\partial w_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{f} \ell_{i} \frac{\partial F_{1}}{\partial w_{i}}\right) \cdot F_{2}+F_{1} \cdot\left(\sum_{i=1}^{f} \ell_{i} \frac{\partial F_{2}}{\partial w_{i}}\right) \\
& =L_{\ell}\left(F_{1}\right) \cdot F_{2}+F_{1} \cdot L_{\ell}\left(F_{2}\right) .
\end{aligned}
$$

Let $F \in H\left(\mathbb{C}^{f}\right)$. Then:

$$
\begin{aligned}
L_{\ell}\left(e^{F}\right) & =\sum_{i=1}^{f} \ell_{i} \frac{\partial}{\partial w_{i}}\left(e^{F}\right) \\
& =\sum_{i=1}^{f} \ell_{i} \frac{\partial F}{\partial w_{i}} \cdot e^{F} \\
& =\left(\sum_{i=1}^{f} \ell_{i} \frac{\partial F}{\partial w_{i}}\right) \cdot e^{F} \\
& =L_{\ell}(F) \cdot e^{F} .
\end{aligned}
$$

This completes the proof.
Lemma 2.3.2. Let f be a positive integer and let $A \in \mathrm{M}(f, \mathbb{R})$ be a positivedefinite symmetric matrix. Assume that $\ell \in \mathbb{C}^{f}$ is such that

$$
{ }^{\mathrm{t}} \ell A \ell=0
$$

Let $m \in \mathbb{C}^{f}$ be fixed, and let r be a non-negative integer. Then:

$$
\begin{aligned}
L_{\ell}\left({ }^{\mathrm{t}}(m+w) A(m+w)\right) & =2^{\mathrm{t}} \ell A(m+w) \\
L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r}\right) & =0 \\
L_{\ell}\left({ }^{\mathrm{t}} m w\right) & ={ }^{\mathrm{t}} \ell m .
\end{aligned}
$$

Here, all functions are variables in $w \in \mathbb{C}^{f}$.
Proof. We have

$$
\begin{aligned}
& L_{\ell}\left({ }^{\mathrm{t}}(m+w) A(m+w)\right) \\
& =L_{\ell}\left(\sum_{i, j=1}^{f} a_{i j}\left(m_{i}+w_{i}\right)\left(m_{j}+w_{j}\right)\right) \\
& =\sum_{i, j=1}^{f} a_{i j} L_{\ell}\left(\left(m_{i}+w_{i}\right)\left(m_{j}+w_{j}\right)\right) \\
& =\sum_{i, j=1}^{f} a_{i j}\left(L_{\ell}\left(\left(m_{i}+w_{i}\right)\right)\left(m_{j}+w_{j}\right)+\left(m_{i}+w_{i}\right) L_{\ell}\left(\left(m_{j}+w_{j}\right)\right)\right) \\
& =\sum_{i, j=1}^{f} a_{i j}\left(\ell_{i}\left(m_{j}+w_{j}\right)+\ell_{j}\left(m_{i}+w_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i, j=1}^{f} a_{i j} \ell_{i}\left(m_{j}+w_{j}\right)+\sum_{i, j=1}^{f} a_{i j} \ell_{j}\left(m_{i}+w_{i}\right) \\
& ={ }^{\mathrm{t}} \ell A(m+w)+{ }^{\mathrm{t}}(m+w) A \ell \\
& =2^{\mathrm{t}} \ell A(m+w)
\end{aligned}
$$

We prove the second assertion by induction on r. The assertion is clear if $r=0$. For $r=1$, we have:

$$
\begin{aligned}
L_{\ell}\left({ }^{\mathrm{t}} l A(m+w)\right) & =L_{\ell}\left(\sum_{i, j=1}^{f} a_{i j} \ell_{i}\left(m_{j}+w_{j}\right)\right) \\
& =\sum_{i, j=1}^{f} a_{i j} \ell_{i} L_{\ell}\left(m_{j}+w_{j}\right) \\
& =\sum_{i, j=1}^{f} a_{i j} \ell_{i} \ell_{j} \\
& ={ }^{\mathrm{t}} \ell A \ell \\
& =0
\end{aligned}
$$

Assume now that $r \geq 2$ and that the claim holds for the non-negative integers $0,1, \ldots, r-1$. Then

$$
\begin{aligned}
& L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r}\right) \\
& =L_{\ell}\left({ }^{\mathrm{t}} \ell A(m+w) \cdot\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r-1}\right) \\
& =L_{\ell}\left({ }^{\mathrm{t}} \ell A(m+w)\right) \cdot\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r-1}+{ }^{\mathrm{t}} \ell A(m+w) \cdot L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r-1}\right) \\
& =0 \cdot\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r-1}+{ }^{\mathrm{t}} \ell A(m+w) \cdot 0 \\
& =0
\end{aligned}
$$

The final assertion of the lemma is straightforward.
Proposition 2.3.3. Let f be a positive even integer, and let $A \in \mathrm{M}(f, \mathbb{R})$ be a positive-definite symmetric matrix. Define

$$
k=\frac{f}{2} .
$$

Let $\ell \in \mathbb{C}^{f}$ be such that

$$
{ }^{\mathrm{t}} \ell A \ell=0 .
$$

For every non-negative integer r the series

$$
\sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}
$$

and

$$
\sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
$$

converge absolutely and uniformly for $(z, w) \in D \times D_{1} \times \cdots \times D_{f}$, where D is any closed disk in \mathbb{H}_{1}, and D_{1}, \ldots, D_{f} are any closed disks in \mathbb{C}^{f}. Both series define functions on $\mathbb{H}_{1} \times \mathbb{C}^{f}$ that are analytic in each variable. Moreover,

$$
\begin{aligned}
& \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
&=\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
\end{aligned}
$$

Proof. We prove this result by induction on r. The case $r=0$ is Theorem 2.2.6. Assume the claims hold for r; we will prove that they hold for $r+1$. Let

$$
S_{1}(z, w)=\sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}
$$

for $s \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$. Let D be any closed disk in \mathbb{H}_{1}, and let D_{1}, \ldots, D_{f} be any closed disks in \mathbb{C}^{f}. Since the above series converge absolutely and uniformly on $D \times D_{1} \times \cdots \times D_{f}$ to S_{1}, and since the terms of this series are analytic functions in each of the variables z, w_{1}, \ldots, w_{f}, the series

$$
\sum_{m \in \mathbb{Z}^{f}} L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}\right)
$$

converges absolutely and uniformly on $D \times D_{1} \times \cdots \times D_{f}$ to the analytic function $L_{\ell} S_{1}$ (see p. 162 of [17]). We have for $z \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$, using Lemma 2.3.1 and Lemma 2.3.2,

$$
\begin{aligned}
& \left(L_{\ell} S_{1}\right)(z, w) \\
& =\sum_{m \in \mathbb{Z}^{f}} L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}\right) \\
& =\sum_{m \in \mathbb{Z}^{f}} L_{\ell}\left(\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r}\right) e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
& \quad+\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} L_{\ell}\left(e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}\right) \\
& =\sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} \cdot L_{\ell}\left(\pi i z^{\mathrm{t}}(m+w) A(m+w)\right) \cdot e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
& =2 \pi i z \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r+1} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)}
\end{aligned}
$$

Next, for $z \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$, let

$$
S_{2}(z, w)=\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
$$

Comments similar to those above apply to S_{2} and the series defining S_{2}. For S_{2} we have for $z \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$, using Lemma 2.3.1 and Lemma 2.3.2,

$$
\begin{aligned}
& \left(L_{\ell} S_{2}\right)(z, w) \\
& =\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}} L_{\ell}\left(\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}\right) \\
& =\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} L_{\ell}\left(e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}\right) \\
& =\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} L_{\ell}\left(\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w\right) \\
& \quad \times e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w} \\
& =2 \pi i \cdot \frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} \cdot{ }^{\mathrm{t}} \ell m \cdot e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w} \\
& =2 \pi i \cdot \frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r+1} \cdot e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w} .
\end{aligned}
$$

Since $\left(L_{\ell} S_{1}\right)(z, w)=\left(L_{\ell} S_{2}\right)(z, w)$, we have for $(z, w) \in \mathbb{H}_{1} \times \mathbb{C}^{f}$,

$$
\begin{aligned}
& 2 \pi i z \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r+1} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
& \quad=2 \pi i \cdot \frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r+1} \cdot e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m\right. & +w))^{r+1} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
& =\frac{i^{k}}{z^{k+r+1} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r+1} \cdot e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
\end{aligned}
$$

By induction, the proof is complete.
Let f be a positive even integer, and let $A \in \mathrm{M}(f, \mathbb{R})$ be a positive-definite symmetric matrix. For r a non-negative integer, we let $\mathcal{H}_{r}(A)$ be the \mathbb{C} vector space spanned by the polynomials in w_{1}, \ldots, w_{f} given by

$$
\left({ }^{\mathrm{t}} \ell A w\right)^{r}
$$

where $w={ }^{\mathrm{t}}\left(w_{1}, \ldots, w_{f}\right)$ and $\ell \in \mathbb{C}^{f}$ with ${ }^{\mathrm{t}} \ell A \ell=0$. The elements of $\mathcal{H}_{r}(A)$ are homogeneous polynomials of degree r, and are called spherical functions with respect to A.

2.4 A space of theta series

Lemma 2.4.1. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Define the quadratic form $Q(x)$ in f variables by

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Let r be a non-negative integer, and let $P \in \mathcal{H}_{r}(A)$. Let $h \in \mathbb{Z}^{f}$ be such that

$$
A h \equiv 0(\bmod N)
$$

For $z \in \mathbb{H}_{1}$ define

$$
\theta(A, P, h, z)=\sum_{\substack{n \in \mathbb{Z}^{f} \\ n \equiv h(\bmod N)}} P(n) e^{2 \pi i z \frac{Q(n)}{N^{2}}}
$$

This series converges absolutely and uniformly on closed disks in \mathbb{H}_{1} to an analytic function. If $h, h^{\prime} \in \mathbb{Z}^{f}$ are such that $A h \equiv 0(\bmod N), A h^{\prime} \equiv 0(\bmod N)$, and $h \equiv h^{\prime}(\bmod N)$, then

$$
\begin{align*}
& \theta(A, P, h, z)=\theta\left(A, P, h^{\prime}, z\right) \tag{2.2}\\
& \theta(A, P, h, z)=(-1)^{r} \theta(A, P,-h, z) \tag{2.3}
\end{align*}
$$

for $z \in \mathbb{H}_{1}$. For $h \in \mathbb{Z}^{f}$ with $A h \equiv 0(\bmod N)$ and $P \in \mathcal{H}_{r}(A)$ we have

$$
\begin{align*}
&\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right. \\
&=\frac{i^{k}}{\sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}} e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} \cdot \theta(A, P, g, z) \tag{2.4}
\end{align*}
$$

and

$$
\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
1 & b \tag{2.5}\\
& 1
\end{array}\right]=e^{2 \pi i b \frac{Q(h)}{N^{2}}} \theta(A, P, h, z)
$$

for $z \in \mathbb{H}_{1}$. Let $P \in \mathcal{H}_{r}(A)$, and let $V(A, P)$ be the \mathbb{C} vector space spanned by the functions $\theta(A, P, h, \cdot)$ for $h \in \mathbb{Z}^{f}$ with $A h \equiv 0(\bmod N)$. The \mathbb{C} vector space $V(A, P)$ is a right $\mathrm{SL}(2, \mathbb{Z})$ module under the $\left.\right|_{k+r}$ action.

Proof. The assertions (2.2) and (2.3) follow from the involved definitions.
To prove (2.4) and (2.5), let $h \in \mathbb{Z}^{f}$ with $A h \equiv 0(\bmod N)$ and $P \in \mathcal{H}_{r}(A)$. Using the definition of $\mathcal{H}_{r}(A)$, it is clear that may assume that the polynomial P is of the form

$$
P(w)=\left({ }^{\mathrm{t}} \ell A w\right)^{r} .
$$

for some $\ell \in \mathbb{C}^{f}$ such that ${ }^{\mathrm{t}} \ell A \ell=0$. We recall from Proposition 2.3.3 that

$$
\begin{aligned}
& \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A(m+w)\right)^{r} e^{\pi i z^{\mathrm{t}}(m+w) A(m+w)} \\
&=\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i^{\mathrm{t}} m w}
\end{aligned}
$$

for $z \in \mathbb{H}_{1}$ and $w \in \mathbb{C}^{f}$. Replacing w with h / N, we obtain:

$$
\begin{aligned}
& \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell A\left(m+\frac{h}{N}\right)\right)^{r} e^{\pi i z^{\mathrm{t}}\left(m+\frac{h}{N}\right) A\left(m+\frac{h}{N}\right)} \\
&=\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i \frac{{ }^{\mathrm{t}} m h}{N}}
\end{aligned}
$$

Let $m \in \mathbb{Z}^{f}$. Then

$$
\begin{aligned}
m+\frac{h}{N} & =\frac{h+m N}{N} \\
& =\frac{n}{N}
\end{aligned}
$$

where $n=h+m N$. The map

$$
\mathbb{Z}^{f} \xrightarrow{\sim}\left\{n \in \mathbb{Z}^{f}: n \equiv h(\bmod N)\right\}
$$

defined by $m \mapsto n=h+m N$ is a bijection, the inverse of which is given by $n \mapsto(n-h) / N$. It follows that

$$
\begin{aligned}
& N^{-r} \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n A n}}{N^{2}}} \\
& =\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{m \in \mathbb{Z}^{f}}\left({ }^{\mathrm{t}} \ell m\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}} m A^{-1} m+2 \pi i \frac{{ }^{\mathrm{t}}{ }_{m h}}{N}}
\end{aligned}
$$

Next, consider the map

$$
\mathbb{Z}^{f} \xrightarrow{\sim}\left\{g \in \mathbb{Z}^{f}: A g \equiv 0(\bmod N)\right\}
$$

defined by $m \mapsto g=N A^{-1} m$; note that $N A^{-1} m \in \mathbb{Z}_{f}$ for $m \in \mathbb{Z}^{f}$ because $N A^{-1}$ is integral by the definition of the level N. This map is a bijection, with inverse defined by $g \mapsto m=N^{-1} A g$. Hence,

$$
\begin{aligned}
& N^{-r} \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n A n}}{N^{2}}} \\
& \quad=N^{-r} \frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g \in \mathbb{Z}^{f} \\
A g \equiv 0(\bmod N)}}\left({ }^{\mathrm{t}} \ell A g\right)^{r} e^{\pi i(-1 / z) \frac{\mathrm{t}_{g A g}}{N^{2}}+2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}}
\end{aligned}
$$

Canceling the common factor N^{-r}, we get:

$$
\begin{aligned}
& \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n A n}}{N^{2}}} \\
& =\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g \in \mathbb{Z}^{f} \\
A g \equiv 0(\bmod N)}}\left({ }^{\mathrm{t}} \ell A g\right)^{r} e^{\pi i(-1 / z) \frac{\mathrm{t}_{g A g}}{N^{2}}+2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}}
\end{aligned}
$$

The set of $g \in \mathbb{Z}^{f}$ such that $A g \equiv 0(\bmod N)$ is a subgroup of \mathbb{Z}^{f}; this subgroup in turn contains the subgroup $N \mathbb{Z}^{f}$. We may therefore sum in stages on the right-hand side. Let $F(g)$ be the summand on the right-hand side for $g \in \mathbb{Z}^{f}$ with $A g \equiv 0(\bmod N)$. The form of this summation in stages is then:

$$
\begin{aligned}
\sum_{\substack{g \in \mathbb{Z}^{f} \\
A g \equiv 0(\bmod N)}} F(n)= & \sum_{\substack{g \in \mathbb{Z}^{f} / N Z^{f} \\
A g \equiv 0(\bmod N)}} \sum_{m \in N \mathbb{Z}^{f}} F(g+m) \\
& =\sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}} \sum_{\substack{n_{1} \in \mathbb{Z}^{f} \\
n_{1} \equiv g(\bmod N)}} F\left(n_{1}\right) .
\end{aligned}
$$

Applying this observation, we have:

$$
\begin{aligned}
\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n A n}}{N^{2}}}= & \frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n_{1}\right)^{r} e^{\pi i(-1 / z) \frac{\mathrm{t}_{n_{1} A n_{1}}}{N^{2}}+2 \pi i \frac{\mathrm{t}_{n_{1} A h}}{N^{2}}} \\
& \sum_{\substack{n_{1} \in \mathbb{Z}^{f} \\
n_{1} \equiv g(\bmod N)}}
\end{aligned}
$$

Let $g \in \mathbb{Z}^{f}$ with $A g \equiv 0(\bmod N)$ and let $n_{1} \in \mathbb{Z}^{f}$ with $n_{1} \equiv g(\bmod N)$. Write $n_{1}=g+N m$ for some $m \in \mathbb{Z}^{f}$. Then

$$
\begin{aligned}
e^{2 \pi i \frac{\mathrm{t}_{n_{1} A h}}{N^{2}}} & =e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} e^{2 \pi i \frac{N^{\mathrm{t}_{m A h}}}{N^{2}}} \\
& =e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} e^{2 \pi i \frac{\mathrm{t}_{m A h}}{N}} \\
& =e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}}
\end{aligned}
$$

In the last step we used that $A h \equiv 0(\bmod N)$, so that $\frac{{ }^{t} m A h}{N}$ is an integer. We therefore have:

$$
\sum_{\substack{n \in \mathbb{Z}^{f} \\ n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n A n}}{N^{2}}}
$$

$$
=\frac{i^{k}}{z^{k+r} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\ A g \equiv 0(\bmod N)}} e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} \sum_{\substack{n_{1} \in \mathbb{Z}^{f} \\ n_{1} \equiv g(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n_{1}\right)^{r} e^{\pi i(-1 / z)^{\mathrm{t}_{n_{1} A n_{1}}} \frac{N^{2}}{}} .
$$

Interchanging z and $-1 / z$, we obtain:

$$
\begin{aligned}
& \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n\right)^{r} e^{\pi i(-1 / z) \frac{\mathrm{t}_{n A n}}{N^{2}}} \\
& \quad=\frac{(-1)^{k+r} i^{k} z^{k+r}}{\sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}} e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} \sum_{\substack{n_{1} \in \mathbb{Z}^{f} \\
n_{1} \equiv g(\bmod N)}}\left({ }^{\mathrm{t}} \ell A n_{1}\right)^{r} e^{\pi i z \frac{\mathrm{t}_{n_{1} A n_{1}}^{N^{2}}}{\mathrm{~m}^{2}}} .
\end{aligned}
$$

This implies that

$$
\begin{align*}
\theta\left(A, P, h,\left[\begin{array}{rr}
& 1 \\
-1 &]
\end{array}\right]\right. \\
\qquad=\frac{(-i)^{k+2 r} z^{k+r}}{\sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}} e^{2 \pi i \frac{\mathrm{t}_{g A h}}{N^{2}}} \theta(A, P, g, z) \tag{2.6}
\end{align*}
$$

which is equivalent to (2.4).
Next, let $b \in \mathbb{Z}$. We have

$$
\begin{aligned}
& \left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] \\
& =\theta(A, P, h, z+b) \\
& =\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}} P(n) e^{2 \pi i(z+b) \frac{Q(n)}{N^{2}}} \\
& =\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}} P(n) e^{2 \pi i b \frac{Q(n)}{N^{2}}} e^{2 \pi i z \frac{Q(n)}{N^{2}}} \\
& =e^{2 \pi i b \frac{Q(h)}{N^{2}}} \sum_{n \in \mathbb{R}^{f}} P(n) e^{2 \pi i z \frac{Q(n)}{N^{2}}} \quad(\text { cf. Lemma 1.5.8) } \\
& =e^{2 \pi i b \frac{Q(h)}{N^{2}}} \theta(A, P, h, z) .
\end{aligned}
$$

This is (2.5).
Finally, the vector space $V(A, P)$ is mapped into itself by $\mathrm{SL}(2, \mathbb{Z})$ via the $\left.\right|_{k+r}$ right action because $\mathrm{SL}(2, \mathbb{Z})$ is generated by the matrices

$$
\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]
$$

and because (2.4) and (2.5) hold.

2.5 The case $N=1$

Proposition 2.5.1. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be a even symmetric positive-definite matrix, and let N be the level of A. By Corollary 1.5.5 $N=1$ if and only if $\operatorname{det}(A)=1$; assume that $N=1$ so that also $\operatorname{det}(A)=1$. Then f is divisible by 8 . Let r be a non-negative integer, and let $P \in \mathcal{H}_{r}(A)$. The \mathbb{C} vector space $V(A, P)$ has dimension at most one, and is spanned by the theta series

$$
\theta(A, P, 0, z)=\sum_{n \in \mathbb{Z}^{f}} P(n) e^{2 \pi i z Q(n)}
$$

We have

$$
\begin{equation*}
\left.\theta(A, P, 0, z)\right|_{k+r} \alpha=\theta(A, P, 0, z) \tag{2.7}
\end{equation*}
$$

for all $\alpha \in \mathrm{SL}(2, \mathbb{Z})$, and $\theta(A, P, 0, z)$ is a modular form of weight $k+r$ with respect to $\mathrm{SL}(2, \mathbb{Z})$.

Proof. Let $h \in \mathbb{Z}^{f} ;$ since $N=1$, we have $A h \equiv 0(\bmod N)$. Now

$$
\begin{aligned}
\theta(A, P, h, z) & =\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod 1)}} P(n) e^{2 \pi i z Q(n)} \\
& =\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv 0(\bmod 1)}} P(n) e^{2 \pi i z Q(n)} \\
& =\theta(A, P, 0, z)
\end{aligned}
$$

It follows that $V(A, P)$ is at most one-dimensional, and is spanned by the function $\theta(A, P, 0, z)$. By Lemma 2.4.1, we have

$$
\begin{align*}
\left.\theta(A, P, 0, z)\right|_{k+r}\left[\begin{array}{ll}
-1 & 1
\end{array}\right] & =i^{k} \theta(A, P, 0, z) \tag{2.8}\\
\left.\theta(A, P, 0, z)\right|_{k+r}\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] & =\theta(A, P, 0, z) \tag{2.9}
\end{align*}
$$

for $b \in \mathbb{Z}$. Since $\operatorname{SL}(2, \mathbb{Z})$ is generated by the elements

$$
\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]
$$

it follows that there exists a function $t: \operatorname{SL}(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\times}$such that

$$
\begin{equation*}
\left.\theta(A, P, 0, z)\right|_{k+r} \alpha=t(\alpha) \cdot \theta(A, P, 0, z) \tag{2.10}
\end{equation*}
$$

for $\alpha \in \mathrm{SL}(2, \mathbb{Z})$ and for all non-negative integers r and $P \in \mathrm{SL}(2, \mathbb{Z})$. We claim that $t(\alpha)=1$ for all $\alpha \in \operatorname{SL}(2, \mathbb{Z})$. Assume that $r=0$ and let $P \in \mathcal{H}_{0}(A)$ be the polynomial such that $P\left(X_{1}, \ldots, X_{f}\right)=1$. Then the function $\theta(A, P, 0, z)$ is
not identically zero. Since $\theta(A, P, 0, z)$ is not identically zero, and since $\left.\right|_{k}$ is a right action, equation (2.10) implies that t is a homomorphism. Also, by (2.8) and (2.9) we have

$$
t\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\right)=i^{k}, \quad t\left(\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right]\right)=1
$$

for $b \in \mathbb{Z}$. Now

$$
\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]=\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right]
$$

Applying these matrices to $\theta(A, P, 0, z)$ we obtain:

$$
\begin{aligned}
\left.\theta(A, P, 0, z)\right|_{k}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right] & =\left.\theta(A, P, 0, z)\right|_{k}\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right] \\
i^{2 k} \theta(A, P, 0, z) & =(-1)^{k} \theta(A, P, 0, z)
\end{aligned}
$$

Since $\theta(A, P, 0, z)$ is not identically zero, we have $i^{2 k}=(-1)^{k}$. We also have the matrix identity

$$
\left[\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right]\left[\begin{array}{cc}
1 & -b \\
& 1
\end{array}\right]\left[\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right]=\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
b & 1
\end{array}\right]
$$

for $b \in \mathbb{Z}$. Applying these matrices to $\theta(A, P, 0, z)$, we find that:

$$
i^{2 k} \theta(A, P, 0, z)=\left.(-1)^{k} \theta(A, P, 0, z)\right|_{k}\left[\begin{array}{ll}
1 & \\
b & 1
\end{array}\right]
$$

for $b \in \mathbb{Z}$. Since $i^{2 k}=(-1)^{k}$, this implies that

$$
\left.\theta(A, P, 0, z)\right|_{k+r}\left[\begin{array}{ll}
1 & \\
b & 1
\end{array}\right]=\theta(A, P, 0, z)
$$

for $b \in \mathbb{Z}$. Therefore, t is trivial on all matrices of the form

$$
\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & \\
b & 1
\end{array}\right]
$$

for $b \in \mathbb{Z}$. Since these matrices generate $\operatorname{SL}(2, \mathbb{Z})$ it follows that the homomorphism t is trivial. This proves (2.7) for all $\alpha \in \operatorname{SL}(2, \mathbb{Z})$, for all non-negative integers r and $P \in \mathcal{H}_{r}(A)$. Also, since t is trivial, we must have $i^{k}=1$. Write $k=4 a+b$ where a and b are non-negative integers with $b \in\{0,1,2,3\}$. Then $1=i^{k}=\left(i^{4}\right)^{a} i^{b}=i^{b}$. This equality implies that $4 \mid k$, so that $8 \mid f$.

Given what we have already proven, to complete the proof that $\theta(A, P, 0, z)$ is a modular form of weight $k+r$ for $\operatorname{SL}(2, \mathbb{Z})$, it will suffice to prove that $\theta(A, P, 0, z)$ is holomorphic at the cusps of $\operatorname{SL}(2, \mathbb{Z})$, i.e., that the third condition of the definition of a modular form holds (see section 1.7). Clearly, the smallest positive integer N such that $\Gamma(N) \subset \mathrm{SL}(2, \mathbb{Z})$ is $N=1$. Let $\sigma \in \mathrm{SL}(2, \mathbb{Z})$. We have already proven that $\left.\theta(A, P, 0, z)\right|_{k+r} \sigma=\theta(A, P, 0, z)$. Thus, to complete
the proof we need to prove the existence of a positive number R and a complex power series

$$
\sum_{m=0}^{\infty} a(m) q^{m}
$$

that converges in $D(R)=\{q \in \mathbb{C}:|q|<R\}$ such that

$$
\theta(A, P, 0, z)=\sum_{m=0}^{\infty} a(m) e^{2 \pi i m z}
$$

for $z \in H(1, R)=\left\{z \in \mathbb{H}_{1}: \operatorname{Im}(z)>-\frac{\log (R)}{2 \pi}\right\}$ (note that $H(1, R)$ is mapped into $D(R)$ under the map defined by $\left.z \mapsto e^{2 \pi i z}\right)$. Consider the power series

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}^{f}} P(n) q^{Q(n)} \tag{2.11}
\end{equation*}
$$

in the complex variable q. Let q be any element of \mathbb{C} with $|q|<1$. Since $q=e^{2 \pi i z}$ for some $z \in \mathbb{H}_{1}$, and since

$$
\sum_{n \in \mathbb{Z}^{f}} P(n) e^{2 \pi i z Q(n)}=\sum_{n \in \mathbb{Z}^{f}} P(n) q^{Q(n)}
$$

converges absolutely by Lemma 2.4.1, it follows that the power series (2.11) converges absolutely at q. Hence, the radius of convergence of the power series (2.11) is greater than 0 , and in fact at least 1 (see Theorem 8 on p. 172 of [17]). Since by the definition of $\theta(A, P, 0, z)$ we have

$$
\theta(A, P, 0, z)=\sum_{n \in \mathbb{Z}^{f}} P(n) e^{2 \pi i z Q(n)}
$$

for $z \in \mathbb{H}_{1}$, the proof is complete.

2.6 Example: a quadratic form of level one

If the level N of A is 1 , so that the $\theta(A, P, h, z)$ are modular forms with respect to $\operatorname{SL}(2, \mathbb{Z})$, then necessarily $8 \mid f$ by Proposition 2.5.1. Assume that $f=8$. Up to equivalence, there is the only positive-definite even integral symmetric matrix A in $\mathrm{M}(8, \mathbb{Z})$ with $\operatorname{det}(A)=1$. This matrix arises in the following way. Consider the root system E_{8} inside \mathbb{R}^{8}. To describe this root system with 240 elements, let e_{1}, \ldots, e_{8} be the standard basis for \mathbb{R}^{8}. The root system E_{8} consists of the 112 vectors

$$
\delta_{1} e_{i}+\delta_{2} e_{k} \quad \text { where } 1 \leq i, k \leq 8, i \neq k, \text { and } \delta_{1}, \delta_{2} \in\{ \pm 1\}
$$

and the 128 vectors

$$
\frac{1}{2}\left(\epsilon_{1} e_{1}+\cdots+\epsilon_{8} e_{8}\right) \quad \text { where } \epsilon_{1}, \ldots, \epsilon_{8} \in\{ \pm 1\} \text { and } \quad \epsilon_{1} \cdots \epsilon_{8}=1
$$

Every element of E_{8} has length $\sqrt{2}$. As a base for this root system we can take the 8 vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}+e_{8}\right) \\
& \alpha_{2}=e_{1}+e_{2} \\
& \alpha_{3}=-e_{1}+e_{2} \\
& \alpha_{4}=-e_{2}+e_{3} \\
& \alpha_{5}=-e_{3}+e_{4} \\
& \alpha_{6}=-e_{4}+e_{5} \\
& \alpha_{7}=-e_{5}+e_{6} \\
& \alpha_{8}=-e_{6}+e_{7}
\end{aligned}
$$

Every element of E_{8} can be written as a \mathbb{Z} linear combination of $\alpha_{1}, \ldots, \alpha_{8}$ such that all the coefficients are either all non-negative or all non-positive. Let A be the Cartan matrix of E_{8} with respect to the above base; this turns out to be $A=\left(\left(\alpha_{i}, \alpha_{j}\right)\right)_{1 \leq i, j \leq 8}$. Here, (\cdot, \cdot) is the usual inner product on \mathbb{R}^{8}. Explicitly, we have:

$$
A=\left[\begin{array}{cccccccc}
2 & & -1 & & & & & \\
& 2 & & -1 & & & & \\
-1 & & 2 & -1 & & & & \\
& -1 & -1 & 2 & -1 & & & \\
& & & -1 & 2 & -1 & & \\
& & & & -1 & 2 & -1 & \\
& & & & & -1 & 2 & -1 \\
& & & & & & -1 & 2
\end{array}\right]
$$

Clearly, A is the matrix of (\cdot, \cdot) with respect to the ordered basis $\alpha_{1}, \ldots, \alpha_{8}$ for \mathbb{R}^{8}; hence, A is positive-definite. Evidently A is an even integral symmetric matrix, and a computation shows that $\operatorname{det}(A)=1$. Since $\operatorname{det}(A)=1$, the level of A is $N=1$. The quadratic form Q is given by:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}, \ldots, x_{8}\right)= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2} \\
& -x_{1} x_{3}-x_{2} x_{4}-x_{3} x_{4}-x_{4} x_{5}-x_{5} x_{6}-x_{6} x_{7}-x_{7} x_{8}
\end{aligned}
$$

Let $r=0$, and let $1 \in \mathcal{H}_{0}(A)$ be the constant polynomial. The theta series

$$
\theta(A, z)=\theta(A, 1,0, z)=\sum_{m \in \mathbb{Z}^{8}} e^{2 \pi i Q(m)}
$$

is a non-zero modular form for $\operatorname{SL}(2, \mathbb{Z})$ of weight $8 / 2=4$. We may also write

$$
\theta(A, z)=\sum_{n=0}^{\infty} r(n) e^{2 \pi i n}
$$

where

$$
r(n)=\#\left\{m \in \mathbb{Z}^{8}: Q(m)=n\right\}
$$

It is known that the dimension of the space of modular forms for $\operatorname{SL}(2, \mathbb{Z})$ of weight 4 is one (see Proposition 2.26 on p. 46 of [27]). Moreover, this space contains the Eisenstein series

$$
E(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) e^{2 \pi i n z}
$$

where

$$
\sigma_{3}(n)=\sum_{a \mid n, a>0} a^{3}
$$

for positive integers n. Since $r(0)=1$, we have $\theta(A, z)=E(z)$. Thus,

$$
r(n)=240 \cdot \sigma_{3}(n)
$$

for all positive integers n. Evidently, $240 \cdot \sigma_{3}(1)=240$. Thus, there are 240 solutions $m \in \mathbb{Z}^{8}$ to the equation $Q(m)=1$. These 240 solutions are exactly the coordinates of the elements of E_{8} when the elements of E_{8} are written in our chosen base (note that the coordinates are automatically in \mathbb{Z}, as this is property of a base for a root system).

2.7 The case $N>1$

The action of $\operatorname{SL}(2, \mathbb{Z})$

Lemma 2.7.1. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Let c be a positive integer; by Corollary 1.5.7, the level of $c A$ is $c N$. Let r be a non-negative integer. We have $\mathcal{H}_{r}(c A)=\mathcal{H}_{r}(A)$. Let $h \in \mathbb{Z}^{f}$ be such that $A h \equiv 0(\bmod N)$ and let $P \in \mathcal{H}_{r}(A)$. If $g \in \mathbb{Z}_{f}$ is such that $g \equiv h(\bmod N)$, then $(c A) g \equiv 0(\bmod c N)$ so that $\theta(c A, P, g, \cdot)$ is defined, and

$$
\theta(A, P, h, z)=\sum_{\substack{g(\bmod c N) \\ g \equiv h(\bmod N)}} \theta(c A, P, g, c z)
$$

for $z \in \mathbb{H}_{1}$.
Proof. If $\ell \in \mathbb{C}^{f}$, then ${ }^{\mathrm{t}} \ell A \ell=0$ if and only if ${ }^{\mathrm{t}} \ell(c A) \ell=0$; this observation, and the involved definitions, imply that $\mathcal{H}_{r}(c A)=\mathcal{H}_{r}(A)$. Next, let $z \in \mathbb{H}_{1}$. Then:

$$
\begin{aligned}
\theta(A, P, h, z) & =\sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv h(\bmod N)}} P(n) e^{2 \pi i z \frac{Q(n)}{N^{2}}} \\
& =\sum_{\substack{g \in \mathbb{Z}^{f} / c N \mathbb{Z}^{f} \\
g \equiv h(\bmod N)}} \sum_{n_{1} \in c N \mathbb{Z}^{f}} P\left(g+n_{1}\right) e^{2 \pi i z \frac{Q\left(g+n_{1}\right)}{N^{2}}} .
\end{aligned}
$$

Let $g \in \mathbb{Z}^{f}$ with $g \equiv h(\bmod N)$. There is a bijection

$$
c N \mathbb{Z}^{f} \xrightarrow{\sim}\left\{m \in \mathbb{Z}^{f}: m \equiv g(\bmod c N)\right\}
$$

given by $n_{1} \mapsto m=g+n_{1}$. Hence,

$$
\begin{aligned}
& \theta(A, P, h, z)=\sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \sum_{\substack{m \in \mathbb{Z}^{f} \\
m \equiv g(\bmod c N)}} P(m) e^{2 \pi i z \frac{Q(m)}{N^{2}}} \\
& =\sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \sum_{\substack{m \in \mathbb{Z}^{f} \\
m \equiv g(\bmod c N)}} P(m) e^{\pi i z \frac{t^{t_{m A m}}}{N^{2}}} \\
& =\sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \sum_{\substack{m \in \mathbb{Z}^{f} \\
m \equiv g(\bmod c N)}} P(m) e^{\pi i c z \frac{\mathrm{t}_{m c A m}}{(c N)^{2}}} \\
& =\sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \theta(c A, P, g, c z) \text {. }
\end{aligned}
$$

This completes the proof.
Lemma 2.7.2. Let f be a positive even integer. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Let

$$
\alpha=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z})
$$

and assume that $c \neq 0$. Let

$$
Y(A)=\left\{m \in \mathbb{Z}^{f}: A m \equiv 0(\bmod N)\right\}
$$

Define a function

$$
s_{\alpha}: Y(A) \times Y(A) \longrightarrow \mathbb{C}
$$

by

$$
s_{\alpha}\left(g_{1}, g_{2}\right)=\sum_{\substack{g(\bmod c N) \\ g \equiv g_{2}(\bmod N)}} e^{2 \pi i\left(\frac{a Q(g)+{ }^{\mathrm{t}} g_{1} A g+d Q\left(g_{1}\right)}{c N^{2}}\right)} .
$$

The function s_{α} is well-defined. If $g_{1}, g_{1}^{\prime}, g_{2}, g_{2}^{\prime} \in Y(A)$ and $g_{1} \equiv g_{1}^{\prime}(\bmod N)$ and $g_{2} \equiv g_{2}^{\prime}(\bmod N)$, then $s_{\alpha}\left(g_{1}, g_{2}\right)=s_{\alpha}\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$. Moreover,

$$
\begin{equation*}
s_{\alpha}\left(g_{1}, g_{2}\right)=e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d g_{1}\right) \tag{2.12}
\end{equation*}
$$

for $g_{1}, g_{2} \in Y(A)$.
Proof. To prove that s_{α} is well-defined, let $g_{1}, g_{2} \in Y(A)$, and $g, g^{\prime} \in \mathbb{Z}^{f}$ with $g \equiv g^{\prime}(\bmod c N)$ and $g \equiv g^{\prime} \equiv g_{2}(\bmod N)$. Write $g^{\prime}=g+c N m$ for some $m \in \mathbb{Z}^{f}$. Then

$$
e^{2 \pi i\left(\frac{a Q\left(g^{\prime}\right)+{ }^{\mathrm{t}} g_{1} A g^{\prime}+d Q\left(g_{1}\right)}{c N^{2}}\right)}=e^{2 \pi i\left(\frac{a Q(g+c N m)+{ }^{\mathrm{t}} g_{1} A(g+c N m)+d Q\left(g_{1}\right)}{c N^{2}}\right)}
$$

$$
\begin{aligned}
& =e^{2 \pi i\left(\frac{\left.a Q(g)+a c N^{\mathrm{t}}{ }_{g A m+a c^{2} N^{2} Q(m)+{ }^{\mathrm{t}} g_{1} A g+c N^{\mathrm{t}}{ }_{g_{1} A m+d Q\left(g_{1}\right)}}^{c N^{2}}\right)}{}\right.} \begin{array}{l}
\left.=e^{2 \pi i\left(\frac{a Q(g)+{ }^{\mathrm{t}} g_{1} A g+d Q\left(g_{1}\right)+a c N^{\mathrm{t}}(A g) m+a c^{2} N^{2} Q(m)+c N^{\mathrm{t}}\left(A g_{1}\right) m}{c N^{2}}\right.}\right) \\
=e^{2 \pi i\left(\frac{\left.a Q(g)+{ }^{\mathrm{t}}{ }_{g_{1} A g+d Q\left(g_{1}\right)}^{c N^{2}}\right)}{c}\right.}
\end{array} .
\end{aligned}
$$

where in the last step we used that $A g \equiv A g_{1} \equiv 0(\bmod N)$. It follows that s_{α} is well-defined.

Next we prove (2.12). Let $g_{1}, g_{2} \in Y(A)$. Then

$$
\begin{aligned}
& e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} S_{\alpha}\left(0, g_{2}+d g_{1}\right) \\
& =\sum_{\substack{g(\bmod c N) \\
g \equiv g_{2}+d g_{1}(\bmod N)}} e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} e^{2 \pi i\left(\frac{a Q(g)}{c N^{2}}\right)} \\
& =\sum_{\substack{g(\bmod c N) \\
g \equiv g_{2}+d g_{1}(\bmod N)}} e^{2 \pi i\left(\frac{a Q(g)-b c^{\mathrm{t}} g_{2} A g_{1}-b c d Q\left(g_{1}\right)}{c N^{2}}\right)} \\
& =\sum_{g(\bmod c N)} \sum_{g \equiv g_{2}(\bmod N)} e^{2 \pi i\left(\frac{a Q\left(g+d g_{1}\right)-b c{ }^{\mathrm{t}} g_{2} A g_{1}-b c d Q\left(g_{1}\right)}{c N^{2}}\right)} \\
& =\sum_{g(\bmod c N)} e^{g \equiv g_{2}(\bmod N)} e^{2 \pi i\left(\frac{a Q(g)+a d^{\mathrm{t}} g_{1} A g+a d^{2} Q\left(g_{1}\right)-b c{ }^{\mathrm{t}} g_{2} A g_{1}-b c d Q\left(g_{1}\right)}{c N^{2}}\right)} \\
& =\sum_{g(\bmod c N)} \sum_{g \equiv g_{2}(\bmod N)} e^{2 \pi i\left(\frac{a Q(g)+{ }^{\mathrm{t}} g_{1} A\left(a d g-b c g_{2}\right)+d Q\left(g_{1}\right)}{c N^{2}}\right)} .
\end{aligned}
$$

Let $g \in \mathbb{Z}_{f}$ with $g \equiv g_{2}(\bmod N)$. Write $g_{2}=g+N m$ for some $m \in \mathbb{Z}^{f}$. Then

$$
\begin{aligned}
e^{2 \pi i\left(\frac{{ }^{\mathrm{t}_{1} A\left(a d g-b c g_{2}\right)}}{c N^{2}}\right)} & =e^{2 \pi i\left(\frac{\mathrm{t}_{g_{1}} A((a d-b c) g-b c N m)}{c N^{2}}\right)} \\
& =e^{2 \pi i\left(\frac{\mathrm{t}_{g_{1} A(g-b c N m)}}{c N^{2}}\right)} \\
& =e^{2 \pi i\left(\frac{\mathrm{t}_{g_{1} A g}}{c N^{2}}\right)} e^{2 \pi i\left(\frac{-b c N^{\mathrm{t}}\left(A g_{1}\right) m}{c N^{2}}\right)} \\
& =e^{2 \pi i\left(\frac{\mathrm{t}_{g_{1} A g}}{c N^{2}}\right)} e^{2 \pi i\left(\frac{-b^{\mathrm{t}}\left(A g_{1}\right) m}{N}\right)} \\
& =e^{2 \pi i\left(\frac{\mathrm{t}_{g_{1} A g}}{c N^{2}}\right)},
\end{aligned}
$$

where the last step follows because $A g_{1} \equiv 0(\bmod N)$. We therefore have:

$$
\begin{aligned}
& e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d g_{1}\right)=\sum_{\substack{g(\bmod c N) \\
g \equiv g_{2}(\bmod N)}} e^{2 \pi i\left(\frac{a Q(g)+{ }^{\mathrm{t}_{g_{1}} A g+d Q\left(g_{1}\right)}}{c N^{2}}\right)} \\
& e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d g_{1}\right)=s_{\alpha}\left(g_{1}, g_{2}\right) .
\end{aligned}
$$

This completes the proof of (2.12).
Finally, let $g_{1}, g_{1}^{\prime}, g_{2}, g_{2}^{\prime} \in Y(A)$ with $g_{1} \equiv g_{1}^{\prime}(\bmod N)$ and $g_{2} \equiv g_{2}^{\prime}(\bmod N)$. It is evident from the definition of s_{α} that $s_{\alpha}\left(g_{1}, g_{2}\right)=s_{\alpha}\left(g_{1}, g_{2}^{\prime}\right)$. Write $g_{1}^{\prime}=$ $g_{1}+N m$ for some $m \in \mathbb{Z}^{f}$. Then

$$
\begin{aligned}
s_{\alpha}\left(g_{1}^{\prime}, g_{2}\right)= & e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}^{\prime}+b d Q\left(g_{1}^{\prime}\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d g_{1}^{\prime}\right) \\
= & e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A\left(g_{1}+N m\right)+b d Q\left(g_{1}+N m\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d\left(g_{1}+N m\right)\right) \\
= & e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)+b d N^{\mathrm{t}}\left(A g_{1}\right) m+b d N^{2} Q(m)+b N^{\mathrm{t}}\left(A g_{2}\right) m}{N^{2}}\right)} \\
& \quad \times s_{\alpha}\left(0, g_{2}+d g_{1}+d N m\right) \\
= & e^{-2 \pi i\left(\frac{b^{\mathrm{t}} g_{2} A g_{1}+b d Q\left(g_{1}\right)}{N^{2}}\right)} s_{\alpha}\left(0, g_{2}+d g_{1}\right) \\
= & s_{\alpha}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Here we used that $A g_{1} \equiv A g_{2} \equiv 0(\bmod N)$. This completes the proof.
Lemma 2.7.3. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Define the quadratic form $Q(x)$ in f variables by

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x .
$$

Let r be a non-negative integer, and let $P \in \mathcal{H}_{r}(A)$. Let $h \in \mathbb{Z}^{f}$ be such that

$$
A h \equiv 0(\bmod N)
$$

Let

$$
\alpha=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z})
$$

and assume that c is a positive integer. Then

$$
\begin{align*}
&\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
&=\frac{1}{i^{k+2 r} c^{k} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}} s_{\alpha}(g, h) \cdot \theta(A, P, g, z) \tag{2.13}
\end{align*}
$$

where s_{α} is defined in Lemma 2.7.2.
Proof. We have

$$
\begin{aligned}
& \left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& =j(\alpha, z)^{-k-r} \theta\left(A, P, h, \frac{a z+b}{c z+d}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =j(\alpha, z)^{-k-r} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \theta\left(c A, P, g, c \cdot \frac{a z+b}{c z+d}\right) \\
& =j(\alpha, z)^{-k-r} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} \theta\left(c A, P, g,-\frac{1}{c z+d}+a\right) \\
& =j(\alpha, z)^{-k-r} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i a \frac{Q_{c A}(g)}{(c N)^{2}}} \theta\left(c A, P, g,-\frac{1}{c z+d}\right) \\
& =j(\alpha, z)^{-k-r} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i a \frac{Q(g)}{c N^{2}}} \theta\left(c A, P, g,-\frac{1}{c z+d}\right) \\
& =(-1)^{k+r} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i a \frac{Q(g)}{c N^{2}}}\left(\left.\theta(c A, P, g, \cdot)\right|_{k+r}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\right)(c z+d) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i a \frac{Q(g)}{c N^{2}}} \\
& \sum_{\left.\bmod _{(\bmod)} c N\right)} e^{2 \pi i \frac{\mathrm{t}_{g_{1}(c A) g}}{(c N)^{2}}} \theta\left(c A, P, g_{1}, c z+d\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i a \frac{Q(g)}{c N^{2}}} \\
& \sum_{\substack{g_{1}(\bmod c N) \\
(c A) g_{1} \equiv 0(\bmod c N)}} e^{2 \pi i \frac{\mathrm{t}_{1}(c A) g}{(c N)^{2}}} e^{2 \pi i d \frac{Q\left(g_{1}\right)}{c N^{2}}} \theta\left(c A, P, g_{1}, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1}(\bmod c N) \\
(c A) g_{1} \equiv 0(\bmod c N)}} \\
& \left(\sum_{\substack{g(\bmod c N) \\
g \equiv h(\bmod N)}} e^{2 \pi i\left(\frac{a Q(g)+{ }^{\mathrm{t}} \mathrm{~g}_{1} A g+d Q\left(g_{1}\right)}{c N^{2}}\right)}\right) \theta\left(c A, P, g_{1}, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1}(\bmod c N) \\
(c A) g_{1} \equiv 0(\bmod c N)}} s_{\alpha}\left(g_{1}, h\right) \theta\left(c A, P, g_{1}, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1}(\bmod c N) \\
A g_{1} \equiv 0(\bmod N)}} s_{\alpha}\left(g_{1}, h\right) \theta\left(c A, P, g_{1}, c z\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1} \in \mathbb{Z}^{f} / N \mathbb{Z}^{f} \\
g_{1} \equiv 0(\bmod N)}} \sum_{m \in N \mathbb{Z}^{f} / c N \mathbb{Z}^{f}} s_{\alpha}\left(g_{1}+m, h\right) \theta\left(c A, P, g_{1}+m, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1} \in \mathbb{Z}^{f} / N \mathbb{Z}^{f} \\
A g_{1} \equiv 0(\bmod N)}} s_{\alpha}\left(g_{1}, h\right) \sum_{m \in N \mathbb{Z}^{f} / c N \mathbb{Z}^{f}} \theta\left(c A, P, g_{1}+m, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1} \in \mathbb{Z}^{f} / N \mathbb{Z}^{f} \\
A g_{1} \equiv 0(\bmod N)}} s_{\alpha}\left(g_{1}, h\right) \sum_{\substack{g^{\prime}(\bmod c N) \\
g^{\prime} \equiv g_{1}(\bmod N)}} \theta\left(c A, P, g^{\prime}, c z\right) \\
& =\frac{i^{k}(-1)^{k+r}}{\sqrt{\operatorname{det}(c A)}} \sum_{\substack{g_{1} \in \mathbb{Z}^{f} / N \mathbb{Z}^{f} \\
A g_{1} \equiv 0 \\
(\bmod N)}} s_{\alpha}\left(g_{1}, h\right) \sum_{\substack{g^{\prime}(\bmod c N) \\
g^{\prime} \equiv g_{1}(\bmod N)}} \theta\left(c A, P, g^{\prime}, c z\right) \\
& i^{k+2 r c^{k} \sqrt{\operatorname{det}(A)}} \sum_{\substack{g_{1}(\bmod N) \\
A g_{1} \equiv 0(\bmod N)}} s_{\alpha}\left(g_{1}, h\right) \cdot \theta\left(A, P, g_{1}, z\right) .
\end{aligned}
$$

Here, we used Lemma 2.7.2.

The action of $\Gamma_{0}(N)$

Lemma 2.7.4. Let f be an even positive integer, let $A \in \mathrm{M}(f, \mathbb{Z})$ be a positivedefinite even integral symmetric matrix and let N be the level of A. Let

$$
Y(A)=\left\{g \in \mathbb{Z}^{f}: A g \equiv 0(\bmod N)\right\}
$$

Define a function

$$
s: Y(A) \longrightarrow \mathbb{C}
$$

by

$$
s(g)=\sum_{\substack{q(\bmod N) \\ A q \equiv 0(\bmod N)}} e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}}=\sum_{q \in Y(A) / N \mathbb{Z} f} e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}}
$$

for $g \in Y(A)$. The function s is well-defined and

$$
s(g)= \begin{cases}0 & \text { if } g \not \equiv 0(\bmod N) \\ \# Y(A) / N \mathbb{Z}^{f} & \text { if } g \equiv 0(\bmod N)\end{cases}
$$

for $g \in Y(A)$.
Proof. To see that s is well defined, let $g, q_{1}, q_{2} \in Y$ and assume that $q_{2}=$ $q_{1}+N q_{3}$ for some $q_{3} \in \mathbb{Z}^{f}$. Then

$$
\begin{aligned}
{ }^{\mathrm{t}} g A q_{2} & ={ }^{\mathrm{t}} g A q_{1}+N^{\mathrm{t}} g A q_{3} \\
& ={ }^{\mathrm{t}} g A q_{1}+N^{\mathrm{t}}(A g) A q_{3}
\end{aligned}
$$

$$
\equiv{ }^{\mathrm{t}} g A q_{1}\left(\bmod N^{2}\right)
$$

because $A g \equiv 0(\bmod N)$. This implies that

$$
e^{2 \pi i \frac{{ }^{\mathrm{t}_{g A q_{1}}}}{N^{2}}}=e^{2 \pi i \frac{{ }^{\mathrm{t}_{g A q_{2}}}}{N^{2}}},
$$

so that s is well-defined. To prove the second assertion, asssume first that $g \equiv 0(\bmod N)$. Write $g=N m$ for some $m \in \mathbb{Z}^{f}$. Let $q \in Y(A)$. Then

$$
\begin{aligned}
{ }^{\mathrm{t}} g A q & =N^{\mathrm{t}} m(A q) \\
& \equiv 0\left(\bmod N^{2}\right)
\end{aligned}
$$

since $A q \equiv 0(\bmod N)$ because $q \in Y(A)$. It follows that

$$
s(g)=\sum_{q \in Y(A) / N \mathbb{Z}^{f}} e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}}=\sum_{q \in Y(A) / N \mathbb{Z}^{f}} 1=\# Y(A) / N \mathbb{Z}^{f}
$$

Finally, assume that $g \not \equiv 0(\bmod N)$. Then there exists $m \in \mathbb{Z}^{f}$ such that ${ }^{\mathrm{t}} g m \not \equiv 0(\bmod N)$. This implies that ${ }^{\mathrm{t}} g N m \not \equiv 0\left(\bmod N^{2}\right)$. Let $q_{1}=N A^{-1} m$. Then $q \in Y(A)$ because $A q=N m \equiv 0(\bmod N)$. Also,

$$
{ }^{\mathrm{t}} g A q_{1}={ }^{\mathrm{t}} g N m \not \equiv 0\left(\bmod N^{2}\right)
$$

This implies that $e^{2 \pi i \frac{\mathrm{t}_{g A q_{1}}}{N^{2}}} \neq 1$. Since the function $Y(A) / N \mathbb{Z}^{f} \rightarrow \mathbb{C}^{\times}$defined by $q \mapsto e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}}$ is a character, and since this character is non-trivial at q_{1}, it follows that summing this character over the elements of $Y(A) / N \mathbb{Z}^{f}$ gives 0 ; this means that $s(g)=0$.
Proposition 2.7.5. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Define the quadratic form $Q(x)$ in f variables by

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Let r be a non-negative integer, and let $P \in \mathcal{H}_{r}(A)$. Let $h \in \mathbb{Z}^{f}$ be such that

$$
A h \equiv 0(\bmod N)
$$

Let

$$
\alpha=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

and assume that d is a positive integer. Then

$$
\begin{align*}
\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \\
& =\left(\frac{1}{d^{k}} \sum_{\substack{q(\bmod d N) \\
q \equiv h(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}}\right) \cdot \theta(A, P, a h, z) \tag{2.14}
\end{align*}
$$

Proof. We will abbreviate

$$
\alpha=\left[\begin{array}{ll}
b & -a \\
d & -c
\end{array}\right]
$$

Applying first Lemma 2.7.3 (note that $d>0$), and then (2.4), we obtain:

$$
\begin{aligned}
& \left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& =\left.\left(\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
& -1 \\
1 &
\end{array}\right]\right)\right|_{k+r}\left[\begin{array}{ll}
1 & -1
\end{array}\right] \\
& =\left.\left(\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{cc}
b & a \\
d & -c
\end{array}\right]\right)\right|_{k+r}\left[\begin{array}{ll}
1 & -1
\end{array}\right] \\
& =\left.\frac{1}{i^{k+2 r} d^{k} \sqrt{\operatorname{det}(A)}} \sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} s_{\alpha}(q, h) \theta(A, P, q, z)\right|_{k+r}\left[\begin{array}{ll}
1 & -1
\end{array}\right] \\
& =\frac{1}{i^{2 r} d^{k} \operatorname{det}(A)} \sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} \sum_{\substack{g(\bmod N) \\
A \equiv \equiv 0(\bmod N)}} s_{\alpha}(q, h) e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}} \theta(A, P, g, z) \\
& =\frac{1}{i^{2 r} d^{k} \operatorname{det}(A)} \sum_{\substack{g(\bmod N) \\
A g \equiv 0(\bmod N)}}\left(\sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} s_{\alpha}(q, h) e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}}\right) \theta(A, P, g, z) \text {. }
\end{aligned}
$$

We can calculate the inner sum as follows:

$$
\begin{aligned}
& \sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} s_{\alpha}(q, h) e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}} \\
& =\sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} s_{\alpha}(0, h-c q) e^{-2 \pi i\left(\frac{-a \mathrm{t}_{h A q+a c Q(q)}}{N^{2}}\right)} e^{2 \pi i \frac{\mathrm{t}_{g A q}}{N^{2}}} \quad(\mathrm{cf.}(2.12)) \\
& =s_{\alpha}(0, h) \sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} e^{2 \pi i\left(\frac{\mathrm{t}_{(a h+g) A q}}{N^{2}}\right)} e^{2 \pi i\left(\frac{-a c Q(q)}{N^{2}}\right)} \\
& =s_{\alpha}(0, h) \sum_{\substack{q(\bmod N) \\
A q \equiv 0(\bmod N)}} e^{2 \pi i\left(\frac{\mathrm{t}_{(a h+g) A q}}{N^{2}}\right)} \quad(\mathrm{cf.} \text { Lemma 1.5.8)} \\
& = \\
& s_{\alpha}(0, h) s(g+a h) \quad(\mathrm{cf.} \text { Lemma } 2.7 .4) \\
& =s_{\alpha}(0, h) \times\left\{\begin{array}{ll}
0 & \text { if } g \not \equiv-a h(\bmod N), \\
\# Y(A) / N \mathbb{Z}^{f} & \text { if } g \equiv-a h(\bmod N)
\end{array} \quad(\text { cf. Lemma 2.7.4). }\right.
\end{aligned}
$$

It follows that

$$
\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \tag{2.15}\\
c & d
\end{array}\right]
$$

$$
\begin{align*}
& =\frac{\# Y(A) / N \mathbb{Z}^{f}}{i^{2 r} d^{k} \operatorname{det}(A)} \cdot s_{\alpha}(0, h) \cdot \theta(A, P,-a h, z) \\
& =\frac{(-1)^{r} \# Y(A) / N \mathbb{Z}^{f}}{i^{2 r} d^{k} \operatorname{det}(A)} \cdot s_{\alpha}(0, h) \cdot \theta(A, P, a h, z) \tag{2.3}\\
& =\frac{\# Y(A) / N \mathbb{Z}^{f}}{d^{k} \operatorname{det}(A)} \cdot s_{\alpha}(0, h) \cdot \theta(A, P, a h, z)
\end{align*}
$$

The definition of s_{α} asserts that:

$$
s_{\alpha}(0, h)=\sum_{\substack{q(\bmod d N) \\ q \equiv h(\bmod N)}} e^{2 \pi i\left(\frac{b Q(q)}{d N^{2}}\right)}
$$

Finally, to determine $\# Y(A) / N \mathbb{Z}^{f}$, assume that $h=0, r=0$, and that P is the element of $\mathcal{H}_{0}(A)$ such that $P\left(X_{1}, \ldots, X_{f}\right)=1$. Then the function

$$
\theta(A, 1,0, z)=\sum_{n \in \mathbb{Z}^{f}} e^{2 \pi i z Q(n)}
$$

is not identically zero. Also, let

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right], \quad \text { so that } \quad \alpha=\left[\begin{array}{ll}
& -1 \\
1 &
\end{array}\right]
$$

Then $s_{\alpha}(0,0)=1$, and (2.16) asserts that:

$$
\theta(A, 1,0, z)=\frac{\# Y(A) / N \mathbb{Z}^{f}}{\operatorname{det}(A)} \cdot \theta(A, 1,0, z)
$$

We conclude that

$$
\# Y(A) / N \mathbb{Z}^{f}=\operatorname{det}(A)
$$

This completes the proof.
Lemma 2.7.6. Let f be a positive even integer, let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Let

$$
Y(A)=\left\{h \in \mathbb{Z}^{f}: A h \equiv 0(\bmod N)\right\}
$$

Then

$$
\# Y(A) / N \mathbb{Z}^{f}=\operatorname{det}(A)
$$

Proof. This was proven in the proof of Proposition 2.7.5.
Lemma 2.7.7. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Assume that $N>1$. Define the quadratic form $Q(x)$ in f variables by

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Define

$$
\chi_{A}: \mathbb{Z} \longrightarrow \mathbb{C}
$$

by

$$
\chi_{A}(d)=\frac{1}{d^{k}} \cdot \sum_{m \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{Q(m)}{d}}
$$

for $d \in \mathbb{Z}$ with $(d, N)=1$ and $d>0$, by

$$
\chi_{A}(d)=(-1)^{k} \chi_{A}(-d)
$$

for $d \in \mathbb{Z}$ with $(d, N)=1$ and $d<0$, and by $\chi(d)=0$ for $d \in \mathbb{Z}$ with $(d, N)>1$. Then χ_{A} is a well-defined real-valued Dirichlet character modulo N. Moreover, if r is a non-negative integer, $h \in \mathbb{Z}^{f}$ is such that $A h \equiv 0(\bmod N)$, and $P \in \mathcal{H}_{r}(A)$, then

$$
\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \tag{2.17}\\
c & d
\end{array}\right]=e^{2 \pi i \cdot \frac{\cdot a b Q(h)}{N^{2}}} \cdot \chi_{A}(d) \cdot \theta(A, P, a h, z)
$$

for

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

Proof. Define a function

$$
\alpha: \Gamma_{0}(N) \longrightarrow \mathbb{C}
$$

in the following way. Let

$$
g=\left[\begin{array}{ll}
a & b \tag{2.18}\\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

If $d>0$, then define

$$
\begin{equation*}
\alpha(g)=\frac{1}{d^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(q)}{d}} \tag{2.19}
\end{equation*}
$$

and if $d<0$, define

$$
\alpha(g)=(-1)^{k} \alpha\left(\left[\begin{array}{ll}
-a & -b \tag{2.20}\\
-c & -d
\end{array}\right]\right)=(-1)^{k} \alpha\left(\left[\begin{array}{cc}
-1 & \\
& -1
\end{array}\right] g\right)
$$

Note that $d \neq 0$ since $a d-b c=1$ and $N>1$ (by assumption). Our first goal will be to prove that α takes values in \mathbb{Q}^{\times}and is in fact a homomorphism from $\Gamma_{0}(N)$ to \mathbb{Q}^{\times}. Let $P=1 \in \mathcal{H}_{0}(A)$ be the polynomial in f variables such that $P\left(X_{1}, \ldots, X_{f}\right)=1$. Let g be as in (2.18), and assume $d>0$. Then by (2.14) we have

$$
\left.\theta(A, 1,0, z)\right|_{k} g=\left(\frac{1}{d^{k}} \sum_{\substack{q \in \mathbb{Z}^{f} / d N \mathbb{Z}^{f} \\ q \equiv 0(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}}\right) \cdot \theta(A, 1,0, z)
$$

$$
\begin{aligned}
& =\left(\frac{1}{d^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(N q)}{d N^{2}}}\right) \cdot \theta(A, 1,0, z) \\
& =\left(\frac{1}{d^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(q)}{d}}\right) \cdot \theta(A, 1,0, z) \\
\left.\theta(A, 1,0, z)\right|_{k} g & =\alpha(g) \cdot \theta(A, 1,0, z) .
\end{aligned}
$$

Assume that $d<0$. Then by what we just proved,

$$
\begin{aligned}
\left.\theta(A, 1,0, z)\right|_{k} g & =\left.\theta(A, 1,0, z)\right|_{k}\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right]\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right] g \\
& =\left.(-1)^{k} \theta(A, 1,0, z)\right|_{k}\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right] g \\
& =(-1)^{k} \alpha(-g) \theta(A, 1,0, z) \\
& =\alpha(g) \cdot \theta(A, 1,0, z) .
\end{aligned}
$$

Thus,

$$
\left.\theta(A, 1,0, z)\right|_{k} g=\alpha(g) \cdot \theta(A, 1,0, z)
$$

for all $g \in \Gamma_{0}(N)$. Since $\theta(A, 1,0, z)$ is non-zero, this formula also implies that $\alpha(g) \neq 0$ for all $g \in \Gamma_{0}(N)$. Thus, α actually takes values in \mathbb{C}^{\times}. Let $g, g^{\prime} \in \Gamma_{0}(N)$. Then

$$
\begin{aligned}
\left.\theta(A, 1,0, z)\right|_{k}\left(g g^{\prime}\right) & =\left.\left(\left.\theta(A, 1,0, z)\right|_{k} g\right)\right|_{k} g^{\prime} \\
\alpha\left(g g^{\prime}\right) \theta(A, 1,0, z) & =\left.\alpha(g) \cdot \theta(A, 1,0, z)\right|_{k} g^{\prime} \\
\alpha\left(g g^{\prime}\right) \theta(A, 1,0, z) & =\alpha(g) \alpha\left(g^{\prime}\right) \theta(A, 1,0, z)
\end{aligned}
$$

Since $\theta(A, 1,0, z) \neq 0$, we have

$$
\begin{equation*}
\alpha\left(g g^{\prime}\right)=\alpha(g) \alpha\left(g^{\prime}\right) \tag{2.21}
\end{equation*}
$$

for $g, g^{\prime} \in \Gamma_{0}(N)$. We have already noted that $\alpha(g)$ is non-zero for all $g \in \Gamma_{0}(N)$; we will now show that α takes values in \mathbb{Q}^{\times}. To prove this it will suffice to prove that $\alpha(g) \in \mathbb{Q}$ for g as in (2.18) with $d>0$. Fix such a g. If $d=1$ then it is clear that $\alpha(g) \in \mathbb{Q}$. Assume that $d>1$. Then $c \neq 0$ (recall that $a d-b c=1$). Let n be an integer such that $n c+d>0$. Then

$$
\begin{aligned}
\alpha\left(\left[\begin{array}{ll}
1 & n \\
& 1
\end{array}\right]\right) \alpha(g) & =\alpha\left(\left[\begin{array}{ll}
1 & n \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
1 \cdot \alpha(g) & =\alpha\left(\left[\begin{array}{ll}
a & a n+b \\
c & c n+d
\end{array}\right]\right) \\
\alpha(g) & =\alpha\left(\left[\begin{array}{ll}
a & a n+b \\
c & c n+d
\end{array}\right]\right)
\end{aligned}
$$

By the definition of α, this implies that

$$
\alpha(g)=\frac{1}{(c n+d)^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{(a n+b) Q(q)}{c n+d}}
$$

It is clear from this formula that

$$
\alpha(g) \in \mathbb{Q}\left(\zeta_{n c+d}\right)
$$

where $\zeta_{n c+d}=e^{2 \pi i /(n c+d)}$ is a primitive $n c+d$-th root of unity. Assume that $c>0$. Then $c+d>0$, and

$$
\alpha(g) \in \mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{c+d}\right) .
$$

Since c and d are non-zero and relatively prime (because $a d-b c=1$), d and $c+d$ are relatively prime. This implies that $\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{c+d}\right)=\mathbb{Q}$, so that $\alpha(g) \in \mathbb{Q}$. Assume that $c<0$. Then $(-1) c+d>0$, and

$$
\alpha(g) \in \mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{-c+d}\right)
$$

Since $-c$ and d are non-zero and relatively prime, d and $-c+d$ are relatively prime, and $\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{-c+d}\right)=\mathbb{Q}$, so that $\alpha(g) \in \mathbb{Q}$. This completes the argument that $\alpha(g) \in \mathbb{Q}$ for $g \in \Gamma_{0}(N)$.

Now we prove the claims about χ_{A}. We need to prove that the four conditions of Lemma 1.1.1 hold for χ_{A}. It is immediate from the formula for χ_{A} that $\chi_{A}(1)=1$; this proves the first condition. The third condition, that $\chi_{A}(d)=0$ for $d \in \mathbb{Z}$ such that $(d, N)>1$, follows from the definition of χ_{A}.

To prove the remaining conditions we first make a connection to α. We will prove that if $d \in \mathbb{Z}$ with $(d, N)=1$, and

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

then

$$
\chi_{A}(d)=\alpha\left(\left[\begin{array}{ll}
a & b \tag{2.22}\\
c & d
\end{array}\right]\right) .
$$

Assume first that $d>0$. By definition,

$$
\alpha(g)=\frac{1}{d^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(q)}{d}}
$$

The summands in this formula are contained in $\mathbb{Q}\left(\zeta_{d}\right)$, where $\zeta_{d}=e^{2 \pi i / d}$. Since $(b, d)=1$, there exists an element σ of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)$ such that $\sigma\left(\zeta_{d}\right)=\zeta_{d}^{b}$. We have $\sigma^{-1}\left(\zeta_{d}^{b}\right)=\zeta_{d}$. Applying σ^{-1} to both sides of the above formula, and using that $\alpha(g) \in \mathbb{Q}$, we obtain:

$$
\begin{aligned}
& \alpha(g)=\frac{1}{d^{k}} \sum_{q \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{Q(q)}{d}} \\
& \alpha(g)=\chi_{A}(d) .
\end{aligned}
$$

This proves (2.22) for the case $d>0$. Assume that $d<0$. Using the previous case, and the definition of α, we have:

$$
\chi_{A}(d)=(-1)^{k} \chi_{A}(-d)
$$

$$
\begin{aligned}
& =(-1)^{k} \alpha\left(\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]\right) \\
& =(-1)^{k} \alpha\left(\left[\begin{array}{ll}
-1 & - \\
& -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
\chi_{A}(d) & =\alpha\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) .
\end{aligned}
$$

This proves (2.22) in all cases.
Now we will prove the fourth condition of Lemma 1.1.1, which asserts that $\chi_{A}(d)=\chi_{A}(d+N)$ for all $d \in \mathbb{Z}$. Let $d \in \mathbb{Z}$. If $(d, N)>1$, then $(d+N, N)>1$, and $\chi_{A}(d)=0=\chi_{A}(d+N)$. Assume that $(d, N)=1$. Then there exists $a, b \in \mathbb{Z}$ such that $a d-b N=1$. By (2.22),

$$
\begin{align*}
\alpha\left(\left[\begin{array}{ll}
a & b \\
N & d
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) & =\alpha\left(\left[\begin{array}{cc}
a & b \\
N & d
\end{array}\right]\right) \alpha\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) \\
\alpha\left(\left[\begin{array}{cc}
a & a+b \\
N & d+N
\end{array}\right]\right. & =\chi_{A}(d) \cdot 1 \\
\chi_{A}(d+N) & =\chi_{A}(d) \quad(\text { cf. }(2.22)) \tag{2.22}
\end{align*}
$$

To prove the remaining second condition of Lemma 1.1.1 let $d_{1}, d_{2} \in \mathbb{Z}$. If $\left(d_{1}, N\right)>0$ or $\left(d_{2}, N\right)>0$, then evidently $\chi_{A}\left(d_{1} d_{2}\right)=0=\chi_{A}\left(d_{1}\right) \chi_{A}\left(d_{2}\right)$. Assume, therefore, that $\left(d_{1}, N\right)=\left(d_{2}, N\right)=1$. There exist $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}$ and $\varepsilon_{2} \in\{ \pm 1\}$ such that be such that $a_{1} d_{1}-b_{1} N=1, a_{2} d_{2}-b_{2} \varepsilon_{2} N=1$, and $b_{2} \geq 0$. Then

$$
\begin{aligned}
\alpha\left(\left[\begin{array}{cc}
a_{1} & b_{1} \\
N & d_{1}
\end{array}\right]\left[\begin{array}{cc}
a_{2} & b_{2} \\
\varepsilon_{2} N & d_{2}
\end{array}\right]\right) & =\alpha\left(\left[\begin{array}{cc}
a_{1} a_{2}+b_{1} \varepsilon_{2} N & a_{1} b_{2}+b_{1} d_{2} \\
a_{2} N+d_{1} \varepsilon_{2} N & d_{1} d_{2}+b_{2} N
\end{array}\right]\right) \\
\alpha\left(\left[\begin{array}{cc}
a_{1} & b_{1} \\
N & d_{1}
\end{array}\right]\right) \alpha\left(\left[\begin{array}{cc}
a_{2} & b_{2} \\
\varepsilon_{2} N & d_{2}
\end{array}\right]\right) & =\alpha\left(\left[\begin{array}{ll}
a_{1} a_{2}+b_{1} \varepsilon_{2} N & a_{1} b_{2}+b_{1} d_{2} \\
a_{2} N+d_{1} \varepsilon_{2} N & d_{1} d_{2}+b_{2} N
\end{array}\right]\right) \\
\chi_{A}\left(d_{1}\right) \chi_{A}\left(d_{2}\right) & =\chi_{A}\left(d_{1} d_{2}+b_{2} N\right) \\
\chi_{A}\left(d_{1}\right) \chi_{A}\left(d_{2}\right) & =\chi_{A}(d_{1} d_{2}+\underbrace{N+\cdots+N}_{b_{2}}) \\
\chi_{A}\left(d_{1}\right) \chi_{A}\left(d_{2}\right) & =\chi_{A}\left(d_{1} d_{2}\right) \quad \text { (fourth condition). }
\end{aligned}
$$

We have proven that all the conditions of Lemma 1.1.1; by this lemma χ_{A} is a Dirichlet character modulo N. Since (2.22) holds, and since $\alpha(g) \in \mathbb{Q}^{\times}$for all $g \in \Gamma_{0}(N)$, it follows that χ_{A} is real-valued.

It remains to prove (2.17). Let

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

and let $h \in Y(A)$, i.e., $h \in \mathbb{Z}^{f}$ with $A h \equiv 0(\bmod N)$. First assume that $d>0$. We have:

$$
\frac{1}{d^{k}} \sum_{\substack{q(\bmod d N) \\ q \equiv h(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}}
$$

$$
\begin{aligned}
& =\frac{1}{d^{k}} \sum_{\substack{q \in \mathbb{Z}^{f} / d N \mathbb{Z}^{f} \\
q \equiv h(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}} \\
& =\frac{1}{d^{k}} \sum_{\substack{q \in \mathbb{Z}^{f} / d N \mathbb{Z}^{f} \\
q \equiv a d \cdot h(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}}(a d \equiv 1(\bmod N)) \\
& =\frac{1}{d^{k}} \sum_{\substack{q \in \mathbb{Z}^{f} / N \mathbb{Z}^{f} \\
q \equiv a d \cdot h(\bmod N)}} \sum_{q_{1} \in N \mathbb{Z}^{f} / d N \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q\left(q+q_{1}\right)}{d N^{2}}} \\
& =\frac{1}{d^{k}} \sum_{q_{1} \in N \mathbb{Z}^{f} / d N \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(a d \cdot h)+b^{t}(a d \cdot h) A q_{1}+b Q\left(q_{1}\right)}{d N^{2}}} \\
& =\frac{1}{d^{k}} \sum_{m \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b a^{2} d^{2} Q(h)+a b d N^{t} t^{2} A m+b N^{2} Q(m)}{d N^{2}}} \\
& =\frac{1}{d^{k}} \cdot e^{2 \pi i \cdot \frac{a b \cdot a d \cdot Q(h)}{N^{2}}} \cdot \sum_{m \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{a b^{\mathrm{t}}(A h) m}{N}} \cdot e^{2 \pi i \cdot \frac{b Q(m)}{d}} \\
& =e^{2 \pi i \cdot \frac{a b \cdot a d \cdot Q(h)}{N^{2}}} \cdot \frac{1}{d^{k}} \cdot \sum_{m \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(m)}{d}}(\operatorname{since} A h \equiv 0(\bmod N)) \\
& =e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \frac{1}{d^{k}} \cdot \sum_{m \in \mathbb{Z}^{f} / d \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{b Q(m)}{d}}(a d=1+b c, N \mid c, \text { Lemma 1.5.8) } \\
& =e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \alpha(g) \\
& =e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \chi_{A}(d) \\
& (c f .(2.22)) .
\end{aligned}
$$

In summary, if $d>0$, then

$$
\frac{1}{d^{k}} \sum_{\substack{q(\bmod d N) \\ q \equiv h(\bmod N)}} e^{2 \pi i \cdot \frac{b Q(q)}{d N^{2}}}=e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \chi_{A}(d)
$$

This equality and (2.14) now imply (2.17) if $d>0$. Assume that $d<0$. We then have:

$$
\begin{align*}
& \left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& =\left.\theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
-1 & \\
& -1
\end{array}\right]\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right] \\
& =\left.(-1)^{k+r} \theta(A, P, h, z)\right|_{k+r}\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right] \\
& =(-1)^{k+r} e^{2 \pi i \cdot \frac{(-a)(-b) Q(h)}{N^{2}}} \cdot \chi_{A}(-d) \cdot \theta(A, P,(-a) h, z) \\
& =(-1)^{k+r} e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}}(-1)^{k} \cdot \chi_{A}(d) \cdot(-1)^{r} \theta(A, P, a h, z) \tag{2.3}
\end{align*}
$$

$$
=e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \chi_{A}(d) \cdot \theta(A, P, a h, z)
$$

This completes the proof.

Calculation of χ_{A}

Lemma 2.7.8. Let p be a prime, and let $\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character modulo p. We define the Gauss sum $\mathrm{W}(\chi)$ to be the complex number

$$
\mathrm{W}(\chi)=\sum_{a=0}^{p-1} \chi(a) e^{2 \pi i \frac{a}{p}}=\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) e^{2 \pi i \frac{a}{p}}
$$

If χ is trivial, then $\mathrm{W}(\chi)=0$. If χ is non-trivial, then

$$
\mathrm{W}(\chi) \mathrm{W}(\bar{\chi})=\chi(-1) p
$$

Proof. Let G be a finite group. In this proof we will the following fact:

$$
\begin{equation*}
\text { If } \eta \in \operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \text {and } \eta \neq 1 \text {, then } \sum_{g \in G} \eta(g)=0 \tag{2.23}
\end{equation*}
$$

Assume that $\chi=1$. Consider the function $\mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}^{\times}$defined by $a \mapsto$ $e^{2 \pi i \frac{a}{p}}$. This function is a non-trivial element of $\operatorname{Hom}\left(\mathbb{Z} / p \mathbb{Z}, \mathbb{C}^{\times}\right)$. The assertion $\mathrm{W}(\chi)=0$ follows from (2.23).

Next, assume that χ is non-trivial. In the following computation, if $b \in$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then we will denote the inverse of b in $(\mathbb{Z} / p \mathbb{Z})^{\times}$by b^{\prime}, so that $b b^{\prime}=1$. We have

$$
\begin{aligned}
\mathrm{W}(\chi) \mathrm{W}(\bar{\chi}) & =\left(\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) e^{2 \pi i \frac{a}{p}}\right) \cdot\left(\sum_{b \in \mathbb{Z} / p \mathbb{Z}} \overline{\chi(b)} e^{2 \pi i \frac{b}{p}}\right) \\
& =\left(\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) e^{2 \pi i \frac{a}{p}}\right) \cdot\left(\sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{\times}} \chi(b)^{-1} e^{2 \pi i \frac{b}{p}}\right) \\
& \left.=\left(\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) e^{2 \pi i \frac{a}{p}}\right) \cdot \sum_{b \in(\mathbb{Z} / p \mathbb{Z}) \times} \chi\left(b^{\prime}\right) e^{2 \pi i \frac{b}{p}}\right) \\
& =\sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{\times} \times} \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi\left(a b^{\prime}\right) e^{2 \pi i \frac{a+b}{p}} \\
& =\sum_{b \in(\mathbb{Z} / p \mathbb{Z}) \times} \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi\left(a b b^{\prime}\right) e^{2 \pi i \frac{a b+b}{p}} \\
= & \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{\times} \times} \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) e^{2 \pi i \frac{(a+1) b}{p}} \\
= & \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a) \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{\times}} e^{2 \pi i \frac{(a+1) b}{p}} \\
= & \sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a)\left(-1+\sum_{b \in \mathbb{Z} / p \mathbb{Z}} e^{2 \pi i \frac{(a+1) b}{p}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\
a+1 \equiv 0(\bmod p)}} \chi(a)\left(-1+\sum_{b \in \mathbb{Z} / p \mathbb{Z}} e^{2 \pi i \frac{(a+1) b}{p}}\right) \\
& +\sum_{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\
a+1 \neq 0(\bmod p)}} \chi(a)\left(-1+\sum_{b \in \mathbb{Z} / p \mathbb{Z}} e^{\left.2 \pi i \frac{(a+1) b}{p}\right)}\right. \\
= & \chi(-1)(-1+p) \\
& +\sum_{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\
a+1 \neq 0(\bmod p)}} \chi(a)(-1+0) \quad(\text { cf. }(2.23)) \\
= & \chi(-1)(p-1)-\sum_{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\
a+1 \neq 0(\bmod p)}} \chi(a) \\
= & \chi(-1)(p-1)-\left(-\chi(-1)+\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a)\right) \\
= & \chi(-1)(p-1)-(-\chi(-1)+0) \quad(c f .(2.23)) \\
= & p \chi(-1) .
\end{aligned}
$$

This completes the proof.
Lemma 2.7.9. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Assume that $N>1$. We recall from Lemma 1.5.4 that N divides $\operatorname{det}(A)$, and that $\operatorname{det}(A)$ and N have the same set of prime divisors. Define $\chi_{A}: \mathbb{Z} \rightarrow \mathbb{C}$ as in Lemma 2.7.7; by this lemma, χ_{A} is a Dirichlet character modulo N. Let $\Delta=\Delta(A)=(-1)^{k} \operatorname{det}(A)$ be the discriminant of A. Let $(\underline{\Delta})$ be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo $\operatorname{det}(A)$ by Proposition 1.4.2 and Lemma 1.5.2. Then the diagram

commutes. We have

$$
\begin{equation*}
\chi_{A}(d)=\left(\frac{\Delta}{d}\right)=\left(\frac{(-1)^{k} \operatorname{det}(A)}{d}\right) \tag{2.24}
\end{equation*}
$$

for $d \in \mathbb{Z}$.
Proof. By Lemma 1.5.4, N divides $\operatorname{det}(A)$, and $\operatorname{det}(A)$ and N have the same set of prime divisors. To prove the assertions of this lemma it will suffice to prove that $\chi_{A}(d)=\left(\frac{\Delta}{d}\right)$ for $d \in \mathbb{Z}$ with $(d, N)=1$. Let $d \in \mathbb{Z}$ with $(d, N)=1$; then $(d, \operatorname{det}(A))=1$. By Dirichlet's theorem about infinitely many primes in arithmetic progressions (see, for example, Theorem 155 on p. 125 of [14]), there
exists an odd prime p such that $p \equiv d(\bmod \operatorname{det}(A))$. Then $(p, N)=1$ and $p \equiv d(\bmod N)$. Regard A as an element of $\mathrm{M}(f, \mathbb{Z} / p \mathbb{Z})$. We have $\operatorname{det}(A) \in$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$. It follows that there exists a matrix $U \in \mathrm{M}(f, \mathbb{Z})$ and $a_{1}, \ldots, a_{f} \in \mathbb{Z}$ such that $\left(a_{1}, p\right)=\cdots=\left(a_{f}, p\right)=1,(\operatorname{det}(U), p)=1$, and

$$
{ }^{\mathrm{t}} U A U \equiv\left[\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{f}
\end{array}\right](\bmod p)
$$

We have

$$
\begin{aligned}
& \chi_{A}(d)=\chi_{A}(p) \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in \mathbb{Z}^{f} / p \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{Q(m)}{p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in \mathbb{Z}^{f} / p \mathbb{Z}^{f}} e^{2 \pi i \cdot \frac{Q(2 m)}{p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in(\mathbb{Z} / p \mathbb{Z})^{f}} e^{2 \pi i \cdot \frac{\mathrm{t}^{\mathrm{t}} m A m}{2 p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in(\mathbb{Z} / p \mathbb{Z})^{f}} e^{2 \pi i \cdot \frac{2 \cdot \mathrm{t}_{m A m}}{p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in(\mathbb{Z} / p \mathbb{Z})^{f}} e^{2 \pi i \cdot \frac{2^{\mathrm{t}}(U m) A(U m)}{p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in(\mathbb{Z} / p \mathbb{Z})^{f}} e^{2 \pi i \cdot \frac{2^{\mathrm{t}_{m}{ }^{\mathrm{t}} U A U m}}{p}} \\
& =\frac{1}{p^{k}} \cdot \sum_{m \in(\mathbb{Z} / p \mathbb{Z})^{f}} e^{2 \pi i \cdot \frac{2\left(a_{1} m_{1}^{2}+\cdots+a_{f} m_{f}^{2}\right)}{p}} \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f} \sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}} e^{2 \pi i \cdot \frac{2 a_{i} m_{i}^{2}}{p}} \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f} \sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}}\left(1+\left(\frac{m_{i}}{p}\right)\right) \cdot e^{2 \pi i \cdot \frac{2 a_{i} m_{i}}{p}} \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f}\left(\sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}} e^{2 \pi i \cdot \frac{2 a_{i} m_{i}}{p}}+\sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{m_{i}}{p}\right) e^{2 \pi i \cdot \frac{2 a_{i} m_{i}}{p}}\right) \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f} \sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{m_{i}}{p}\right) e^{2 \pi i \cdot \frac{2 a_{i} m_{i}}{p}} \quad(c f .(2.23)) \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f} \sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{2 a_{i} m_{i}}{p}\right) e^{2 \pi i \cdot \frac{m_{i}}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f}\left(\frac{2 a_{i}}{p}\right) \sum_{m_{i} \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{m_{i}}{p}\right) e^{2 \pi i \cdot \frac{m_{i}}{p}} \\
& =\frac{1}{p^{k}} \cdot \prod_{1 \leq i \leq f}\left(\frac{2 a_{i}}{p}\right) \mathrm{W}\left(\left(\frac{\dot{b}}{p}\right)\right) \\
& =\frac{\mathrm{W}\left(\left(\frac{\dot{\bar{p}}}{}\right)\right)^{f}}{p^{k}} \cdot \prod_{1 \leq i \leq f}\left(\frac{2 a_{i}}{p}\right) \\
& =\frac{\left(\mathrm{W}\left(\left(\frac{\dot{p}}{p}\right)\right)^{2}\right)^{k}}{p^{k}} \cdot\left(\frac{2^{f} a_{1} \cdots a_{f}}{p}\right) \\
& =\frac{\left(p\left(\frac{-1}{p}\right)\right)^{k}}{p^{k}} \cdot\left(\frac{2^{f} \operatorname{det}(U)^{2} \operatorname{det}(A)}{p}\right) \quad(\mathrm{cf.} \mathrm{Lemma} \mathrm{2.7.8)} \\
& =\left(\frac{(-1)^{k}}{p}\right) \cdot\left(\frac{\operatorname{det}(A)}{p}\right) \\
& =\left(\frac{(-1)^{k} \operatorname{det}(A)}{p}\right) \\
& =\left(\frac{\Delta}{p}\right) \\
& =\left(\frac{\Delta}{d}\right)
\end{aligned}
$$

This completes the proof.
Theorem 2.7.10. Let f be a positive even integer, and define $k=f / 2$. Let $A \in \mathrm{M}(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Define the quadratic form $Q(x)$ in f variables by

$$
Q(x)=\frac{1}{2}^{\mathrm{t}} x A x
$$

Let r be a non-negative integer, and let $P \in \mathcal{H}_{r}(A)$. Let $h \in \mathbb{Z}^{f}$ be such that

$$
A h \equiv 0(\bmod N)
$$

The analytic function $\theta(A, P, h, z)$ on \mathbb{H}_{1} defined by

$$
\theta(A, P, h, z)=\sum_{\substack{m \in \mathbb{Z}^{f} \\ n \equiv 0(\bmod N)}} P(n) e^{2 \pi i z \frac{Q(n)}{N^{2}}}
$$

for $z \in \mathbb{H}_{1}$ from Lemma 2.4.1 is a modular form of weight $k+r$ with respect to $\Gamma(N)$. If $r>0$, then $\theta(A, P, h, z)$ is a cusp form.

Proof. The case $N=1$ is Proposition 2.5.1. We may thus assume that $N>1$. Let

$$
\alpha=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma(N)
$$

Then $\alpha \in \Gamma_{0}(N)$. By (2.17), we have

$$
\left.\theta(A, P, h, z)\right|_{k+r} \alpha=e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}} \cdot \chi_{A}(d) \cdot \theta(A, P, a h, z) .
$$

Since $\alpha \in \Gamma(N)$ we have $a \equiv d \equiv 1(\bmod N)$ and $b \equiv c \equiv 0(\bmod N)$. By Lemma 2.7.7, χ_{A} is a Dirichlet character modulo N; hence, $\chi_{A}(d)=1$. By Lemma 1.5.8, $Q(h) \equiv 0(\bmod N)$. Hence, $a b Q(h) \equiv 0\left(\bmod N^{2}\right)$; this implies that $e^{2 \pi i \cdot \frac{a b Q(h)}{N^{2}}}=1$. Since $a \equiv 1(\bmod N)$, we see that $a h \equiv h(\bmod N)$; by (2.2), this implies that $\theta(A, P, a h, z)=\theta(A, P, h, z)$. We now have

$$
\left.\theta(A, P, h, z)\right|_{k+r} \alpha=\theta(A, P, h, z) .
$$

To prove that $\theta(A, P, h, z)$ is a modular form of weight $k+r$ with respect to $\Gamma(N)$ we still need to prove that $\theta(A, P, h, z)$ is holomorphic at the cusps of $\Gamma(N)$, as defined in section 1.8. Clearly, N is the smallest positive integer M such that $\Gamma(M) \subset \Gamma(N)$. To prove that $\theta(A, P, h, z)$ is holomorphic at the cusps of $\Gamma(N)$, and is a cusp form if $r>0$, it will suffice to prove that for each $\sigma \in \operatorname{SL}(2, \mathbb{Z})$ there exists a power series

$$
\sum_{m=0}^{\infty} a(m) q^{m}
$$

that converges in $D(1)=\{q \in \mathbb{C}:|q|<1\}$ such that

$$
\left.\theta(A, P, h, z)\right|_{k+r} \sigma=\sum_{m=0}^{\infty} a(m) e^{2 \pi i m / N}
$$

for $z \in \mathbb{H}_{1}$, and $a(0)=0$ if $r>0$. Let

$$
\sigma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathbb{Z})
$$

We recall the set $Y(A)=\left\{g \in \mathbb{Z}^{f}: A g \equiv 0(\bmod N)\right\}$, and the finite-dimensional vector space $V(A, P)$ spanned by the theta series $\theta(A, P, g, z)$ for $g \in Y(A) / N \mathbb{Z}^{f}$ from Lemma 2.4.1. By Lemma 2.4.1 the vector space $V(A, P)$ is preserved by $\mathrm{SL}(2, \mathbb{Z})$ under the $\left.\right|_{k+r}$ action. It follows that there exist constants $c(g) \in \mathbb{C}$ for $g \in Y(A) / N \mathbb{Z}^{f}$ such that

$$
\begin{equation*}
\left.\theta(A, P, h, z)\right|_{k+r} \sigma=\sum_{g \in Y(A) / N \mathbb{Z}^{f}} c(g) \cdot \theta(A, P, g, z) . \tag{2.25}
\end{equation*}
$$

Let $g \in Y(A)$. By Lemma 1.5.8, for every $n \in \mathbb{Z}^{f}$ with $n \equiv g(\bmod N)$, the number $Q(n) / N$ is a non-negative integer. Consequently, we may consider the power series

$$
\begin{equation*}
\sum_{\substack{n \in \mathbb{Z}^{f} \\ n \equiv g(\bmod N)}} P(n) q^{\frac{Q(n)}{N}} \tag{2.26}
\end{equation*}
$$

in the complex variable q. Let $q \in D(1)$. There exists $z \in \mathbb{H}_{1}$ such that $q=e^{2 \pi i z / N}$. Since

$$
\sum_{\substack{\left.n \in \mathbb{Z}^{f} \\ n \equiv g\right)}} P(n) q^{\frac{Q(n)}{N}}=\sum_{\substack{n \in \mathbb{Z}^{f} \\ n \equiv g(\bmod N)}} P(n) e^{2 \pi i z \frac{Q(n)}{N^{2}}}=\theta(A, P, g, z)
$$

converges absolutely by Lemma 2.4.1, it follows that the power series (2.26) converges absolutely at q. Hence, the radius of convergence of (2.26) is at least 1. Consequently, the radius of convergence of the finite linear combination of power series

$$
\begin{equation*}
\sum_{g \in Y(A) / N \mathbb{Z}^{f}} c(g) \sum_{\substack{n \in \mathbb{Z}^{f} \\ n \equiv g(\bmod N)}} P(n) q^{\frac{Q(n)}{N}} \tag{2.27}
\end{equation*}
$$

is also at least 1 . Denote this power series by

$$
\sum_{m=0}^{\infty} a(m) q^{m}
$$

By construction,

$$
\left.\theta(A, P, h, z)\right|_{k+r} \sigma=\sum_{m=0}^{\infty} a(m) e^{2 \pi i m / N}
$$

for $z \in \mathbb{H}_{1}$. This proves that $\theta(A, h, P, z)$ is a modular form of weight $k+r$ with respect to $\Gamma(N)$. Finally, assume that $r>0$; we need to prove that $a(0)=0$. From above,

$$
\begin{aligned}
a(0) & =\sum_{g \in Y(A) / N \mathbb{Z}^{f}} c(g) \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv g(\bmod) \\
\frac{Q(n)}{N}=0}} P(n) \\
& =\sum_{g \in Y(A) / N \mathbb{Z}^{f}} c(g) \sum_{\substack{n \in \mathbb{Z}^{f} \\
n \equiv g(\bmod N) \\
n=0}} P(n) \\
& =c(0) P(0) \\
& =c(0) \cdot 0 \\
& =0
\end{aligned}
$$

Here, $P(0)=0$ because P is a homogeneous polynomial in $r>0$ variables.

2.8 Example: the quadratic form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$

In this example we let

$$
A=\left[\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 2 & \\
& & & 2
\end{array}\right]
$$

so that

$$
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} .
$$

Evidently,

$$
N=4 \quad \text { and } \quad k=2 .
$$

Also, χ_{A} is the trivial character of $(\mathbb{Z} / 4 \mathbb{Z})^{\times}$. We will simplify the notation for $\theta(A, 1, h, z)$ for $h \in Y(A)$, and write:

$$
\theta(h)=\theta(A, 1, h, z) .
$$

Let V be the \mathbb{C} vector space spanned the $\theta(h)$ for $h \in Y(A)$:

$$
V=\langle\theta(h): h \in Y(A)\rangle .
$$

By Theorem 2.7.10, we have $V \subset M_{2}(\Gamma(4))$. If $h \in \mathbb{Z}^{4}$, then $h \in Y(A)$ if and only if $A h \equiv 0(\bmod 4)$, i.e., $h \equiv 0(\bmod 2)$. Define the following elements of $Y(A)$:

$$
h_{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], h_{1}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \quad h_{2}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right], \quad h_{3}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right], \quad h_{4}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right] .
$$

The vector space V is spanned by the five modular forms

$$
\theta\left(h_{0}\right), \quad \theta\left(h_{1}\right), \quad \theta\left(h_{2}\right), \quad \theta\left(h_{3}\right), \quad \theta\left(h_{4}\right) .
$$

For $z \in \mathbb{H}_{1}$, define

$$
q_{4}=e^{2 \pi i z / 4} .
$$

We have:

$$
\begin{aligned}
& \theta\left(h_{0}\right)=\sum_{m \in \mathbb{Z}^{4}} q_{4}^{4 m_{1}^{2}+4 m_{2}^{2}+4 m_{3}^{2}+4 m_{4}^{2}}, \\
& \theta\left(h_{1}\right)=\sum_{m \in \mathbb{Z}^{4}} q_{4}^{\left(2 m_{1}+1\right)^{2}+4 m_{2}^{2}+4 m_{3}^{2}+4 m_{4}^{2}}, \\
& \theta\left(h_{2}\right)=\sum_{m \in \mathbb{Z}^{4}} q_{4}^{\left(2 m_{1}+1\right)^{2}+\left(2 m_{2}+1\right)^{2}+4 m_{3}^{2}+4 m_{4}^{2}}, \\
& \theta\left(h_{3}\right)=\sum_{m \in \mathbb{Z}^{4}} q_{4}^{\left(2 m_{1}+1\right)^{2}+\left(2 m_{2}+1\right)^{2}+\left(2 m_{3}+1\right)^{2}+4 m_{4}^{2},} \\
& \theta\left(h_{4}\right)=\sum_{m \in \mathbb{Z}^{4}} q_{4}^{\left(2 m_{1}+1\right)^{2}+\left(2 m_{2}+1\right)^{2}+\left(2 m_{3}+1\right)^{2}+\left(2 m_{4}+1\right)^{2} .}
\end{aligned}
$$

Calculations show that:

$$
\begin{aligned}
& \theta\left(h_{0}\right)=1+8 q_{4}^{4}+24 q_{4}^{8}+32 q_{4}^{12}+24 q_{4}^{16}+48 q_{4}^{20}+\cdots, \\
& \theta\left(h_{1}\right)=2 q_{4}+12 q_{4}^{5}+26 q_{4}^{9}+28 q_{4}^{13}+36 q_{4}^{17}+64 q_{4}^{21}+\cdots,
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(h_{2}\right)=4 q_{4}^{2}+16 q_{4}^{6}+24 q_{4}^{10}+32 q_{4}^{14}+52 q_{4}^{18}+48 q_{4}^{22}+\cdots \\
& \theta\left(h_{3}\right)=8 q_{4}^{3}+16 q_{4}^{7}+24 q_{4}^{11}+48 q_{4}^{15}+40 q_{4}^{19}+48 q_{4}^{23}+\cdots \\
& \theta\left(h_{4}\right)=16 q_{4}^{4}+64 q_{4}^{12}+96 q_{4}^{20}+128 q_{4}^{28}+208 q_{4}^{36}+192 q_{4}^{44}+\cdots
\end{aligned}
$$

These expansions show that $\theta\left(h_{0}\right), \ldots, \theta\left(h_{4}\right)$ are linearly independent, so that

$$
\operatorname{dim}_{\mathbb{C}} V=5
$$

Lemma 2.8.1. We have

$$
\operatorname{dim} M_{2}\left(\Gamma_{0}(2)\right)=1 \quad \text { and } \quad \operatorname{dim} M_{2}\left(\Gamma_{0}(4)\right)=2
$$

Proof. See, for example, Proposition 1.40 on page 23, Proposition 1.43 on page 24, and Theorem 2.23 on page 46 of [27].

Proposition 2.8.2. Let

$$
V_{1}=\left\langle\theta\left(h_{0}\right)+\theta\left(h_{4}\right), \theta\left(h_{2}\right)\right\rangle, \quad V_{2}=\left\langle\theta\left(h_{0}\right)-\theta\left(h_{4}\right), \theta\left(h_{1}\right), \theta\left(h_{3}\right)\right\rangle
$$

so that

$$
V=V_{1} \oplus V_{2}
$$

Then V_{1} and V_{2} are irreducible $\mathrm{SL}(2, \mathbb{Z})$ subspaces of V. Moreover,

$$
\begin{aligned}
& M_{2}\left(\Gamma_{0}(4)\right)=\left\langle\theta\left(h_{0}\right), \theta\left(h_{4}\right)\right\rangle \\
& M_{2}\left(\Gamma_{0}(2)\right)=\left\langle\theta\left(h_{0}\right)+\theta\left(h_{4}\right)\right\rangle .
\end{aligned}
$$

Proof. By (2.4) we have

$$
\begin{aligned}
& \left.\theta\left(h_{0}\right)\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=-\frac{1}{4}\left(\theta\left(h_{0}\right)+4 \cdot \theta\left(h_{1}\right)+6 \cdot \theta\left(h_{2}\right)+4 \cdot \theta\left(h_{3}\right)+\theta\left(h_{4}\right)\right) \\
& \left.\theta\left(h_{1}\right)\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=-\frac{1}{4}\left(\theta\left(h_{0}\right)+2 \cdot \theta\left(h_{1}\right)-2 \cdot \theta\left(h_{3}\right)-\theta\left(h_{4}\right)\right) \\
& \left.\theta\left(h_{2}\right)\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=-\frac{1}{4}\left(\theta\left(h_{0}\right)-2 \cdot \theta\left(h_{2}\right)+\theta\left(h_{4}\right)\right) \\
& \left.\theta\left(h_{3}\right)\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=-\frac{1}{4}\left(\theta\left(h_{0}\right)-2 \cdot \theta\left(h_{1}\right)+2 \cdot \theta\left(h_{3}\right)-\theta\left(h_{4}\right)\right) \\
& \left.\theta\left(h_{4}\right)\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=-\frac{1}{4}\left(\theta\left(h_{0}\right)-4 \cdot \theta\left(h_{1}\right)+6 \cdot \theta\left(h_{2}\right)-4 \cdot \theta\left(h_{3}\right)+\theta\left(h_{4}\right)\right)
\end{aligned}
$$

By (2.5) we have:

$$
\begin{aligned}
& \left.\theta\left(h_{0}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]=\theta\left(h_{0}\right) \\
& \left.\theta\left(h_{1}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]=i \theta\left(h_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\theta\left(h_{2}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]=-\theta\left(h_{2}\right) \\
& \left.\theta\left(h_{3}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]=-i \theta\left(h_{3}\right) \\
& \left.\theta\left(h_{4}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]=\theta\left(h_{4}\right)
\end{aligned}
$$

Since $\operatorname{SL}(2, \mathbb{Z})$ is generated by

$$
\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]
$$

the above equations imply that V_{1} and V_{2} are $\operatorname{SL}(2, \mathbb{Z})$ subspaces of V.
To see that V_{1} is irreducible as an $\operatorname{SL}(2, \mathbb{Z})$ space, let $W \subset V_{1}$ be a $\operatorname{SL}(2, \mathbb{Z})$ subspace. We need to prove that $W=0$ or $W=V_{1}$, and to prove this it suffices to prove that $\operatorname{dim} W \neq 1$. Assume that $\operatorname{dim} W=1$; we will obtain a contradiction. Let $a, b \in \mathbb{C}$ be such that $F_{1}=a\left(\theta\left(h_{0}\right)+\theta\left(h_{4}\right)\right)+b \theta\left(h_{2}\right)$ is a basis for W. Since W is one-dimensional, $\mathrm{SL}(2, \mathbb{Z})$ acts on W by a character $\beta: \operatorname{SL}(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\times} . F_{1}$ is fixed by $\operatorname{SL}(2, \mathbb{Z})$. Now

$$
\begin{aligned}
\left.F_{1}\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right] & =\beta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) F_{1} \\
a\left(\theta\left(h_{0}\right)+\theta\left(h_{4}\right)\right)-b \theta\left(h_{2}\right) & =a \beta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right)\left(\theta\left(h_{0}\right)+\theta\left(h_{4}\right)\right)+b \beta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) \theta\left(h_{2}\right)
\end{aligned}
$$

This equality implies that $a=0$ or $b=0$. If $a=0$ and $b \neq 0$, then

$$
\begin{aligned}
\left.F_{1}\right|_{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right] & =\beta\left(\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\right) F_{1} \\
-\frac{b}{4}\left(\theta\left(h_{0}\right)-2 \cdot \theta\left(h_{2}\right)+\theta\left(h_{4}\right)\right) & =\beta\left(\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\right) b \theta\left(h_{2}\right)
\end{aligned}
$$

This is a contradiction. Similarly, the case $a \neq 0$ and $b=0$ leads to a contradiction. Thus, V_{1} is irreducible.

To prove that V_{2} is irreducible, let W be a non-zero $\mathrm{SL}(2, \mathbb{Z})$ subspace of V_{2}; we need to prove that $W=V_{2}$. An argument similar to that in the last paragraph proves that W cannot be one-dimensional. Assume that W is twodimensional; we will obtain a contradiction. The formulas for the action of

$$
\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]
$$

show that W can contain at most one of $\theta\left(h_{0}\right)-\theta\left(h_{4}\right), \theta\left(h_{1}\right)$ and $\theta\left(h_{3}\right)$; otherwise, $W=V_{2}$, a contradiction. Consider the quotient V_{2} / W. This $\mathrm{SL}(2, \mathbb{Z})$ space is one-dimensional. Hence, $\mathrm{SL}(2, \mathbb{Z})$ acts on V_{2} / W by a character $\delta: \mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\times}$. Let $p: V_{2} \rightarrow V_{2} / W$ be the projection map. We have The formulas for the action of

$$
\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]
$$

imply that

$$
\begin{aligned}
p\left(\theta\left(h_{0}\right)-\theta\left(h_{4}\right)\right) & =\delta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) p\left(\theta\left(h_{0}\right)-\theta\left(h_{4}\right)\right) \\
i p\left(\theta\left(h_{1}\right)\right) & =\delta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) p\left(\theta\left(h_{1}\right)\right) \\
-i p\left(\left(\theta\left(h_{3}\right)\right)\right. & =\delta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right) p\left(\left(\theta\left(h_{3}\right)\right)\right.
\end{aligned}
$$

Since at least two of $p\left(\theta\left(h_{0}\right)-\theta\left(h_{4}\right)\right), p\left(\theta\left(h_{1}\right)\right)$, and $p\left(\theta\left(h_{3}\right)\right)$ are non-zero, these equations imply that

$$
\delta\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right)
$$

is equal to at least two distinct elements of $\{1, i,-i\}$, a contradiction. Thus, V_{2} is irreducible.

By Lemma 2.8.1 we have $\operatorname{dim} M_{2}\left(\Gamma_{0}(4)\right)=2$ and $\operatorname{dim} M_{2}\left(\Gamma_{0}(2)\right)=1$. By Lemma 2.7.7 and Theorem 2.7.10, the functions $\theta\left(h_{0}\right)$ and $\theta\left(h_{4}\right)$ are contained in $M_{2}\left(\Gamma_{0}(4)\right)$. Since $\theta\left(h_{0}\right)$ and $\theta\left(h_{4}\right)$ are linearly independent, $\theta\left(h_{0}\right)$ and $\theta\left(h_{4}\right)$ form a basis for $M_{2}\left(\Gamma_{0}(4)\right)$. Finally, we need to prove that

$$
F=\theta\left(h_{0}\right)+\theta\left(h_{4}\right)
$$

is contained in $M_{2}\left(\Gamma_{0}(2)\right)$. It will suffice to prove that

$$
\left.F\right|_{2} \gamma=F \quad \text { for } \gamma \in \Gamma_{0}(2)
$$

for $\gamma \in \Gamma_{0}(2)$. We begin with some preliminary calculations. Let $h \in Y(A)$; we write $h=2 h^{\prime}$ for some $h^{\prime} \in \mathbb{Z}^{4}$. Let

$$
\alpha=\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right]
$$

By (2.13),

$$
\begin{align*}
\left.\theta(h)\right|_{2}\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right] & =\frac{1}{i^{k} 2^{2} \sqrt{\operatorname{det}(A)}} \sum_{g \in Y(A) / 4 \mathbb{Z}^{4}} s_{\alpha}(g, h) \theta(g) \\
& =\frac{1}{-2^{4}} \sum_{g \in Y(A) / 4 \mathbb{Z}^{4}} s_{\alpha}(g, h) \theta(g) \tag{2.28}
\end{align*}
$$

Let $g \in Y(A)$, and write $g=2 g^{\prime}$ for some $g^{\prime} \in \mathbb{Z}^{4}$. We obtain

$$
\begin{aligned}
& s_{\alpha}(g, h)= \sum_{\substack{x \in \mathbb{Z}^{4} / 8 \mathbb{Z}^{4} \\
x \equiv h(\bmod 4)}} e^{2 \pi i\left(\frac{Q(x)+{ }^{\mathrm{t}_{g A} A x+Q(g)}}{32}\right)} \\
&=e^{2 \pi i\left(\frac{Q(g)}{32}\right)} \sum_{\substack{x \in \mathbb{Z}^{4} / 8 \mathbb{Z}^{4} \\
x \equiv h(\bmod 4)}} e^{2 \pi i\left(\frac{Q(x)+\mathrm{t}_{g A x}}{32}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{2 \pi i\left(\frac{Q(g)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{Q(h+4 y)+\mathrm{t}_{g A(h+4 y)}}{32}\right)} \\
& =e^{2 \pi i\left(\frac{Q(g)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{Q(h)+2^{\mathrm{t}} g h+8^{\mathrm{t}}(g+h) y+16 Q(y)}{32}\right)} \\
& =e^{2 \pi i\left(\frac{Q(g)+Q(h)+2^{\mathrm{t}} \mathrm{gh}}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{8^{\mathrm{t}}(g+h) y+16 Q(y)}{32}\right)} \\
& =e^{2 \pi i\left(\frac{Q(g+h)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{16^{\mathrm{t}}\left(g^{\prime}+h^{\prime}\right) y+16 Q(y)}{32}\right)} \\
& =e^{2 \pi i\left(\frac{Q(g+h)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{\mathrm{t}\left(g^{\prime}+h^{\prime}\right) y+Q(y)}{2}\right)} \\
& =e^{2 \pi i\left(\frac{Q(g+h)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{\mathrm{t}\left(g^{\prime}+h^{\prime}\right) y+Q(y)}{2}\right)}
\end{aligned}
$$

The function $\mathbb{Z}^{4} / 2 \mathbb{Z}^{4} \rightarrow \mathbb{C}^{\times}$defined by

$$
y \mapsto e^{2 \pi i\left(\frac{\mathrm{t}\left(g^{\prime}+h^{\prime}\right) y+Q(y)}{2}\right)}
$$

is a homomorphism. This homomorphism is trivial if and only if every entry of $g^{\prime}+h^{\prime}$ is odd, or equivalently, $g+h \equiv h_{4}(\bmod 4)$. Therefore,

$$
\begin{aligned}
& s_{\alpha}(g, h)=e^{2 \pi i\left(\frac{Q(g+h)}{32}\right)} \sum_{y \in \mathbb{Z}^{4} / 2 \mathbb{Z}^{4}} e^{2 \pi i\left(\frac{\mathrm{t}\left(g^{\prime}+h^{\prime}\right) y+Q(y)}{2}\right)} \\
& s_{\alpha}(g, h)= \begin{cases}-2^{4} & \text { if } g+h \equiv h_{4}(\bmod 4) \\
0 & \text { if } g+h \not \equiv h_{4}(\bmod 4)\end{cases}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left.\theta(h)\right|_{2}\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right] & =\frac{1}{-2^{4}} \sum_{g \in Y(A) / 4 \mathbb{Z}^{4}} s_{\alpha}(g, h) \theta(g) \\
& =\theta\left(h_{4}-h\right)
\end{aligned}
$$

This implies that:

$$
\begin{aligned}
& \left.\theta\left(h_{0}\right)\right|_{2}\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right]=\theta\left(h_{4}\right) \\
& \left.\theta\left(h_{1}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]=\theta\left(h_{3}\right) \\
& \left.\theta\left(h_{2}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]=\theta\left(h_{2}\right) \\
& \left.\theta\left(h_{3}\right)\right|_{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]=\theta\left(h_{1}\right)
\end{aligned}
$$

$$
\left.\theta\left(h_{4}\right)\right|_{2}\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right]=\theta\left(h_{0}\right)
$$

Since $F \in M_{2}\left(\Gamma_{0}(4)\right.$, to prove that $\left.F\right|_{2} \gamma=F$ for $\gamma \in \Gamma_{0}(2)$, it will suffices to prove that $\left.F\right|_{2} \gamma=F$ for $\gamma \in \Gamma_{0}(2)$ of the form

$$
\gamma=\left[\begin{array}{cc}
a & b \\
2 c & d
\end{array}\right]
$$

where c is an odd integer; we note that since $a d-2 b c=1, d$ is also odd. Let $\gamma \in \Gamma_{0}(2)$ have this form. Then

$$
\begin{aligned}
\left.F\right|_{2} \gamma & =\left.\theta\left(h_{0}\right)\right|_{2} \gamma+\left.\theta\left(h_{4}\right)\right|_{2} \gamma \\
& =\left.\theta\left(h_{0}\right)\right|_{2} \gamma\left[\begin{array}{cc}
1 & \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right]+\left.\theta\left(h_{4}\right)\right|_{2} \gamma\left[\begin{array}{cc}
1 & \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
2 & 1
\end{array}\right] \\
& =\left.\theta\left(h_{0}\right)\right|_{2}\left[\begin{array}{cc}
a-2 b & b \\
2(c-d) & 2 c+d
\end{array}\right]\left[\begin{array}{cc}
1 & \\
2 & 1
\end{array}\right]+\left.\theta\left(h_{4}\right)\right|_{2}\left[\begin{array}{cc}
a-2 b & b \\
2(c-d) & 2 c+d
\end{array}\right]\left[\begin{array}{ll}
1 & \\
2 & 1
\end{array}\right] \\
& =\left.\theta\left(h_{0}\right)\right|_{2}\left[\begin{array}{cc}
1 & 1 \\
2 & 1
\end{array}\right]+\left.\theta\left(h_{4}\right)\right|_{2}\left[\begin{array}{cc}
1 & 1 \\
2 & 1
\end{array}\right] \quad(c-d \text { is even }) \\
& =\theta\left(h_{4}\right)+\theta\left(h_{0}\right) \\
& =F
\end{aligned}
$$

This proves our claim about F.
Proposition 2.8.3 (Jacobi's four square theorem). If n is a positive integer, then the number of $(x, y, z, w) \in \mathbb{Z}^{4}$ such

$$
x^{2}+y^{2}+z^{2}+w^{2}=n
$$

is

$$
\text { 8. } \sum_{\substack{m>0, m \mid n, m \neq 0(\bmod 4)}} m .
$$

In particular, every positive integer is a sum of four squares.
Proof. We have

$$
\theta\left(h_{0}, z\right)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

where

$$
a(n)=\#\left\{m \in \mathbb{Z}^{4}: Q(m)=n\right\}
$$

for each non-negative integer n. The modular form $\theta\left(h_{0}, z\right)$ is contained in $M_{2}\left(\Gamma_{0}(4)\right)$. By Lemma 2.8.1, the dimension of $M_{2}\left(\Gamma_{0}(4)\right)$ is two, and the dimension of $M_{2}\left(\Gamma_{0}(2)\right)$ is one. The vector space $M_{2}\left(\Gamma_{0}(2)\right)$ is spanned by

$$
E(z)=\frac{1}{24}+\sum_{n=1}^{\infty} b(n) q^{n}
$$

where $q=e^{2 \pi i z}$ for $z \in \mathbb{H}_{1}$; here, for positive integers n,

$$
b(n)= \begin{cases}\sigma_{1}(n)-2 \sigma_{1}(n / 2) & \text { if } n \text { is even } \\ \sigma_{1}(n) & \text { if } n \text { is odd }\end{cases}
$$

For this, see Theorem 5.8 on page 88 of [28]. Trivially, the function $E(z)$ is contained in $M_{2}\left(\Gamma_{0}(4)\right)$. The function

$$
\left.E(z)\right|_{2}\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right]=E(2 z)
$$

is also contained in $M_{2}\left(\Gamma_{0}(4)\right)$. We have

$$
E(2 z)=\frac{1}{24}+\sum_{n=1}^{\infty} c(n) q^{n}
$$

where

$$
c(n)= \begin{cases}\sigma_{1}(n / 2)-2 \sigma_{1}(n / 4) & \text { if } n \text { is divisible by } 4 \\ \sigma_{1}(n / 2) & \text { if } n \text { is even and } n / 2 \text { is odd } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

for positive integers n. The two modular forms $E(z)$ and $E(2 z)$ form a basis for $M_{2}\left(\Gamma_{0}(4)\right)$. Hence, there exist $c_{1}, c_{2} \in \mathbb{C}$ such that

$$
\theta\left(h_{0}, z\right)=c_{1} \cdot E(z)+c_{2} \cdot E(2 z)
$$

Calculations show that

$$
\begin{aligned}
\theta\left(h_{0}, z\right) & =1+8 q+24 q^{2}+32 q^{3}+24 q^{4}+48 q^{5}+96 q^{6}+64 q^{7}+\cdots \\
E(z) & =\frac{1}{24}+q+q^{2}+4 q^{3}+q^{4}+6 q^{5}+4 q^{6}+8 q^{7}+\cdots \\
E(2 z) & =\frac{1}{24}+q^{2}+q^{4}+4 q^{6}+q^{8}+6 q^{10}+4 q^{12}+\cdots
\end{aligned}
$$

Using these expansions to solve for c_{1} and c_{2}, we find that:

$$
\theta\left(h_{0}, z\right)=8 \cdot E(z)+16 \cdot E(2 z)
$$

It follows that

$$
\begin{aligned}
a(n) & =8 b(n)+16 c(n) \\
& = \begin{cases}8 \sigma_{1}(n)-32 \sigma_{1}(n / 4) & \text { if } 4 \mid n, \\
8 \sigma_{1}(n) & \text { if } n \text { is even and } n / 2 \text { is odd, } \\
8 \sigma_{1}(n) & \text { if } n \text { is odd, },\end{cases} \\
& =8 \cdot \sum_{\substack{m>0, m \mid n, m \neq 0(\bmod 4)}}^{m .}
\end{aligned}
$$

This completes the proof.

Chapter 3

Classical theta series on \mathbb{H}_{n}

3.1 Convergence

Let m and n be positive integers. If $A \in \mathrm{M}(m, \mathbb{C})$ and $X \in \mathrm{M}(m \times n, \mathbb{C})$, then we define

$$
A[X]={ }^{\mathrm{t}} X A X
$$

Lemma 3.1.1. Let m and n be positive integers, and let $A \in \mathrm{M}(m, \mathbb{Z})$ be an even positive-definite symmetric integral matrix. For every $N \in \mathrm{M}(m \times n, \mathbb{Z})$ the $n \times n$ integral matrix $A[N]$ is an even positive semi-definite symmetric matrix.

Proof. Let $N \in \mathrm{M}(m \times n, \mathbb{Z})$. Set $B=A[N]$. It is clear that B is integral and symmetric. Let $x \in \mathbb{R}^{n}$. Then ${ }^{\mathrm{t}} x B x={ }^{\mathrm{t}}(N x) A(N x) \geq 0$. It follows that B is positive semi-definite.

Assume that $A \in \mathrm{M}(m, \mathbb{Z})$ and $B \in \mathrm{M}(n, \mathbb{Z})$ are even symmetric integral matrices. Assume further that A is positive-definite, and that B is positive semi-definite. We say that A represents B if there exists $N \in \mathrm{M}(m \times n, \mathbb{Z})$ such that

$$
A[N]=B
$$

We let

$$
r(A, B)=\#\{N \in \mathrm{M}(m \times n, \mathbb{Z}): A[N]=B\}
$$

Lemma 3.1.2. Let m and n be positive integers, and let $A \in M(m, \mathbb{Z})$ and $B \in \mathrm{M}(n, \mathbb{Z})$ be even symmetric integral matrices with A positive-definite and B positive semi-definite. The set $\{N \in \mathrm{M}(m \times n, \mathbb{Z}): A[N]=B\}$ is finite, so that $r(A, B)$ is a non-negative integer.

Proof. By $\S 1.5$, there exists $T \in \operatorname{GL}(m, \mathbb{R})$ and positive numbers $\lambda_{1}, \ldots, \lambda_{m}$
such that ${ }^{\mathrm{t}} T=T$ and

$$
D={ }^{\mathrm{t}} T A T=\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
& & & \ddots & \\
& & & & \lambda_{m}
\end{array}\right]
$$

Define Let $N \in \mathrm{M}(m \times n, \mathbb{Z})$. We have $A[N]=B$ if and only if $D[T N]=B$. Write $T N=\left[(T N)_{1} \cdots(T N)_{n}\right]$ where $(T N)_{1}, \ldots,(T N)_{n} \in \mathbb{R}^{m}$ are column vectors. We have

$$
B_{j j}={ }^{\mathrm{t}}(T N)_{j} D(T N)_{j}=\sum_{i=1}^{m} \lambda_{i}(T N)_{i j}^{2}
$$

for $1 \leq j \leq n$. Let S be the set of $X \in \mathrm{M}(m \times n, \mathbb{R})$ such that

$$
B_{j j}=\sum_{i=1}^{m} \lambda_{i} X_{i j}^{2}
$$

for $1 \leq j \leq n$. It follows that $\{N \in \mathrm{M}(m \times n, \mathbb{Z}): A[N]=B\}$ is contained in $T^{-1} S \cap \mathrm{M}(m \times n, \mathbb{Z})$. The set S is compact, so that $T^{-1} S$ is also compact. Since $T^{-1} S$ is compact and $\mathrm{M}(m \times n, \mathbb{Z})$ is a discrete subset of $\mathrm{M}(m \times n, \mathbb{R})$, the set $T^{-1} S \cap \mathrm{M}(m \times n, \mathbb{Z})$ is finite.

Lemma 3.1.3. Let n be a positive integer. Let $S, T \in \mathrm{M}(n, \mathbb{R})$ be positive semi-definite symmetric matrices. Then $\operatorname{tr}(S T) \geq 0$.

Proof. Arguing as before (1.7), there exist positive semi-definite symmetric matrices $U, V \in \mathrm{M}(n, \mathbb{R})$ such that $S=U^{2}$ and $T=V^{2}$. Now

$$
\begin{aligned}
\operatorname{tr}(S T) & =\operatorname{tr}(U U V V) \\
& =\operatorname{tr}(V U U V) \\
& \left.=\operatorname{tr}{ }^{\mathrm{t}}(V){ }^{\mathrm{t}} U U V\right) \\
& \left.=\operatorname{tr}{ }^{\mathrm{t}}(U V) U V\right)
\end{aligned}
$$

Let $W=U V$. Then

$$
\begin{aligned}
\operatorname{tr}(S T) & =\operatorname{tr}\left({ }^{\mathrm{t}} W W\right) \\
& =\sum_{k=1}^{n}\left(\sum_{j=1}\left({ }^{\mathrm{t}} W\right)_{k j} W_{j k}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{j=1} W_{j k} W_{j k}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{j=1} W_{j k}^{2}\right)
\end{aligned}
$$

$$
\geq 0
$$

This completes the proof.
Lemma 3.1.4. Let K be a compact subset of $\operatorname{Sym}(n, \mathbb{R})$. Assume that $S>0$ for $S \in K$. Then there exists $\delta>0$ such that $S-\delta>0$ for all $S \in K$.

Proof. Let $S \in K$. Since S is positive-definite, there exists $T \in \operatorname{GL}(n, \mathbb{R})$ such that ${ }^{\mathrm{t}} T T=T^{\mathrm{t}} T=1$ and

$$
A={ }^{\mathrm{t}} T\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
& & & \ddots & \\
& & & & \lambda_{n}
\end{array}\right] T
$$

for some positive numbers $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Let $\epsilon_{S}>0$ be a positive number such and $\lambda_{1}>\epsilon_{S}, \ldots, \lambda_{n}>\epsilon_{S}$. Let $x \in \mathbb{R}^{n}$ with $x \neq 0$. Then

$$
\begin{aligned}
{ }^{\mathrm{t}} x\left(S-\epsilon_{S}\right) x & ={ }^{\mathrm{t}} x^{\mathrm{t}} T\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
& & & \ddots & \\
& & & & \lambda_{n}
\end{array}\right] T x-\epsilon_{S}{ }^{\mathrm{t}} x x \\
& ={ }^{\mathrm{t}}(T x)\left[\begin{array}{lllll}
\lambda_{1}-\epsilon_{S} & & & & \\
& \lambda_{2}-\epsilon_{S} & \\
& & \lambda_{3}-\epsilon_{S} & & \\
& & & & \ddots
\end{array}\right] T x \\
& >0 .
\end{aligned}
$$

It follows that $S-\epsilon_{S}>0$. Hence, $S \in \epsilon_{S}+\operatorname{Sym}(n, \mathbb{R})^{+}$. By Lemma 1.10.1, set $\operatorname{Sym}(n, \mathbb{R})^{+}$is open in $\operatorname{Sym}(n, \mathbb{R})$. The sets $\epsilon_{S}+\operatorname{Sym}(n, \mathbb{R})^{+}$form an open cover for K. Since K is compact, this cover has a finite subcover $\operatorname{Sym}(n, \mathbb{R})^{+}+$ $\epsilon_{S_{1}}, \ldots, \operatorname{Sym}(n, \mathbb{R})^{+}+\epsilon_{S_{k}}$ for some $S_{1}, \ldots, S_{k} \in K$. Let $\delta=\min \left(\epsilon_{S_{1}}, \ldots, \epsilon_{S_{k}}\right)$. Now let $S \in K$. Then $S \in \operatorname{Sym}(n, \mathbb{R})^{+}+\epsilon_{S_{i}}$ for some $i \in\{1, \ldots, k\}$. Hence, $S-\epsilon_{S_{i}} \in \operatorname{Sym}(n, \mathbb{R})^{+}$. This implies that $S-\epsilon_{S_{i}}>0$, so that $S>\epsilon_{S_{i}} \geq \delta$, as desired.

Lemma 3.1.5. Let m and n be positive integers. Let $M, N \in \mathrm{M}(m \times n, \mathbb{R})$. Then

$$
\left|\operatorname{tr}\left({ }^{\mathrm{t}} M N\right)\right| \leq \sum_{i=1}^{n}\left\|M_{i}\right\|\left\|N_{i}\right\|
$$

Here, for $P \in \mathrm{M}(m \times n, \mathbb{R})$, we write $P=\left[P_{1} \cdots P_{n}\right]$, where $P_{i} \in \mathbb{R}^{m}$ for $1 \leq i \leq n$ are column vectors.

Proof. We have

$$
\begin{aligned}
\left|\operatorname{tr}\left({ }^{\mathrm{t}} M N\right)\right| & =\left|\operatorname{tr}\left({ }^{\mathrm{t}}\left[M_{1} \cdots M_{n}\right]\left[N_{1} \cdots N_{n}\right]\right)\right| \\
& =\left|\sum_{i=1}^{n}{ }^{\mathrm{t}} M_{i} N_{i}\right| \\
& \leq \sum_{i=1}^{n}\left|{ }^{\mathrm{t}} M_{i} N_{i}\right| \\
& \leq \sum_{i=1}^{n}\left\|M_{i}\right\|\left\|N_{i}\right\|
\end{aligned}
$$

where in the last step we used the Cauchy-Schwarz inequality.
Lemma 3.1.6. Let k be a positive integer, and let $\delta>0$ and $M>0$ be positive real numbers. Then there exists positive numbers $R>0$ and $\epsilon>0$ such that if $x_{1} \geq 0, \ldots, x_{k} \geq 0$ and

$$
x_{1}^{2}+\cdots+x_{k}^{2} \geq R
$$

then

$$
-\delta\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)+2 M\left(x_{1}+\cdots+x_{k}\right)+M \leq-\epsilon\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)
$$

Proof. Let ϵ be any positive number such that $0<\epsilon<\delta$. Let $m \in \mathbb{R}$ be such that

$$
m \leq(\delta-\epsilon) x^{2}-2 M x-M
$$

for all $x \in \mathbb{R}$. There exists a positive number T such that if $x \geq T$, then

$$
-(k-1) m \leq(\delta-\epsilon) x^{2}+2 M x-M
$$

Now define $R=T^{2} k$. Assume that $x_{1} \geq 0, \ldots, x_{k} \geq 0$ and $x_{1}^{2}+\cdots+x_{k}^{2} \geq R$. Then for some $i \in\{1, \ldots, k\}$ we have $x_{i}^{2} \geq R / k$, i.e., $x_{i} \geq \sqrt{R / k}=T$. It follows that

$$
\begin{aligned}
& (\delta-\epsilon)\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)-2 M\left(x_{1}+\cdots+x_{k}\right)-M \\
& \geq(\delta-\epsilon) x_{i}^{2}-2 M x_{i}-M+(k-1) m \\
& \geq-(k-1) m+(k-1) m \\
& \geq 0
\end{aligned}
$$

This completes the proof.
Lemma 3.1.7. Let m and n be positive integers, and let $A \in \mathrm{M}(m, \mathbb{R})$ be a positive-definite symmetric matrix. Let K be a compact subset of \mathbb{H}_{n}, and let K_{1} and K_{2} be compact subsets of $\mathrm{M}(m \times n, \mathbb{C})$. There exists a positive real number $R>0$ and a positive constant ϵ such that such that

$$
\operatorname{Re}\left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \leq-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}
$$

for $Z \in K, X \in K_{1}, Y \in K_{2}$ and $N \in \mathrm{M}(m \times n, \mathbb{R})$ with

$$
\sum_{i=1}^{n}\left\|N_{i}\right\|^{2} \geq R
$$

Here, for $N \in \mathrm{M}(m \times n, \mathbb{R})$, we write $N=\left[N_{1} \cdots N_{n}\right]$, where $N_{i} \in \mathbb{R}^{m}$ for $1 \leq i \leq n$ are column vectors.

Proof. We first prove that we may assume that $A=1$. To see this, assume that the assertion holds for $1=1_{m}$. Since A is positive-definite, there exists a positive-definite symmetric matrix $B \in \mathrm{M}(n, \mathbb{R})$ such that $A=B^{2}$ (see (1.7)). Define $K_{1}^{\prime}=B^{-1}\left(K_{1}\right)$ and $K_{2}^{\prime}=B\left(K_{2}\right)$. Since we are assuming that the assertion holds for $1=1_{m}$, there exists a positive real number $R>0$ and a positive constant ϵ such that

$$
\operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}\left(N^{\prime}-Y^{\prime}\right)\left(N^{\prime}-Y^{\prime}\right)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N^{\prime} X^{\prime}\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X^{\prime} Y^{\prime}\right)\right) \leq-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}^{\prime}\right\|^{2}
$$

for $Z \in K, X^{\prime} \in K_{1}^{\prime}=B\left(K_{1}\right), Y^{\prime} \in B^{-1}\left(K_{2}\right)$ and $N^{\prime} \in \mathrm{M}(m \times n, \mathbb{R})$ with

$$
\sum_{i=1}^{n}\left\|N_{i}^{\prime}\right\|^{2} \geq R
$$

Regard the matrix B^{-1} as operator from \mathbb{R}^{m} to \mathbb{R}^{m}. Then B is continuous and hence bounded. Therefore, there exists a positive constant $\left\|B^{-1}\right\|$ such that

$$
\left\|B^{-1}(g)\right\| \leq\left\|B^{-1}\right\|\|g\|
$$

for $g \in \mathbb{R}^{m}$. Define $T=\left\|B^{-1}\right\|^{2} R$. Let $N \in \mathrm{M}(m \times n, \mathbb{R})$ with

$$
\sum_{i=1}^{n}\left\|N_{i}\right\|^{2} \geq T
$$

Define $N^{\prime}=B N$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|N_{i}^{\prime}\right\|^{2} & =\sum_{i=1}^{n}\left\|(B N)_{i}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|B N_{i}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|B^{-1}\right\|^{-2}\left\|B^{-1}\right\|^{2}\left\|B N_{i}\right\|^{2} \\
& \geq \sum_{i=1}^{n}\left\|B^{-1}\right\|^{-2}\left\|B^{-1} B N_{i}\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|B^{-1}\right\|^{-2}\left\|N_{i}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|B^{-1}\right\|^{-2} \sum_{i=1}^{n}\left\|N_{i}\right\|^{2} \\
& \geq\left\|B^{-1}\right\|^{-2} T \\
& =R .
\end{aligned}
$$

Let $Z \in K, X \in K_{1}$ and $Y \in K_{2}$. Then $X^{\prime}=B^{-1}(X) \in K_{1}^{\prime}$ and $Y^{\prime}=B(Y) \in$ K_{2}^{\prime}. Since

$$
\begin{aligned}
& \operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}\left(N^{\prime}-Y^{\prime}\right)\left(N^{\prime}-Y^{\prime}\right)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N^{\prime} X^{\prime}\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X^{\prime} Y^{\prime}\right)\right) \\
& =\operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}(B N-B Y)(B N-B Y)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}}(B N) B^{-1} X\right)\right. \\
& \left.\quad \quad-\pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left(B^{-1} X\right) B Y\right)\right) \\
& =\operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}(N-Y) B B(N-Y)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \\
& =\operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}(N-Y) A(N-Y)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \\
& =\operatorname{Re}\left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right),
\end{aligned}
$$

and,

$$
\begin{aligned}
-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}^{\prime}\right\|^{2} & =-\epsilon \cdot \sum_{i=1}^{n}\left\|B N_{i}\right\|^{2} \\
& =-\epsilon \cdot \sum_{i=1}^{n}\left\|B^{-1}\right\|^{-2}\left\|B^{-1}\right\|^{2}\left\|B N_{i}\right\|^{2} \\
& \leq-\epsilon \cdot \sum_{i=1}^{n}\left\|B^{-1}\right\|^{-2}\left\|N_{i}\right\|^{2} \\
& =-\epsilon\left\|B^{-1}\right\|^{-2} \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2} .
\end{aligned}
$$

we conclude that

$$
\operatorname{Re}\left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \leq-\epsilon\left\|B^{-1}\right\|^{-2} \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2} .
$$

It follows that we may assume that $A=1=1_{m}$.
We now prove the lemma for $A=1=1_{m}$. Since K, K_{1} and K are compact, there exists a positive number $M>0$ such that

$$
\begin{gathered}
\left\|\left(V^{t} Y_{1}+U^{t} Y_{2}-{ }^{\mathrm{t}} X_{2}\right)_{i}\right\| \leq M, \quad \text { for } 1 \leq i \leq n, \\
\left.\mid \operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left({ }^{\mathrm{t}} Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \mid \leq M
\end{gathered}
$$

for $Z=U+i V \in K, X=X_{1}+i X_{2} \in K_{1}$ and $Y=Y_{1}+i Y_{2} \in K_{2}$ where $U, V, X_{1}, X_{2}, Y_{1}$ and Y_{2} are real matrices. By Lemma 3.1.4 there exists $\delta>0$ such that $\operatorname{Im}(Z)-\delta>0$ for all $Z \in K$. Let $N \in \mathrm{M}(m \times n, \mathbb{R})$. Then ${ }^{\mathrm{t}} N N \geq 0$.

Hence, by Lemma 3.1.3, we have $\operatorname{tr}\left((\operatorname{Im}(Z)-\delta)^{\mathrm{t}} N N\right) \geq 0$ for $N \in \mathrm{M}(m \times n, \mathbb{R})$, or equivalently,

$$
\begin{equation*}
-\operatorname{tr}\left(\left(\operatorname{Im}(Z){ }^{\mathrm{t}} N N\right) \leq-\delta \operatorname{tr}\left({ }^{\mathrm{t}} N N\right) \quad \text { for } N \in \mathrm{M}(m \times n, \mathbb{R})\right. \tag{3.1}
\end{equation*}
$$

Let $Z \in K, X \in K_{1}$ and $Y \in K_{2}$. Write $Z=U+i V$ for $U, V \in \mathrm{M}(n \times n, \mathbb{R})$ with ${ }^{\mathrm{t}} U=U,{ }^{\mathrm{t}} V=V$, and $V>0$. Also, write $X=X_{1}+i X_{2}$ and $Y=Y_{1}+i Y_{2}$ for $X_{1}, X_{2}, Y_{1}, Y_{2} \in \mathrm{M}(m \times n, \mathbb{R})$. We have

$$
\begin{aligned}
\pi^{-1} & \operatorname{Re}\left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}(N-Y)(N-Y)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \\
=- & \pi^{-1} \operatorname{Im}\left(\pi \operatorname{tr}\left(Z^{\mathrm{t}}(N-Y)(N-Y)\right)+2 \pi \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \\
=- & \operatorname{tr}\left(V^{\mathrm{t}} N N\right)+2 \operatorname{tr}\left(V^{\mathrm{t}} Y_{1} N\right)+2 \operatorname{tr}\left(U^{\mathrm{t}} Y_{2} N\right)-2 \operatorname{tr}\left({ }^{\mathrm{t}} N X_{2}\right) \\
& \left.+\operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left({ }^{\mathrm{t}} Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \\
=- & \operatorname{tr}\left(V^{\mathrm{t}} N N\right)+2 \operatorname{tr}\left(\left(V^{\mathrm{t}} Y_{1}+U U^{\mathrm{t}} Y_{2}-{ }^{\mathrm{t}} X_{2}\right) N\right) \\
& \left.+\operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left(Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \\
\leq- & \delta \operatorname{tr}\left({ }^{\mathrm{t}} N N\right)+2\left|\operatorname{tr}\left(\left(V^{\mathrm{t}} Y_{1}+U{ }^{\mathrm{t}} Y_{2}-{ }^{\mathrm{t}} X_{2}\right) N\right)\right| \\
& \left.+\mid \operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left({ }^{\mathrm{t}} Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \mid \\
=- & \delta \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}+2\left|\operatorname{tr}\left(\left(V^{\mathrm{t}} Y_{1}+U U^{\mathrm{t}} Y_{2}-{ }^{\mathrm{t}} X_{2}\right) N\right)\right| \\
& \left.\quad+\mid \operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left({ }^{\mathrm{t}} Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \mid \\
\leq-\delta & \left.\sum_{i=1}^{n}\left\|N_{i}\right\|^{2}+2 \sum_{i=1}^{n} \|\left(V^{\mathrm{t}} Y_{1}+U U^{\mathrm{t}} Y_{2}-{ }^{\mathrm{t}} X_{2}\right)\right)_{i}\| \| N_{i} \| \\
\quad & \left.\mid \operatorname{tr}\left({ }^{\mathrm{t}} X_{1} Y_{2}+{ }^{\mathrm{t}} X_{2} Y_{1}-U\left({ }^{\mathrm{t}} Y_{1} Y_{2}+{ }^{\mathrm{t}} Y_{2} Y_{1}\right)\right)-V\left({ }^{\mathrm{t}} Y_{1} Y_{1}+{ }^{\mathrm{t}} Y_{2} Y_{2}\right)\right) \mid \\
\leq-\delta & \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}+2 M \sum_{i=1}^{n}\left\|N_{i}\right\|+M .
\end{aligned}
$$

By Lemma 3.1.6, there exists positive numbers $R>0$ and $\epsilon>0$ such that

$$
-\delta \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}+2 M \sum_{i=1}^{n}\left\|N_{i}\right\|+M \leq-\epsilon \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}
$$

for

$$
\sum_{i=1}^{n}\left\|N_{i}\right\|^{2} \geq R
$$

This completes the proof.
Proposition 3.1.8. Let m and n be positive integers, and let $A \in \mathrm{M}(m, \mathbb{R})$ be a positive-definite symmetric matrix. For $Z \in \mathbb{H}_{n}, X, Y \in \mathrm{M}(m \times n, \mathbb{C})$, define
$\theta(A, Z, X, Y)=\sum_{N \in \mathrm{M}(m \times n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right)$.

If D, D_{1} and D_{2} are products of closed disks in \mathbb{C} such that $D \subset \mathbb{H}_{n}$ and $D_{1}, D_{2} \subset \mathrm{M}(m \times n, \mathbb{C})$, then the series $\theta(A, Z, X, Y)$ converges absolutely and uniformly on $D \times D_{1} \times D_{2}$. The resulting function $\theta(A, Z, X, Y)$ defined on $\mathbb{H}_{n} \times \mathrm{M}(m \times n, \mathbb{C}) \times \mathrm{M}(m \times n, \mathbb{C})$ is analytic in each complex variable.

Proof. Let D, D_{1} and D_{2} be products of closed disks in \mathbb{C} such that $D \subset \mathbb{H}_{n}$ and $D_{1}, D_{2} \subset \mathrm{M}(m \times n, \mathbb{C})$. By there exists a positive real number $R>0$ and a positive constant ϵ such that such that

$$
\operatorname{Re}\left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \leq-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}
$$

for $Z \in D, X \in D_{1}, Y \in D_{2}$ and $N \in \mathrm{M}(m \times n, \mathbb{R})$ with

$$
\sum_{i=1}^{n}\left\|N_{i}\right\|^{2} \geq R
$$

Hence,

$$
\begin{aligned}
& \left|\exp \left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right)\right| \\
& =\exp \left(\operatorname{Re}\left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right)\right) \\
& \leq \exp \left(-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}\right)
\end{aligned}
$$

for $Z \in D, X \in D_{1}, Y \in D_{2}$ and all but finitely many $N \in \mathrm{M}(m \times n, \mathbb{Z})$. The series

$$
\sum_{N \in \mathrm{M}(m \times n, \mathbb{Z})} \exp \left(-\epsilon \cdot \sum_{i=1}^{n}\left\|N_{i}\right\|^{2}\right)
$$

converges. The Weierstrass M-test (see [17], p. 160) now implies that the series $\theta(A, Z, X, Y)$ converges absolutely and uniformly on $D \times D_{1} \times D_{2}$. Since for each $N \in \mathrm{M}(m \times n, \mathbb{Z})$ the function on $\mathbb{H}_{n} \times \mathrm{M}(m \times n, \mathbb{C}) \times \mathrm{M}(m \times n, \mathbb{C})$ defined by

$$
(Z, X, Y) \mapsto \exp \left(\pi i \operatorname{tr}(Z A[N-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right)
$$

is an analytic function in each complex variable and since our series converges absolutely and uniformly on all products of closed disks, the function $\theta(A, Z, X, Y)$ is analytic in each variable (see [17], p. 162).

Corollary 3.1.9. Let m and n be positive integers, and let $A \in M(m, \mathbb{Z})$ be an even positive-definite symmetric integral matrix. For $Z \in \mathbb{H}_{n}$, define

$$
\theta(A, Z)=\sum_{N \in \mathrm{M}(m \times n, \mathbb{Z})} \exp (\pi i \operatorname{tr}(A[N] Z))
$$

If D is a product of closed disks in \mathbb{C} such that $D \subset \mathbb{H}_{n}$ then the series $\theta(A, Z)$ converges absolutely and uniformly on D. The resulting function $\theta(A, Z)$ defined
on \mathbb{H}_{n} is analytic in each complex variable. Moreover,

$$
\theta(A, Z)=\sum_{\substack{B \in \operatorname{Sym}(n, \mathbb{Z})_{\text {even }} \\ B \geq 0}} r(A, B) \exp (\pi i \operatorname{tr}(B Z))
$$

3.2 The Eicher lemma

Let k be a positive integer. For $Z \in \mathbb{H}_{k}$, and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$ we will consider the series

$$
\begin{align*}
& \theta(Z, X, Y) \\
& \quad=\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i^{\mathrm{t}}(R-Y) Z(R-Y)+2 \pi i^{\mathrm{t}} R X-\pi i^{\mathrm{t}} X Y\right) \tag{3.2}
\end{align*}
$$

This series is actually an example of the series considered in Proposition 3.1.8 with $m=1$ and $k=n$. To see this, we note that if $W_{1}, W_{2} \in \mathrm{M}(k, 1, \mathbb{C})$, then

$$
{ }^{\mathrm{t}} W_{1} W_{2}=\operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}} W_{1}\right)^{\mathrm{t}} W_{2}\right)
$$

Therefore, for $Z \in \mathbb{H}_{k}$, and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$,

$$
\begin{aligned}
& \theta(Z, X, Y)=\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i^{\mathrm{t}}(R-Y) Z(R-Y)+2 \pi i^{\mathrm{t}} R X-\pi i^{\mathrm{t}} X Y\right) \\
& =\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}}(R-Y)\right)^{\mathrm{t}}(Z(R-Y))\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}} R\right)^{\mathrm{t}} X\right)\right. \\
& \left.\left.-\pi i \operatorname{tr}\left({ }^{\mathrm{t}}{ }^{\mathrm{t}} X\right)^{\mathrm{t}} Y\right)\right) \\
& =\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}} R-{ }^{\mathrm{t}} Y\right)\left({ }^{\mathrm{t}} R-{ }^{\mathrm{t}} Y\right){ }^{\mathrm{t}} Z\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}} R\right)^{\mathrm{t}} X\right)\right. \\
& \left.\left.-\pi i \operatorname{tr}\left({ }^{\mathrm{t}}{ }^{\mathrm{t}} X\right)^{\mathrm{t}} Y\right)\right) \\
& =\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}}\left({ }^{\mathrm{t}} R-{ }^{\mathrm{t}} Y\right)\left({ }^{\mathrm{t}} R-{ }^{\mathrm{t}} Y\right)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}}{ }^{\mathrm{t}} R\right)^{\mathrm{t}} X\right) \\
& \left.\left.-\pi i \operatorname{tr}\left({ }^{t}{ }^{t} X\right)^{\mathrm{t}} Y\right)\right) \\
& =\sum_{N \in \mathrm{M}(1, k, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z \cdot 1\left[N-{ }^{\mathrm{t}} Y\right]\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N^{\mathrm{t}} X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left({ }^{\mathrm{t}} X\right)^{\mathrm{t}} Y\right)\right) \\
& =\theta\left(1, Z,{ }^{t} X,{ }^{\mathrm{t}} Y\right) \text {, }
\end{aligned}
$$

where 1 is the 1×1 matrix with entry 1 . It follows that $\theta(Z, X, Y)$ for For $Z \in \mathbb{H}_{k}$, and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$ has the convergence properties mentioned in Proposition 3.1.8. For $Z \in \mathbb{H}_{k}, R \in \mathrm{M}(k, 1, \mathbb{R})$, and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$ define

$$
\begin{equation*}
g(Z, R, X, Y)=\exp \left(\pi i^{\mathrm{t}}(R-Y) Z(R-Y)+2 \pi i^{\mathrm{t}} R X-\pi i^{\mathrm{t}} X Y\right) \tag{3.3}
\end{equation*}
$$

Lemma 3.2.1. Let k be a positive integer, $U \in \operatorname{Sym}(k, \mathbb{R})^{+}$and $X, Y \in$ $\mathrm{M}(k, 1, \mathbb{C})$. The function $g(i U, \cdot, X, Y)$ is contained in the Schwartz space

$$
\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))=\mathcal{S}\left(\mathbb{R}^{k}\right)
$$

(see section 2.2 for the definition of the Schwartz space).
Proof. Write $X=X_{1}+i X_{2}$ and $Y=Y_{1}+i Y_{2}$ for $X_{1}, X_{2}, Y_{1}, Y_{2} \in \mathrm{M}(k, 1, \mathbb{R})$. Also, write $U=V^{2}$ for some $V \in \operatorname{Sym}(k, \mathbb{R})^{+}$(see (1.7)). Since $\exp \left(-\pi i^{\mathrm{t}} X Y\right)$ is constant, it suffices to prove that the function defined by

$$
R \mapsto \exp \left(-\pi^{\mathrm{t}}(R-Y) U(R-Y)+2 \pi i^{\mathrm{t}} R X\right)
$$

is contained $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$. Since $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$ is mapped to itself by the map induced by $R \mapsto R+Y_{2}$, we may assume that our function has the form

$$
R \mapsto \exp \left(-\pi^{\mathrm{t}}\left(R-i Y_{2}\right) U\left(R-i Y_{2}\right)+2 \pi i^{\mathrm{t}} R X\right)
$$

Let $R \in \mathrm{M}(k, 1, \mathbb{R})$. Then

$$
\begin{aligned}
\exp & \left(-\pi^{\mathrm{t}}(R-Y) U(R-Y)+2 \pi i^{\mathrm{t}} R X\right) \\
& =\exp \left(-\pi^{\mathrm{t}}\left(R-i Y_{2}\right)^{\mathrm{t}} V V\left(R-i Y_{2}\right)+2 \pi i^{\mathrm{t}} R X\right) \\
& =\exp \left(-\pi^{\mathrm{t}}\left(V R-i V Y_{2}\right)\left(V R-i V Y_{2}\right)+2 \pi i^{\mathrm{t}} R X\right)
\end{aligned}
$$

Since $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$ is mapped to itself by the map induced by $R \mapsto V^{-1} R$, we may assume that our function has the form

$$
R \mapsto \exp \left(-\pi^{\mathrm{t}}\left(R-i Y_{2}\right)\left(R-i Y_{2}\right)+2 \pi i^{\mathrm{t}} R X\right)
$$

For $R \in \mathrm{M}(k, 1, \mathbb{R})$ we have:

$$
\begin{aligned}
& \exp \left(-\pi^{\mathrm{t}}\left(R-i Y_{2}\right)\left(R-i Y_{2}\right)+2 \pi i^{\mathrm{t}} R X\right) \\
& \quad=\exp \left(-\pi^{\mathrm{t}} R R-2 \pi^{\mathrm{t}} R X_{2}+\pi^{\mathrm{t}} Y_{2} Y_{2}+i\left(2 \pi^{\mathrm{t}} R X_{1}+\pi^{\mathrm{t}} R Y_{2}+\pi^{\mathrm{t}} Y_{2} R\right)\right) .
\end{aligned}
$$

Since $\exp \left(\pi^{t} Y_{2} Y_{2}\right)$ is constant, we see that it suffices to prove that the function $h: \mathrm{M}(k, 1, \mathbb{R}) \rightarrow \mathbb{C}$ defined by

$$
h(R)=\exp \left(-\pi^{\mathrm{t}} R R-2 \pi^{\mathrm{t}} R X_{2}+i\left(2 \pi^{\mathrm{t}} R X_{1}+\pi^{\mathrm{t}} R Y_{2}+\pi^{\mathrm{t}} Y_{2} R\right)\right)
$$

is contained $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ and $P\left(X_{1}, \ldots, X_{k}\right) \in$ $\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]$; we need to prove that $\left|P(R)\left(D^{\alpha} h\right)(R)\right|$ is bounded as a function of $R \in \mathrm{M}(k, 1, \mathbb{R})$. To see this, we note that there exists a polynomial $Q_{\alpha}\left(X_{1}, \ldots, X_{k}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{k}\right]$ such that

$$
\left(D^{\alpha} h\right)(R)=Q_{\alpha}(R) h(R)
$$

for $R \in \mathrm{M}(k, 1, \mathbb{R})$. For $R \in \mathrm{M}(k, 1, \mathbb{R})$ we have

$$
\left|P(R)\left(D^{\alpha} h\right)(R)\right|=\left|P(R) Q_{\alpha}(R) \exp \left(-\pi^{\mathrm{t}} R R-2 \pi^{\mathrm{t}} R X_{2}\right)\right|
$$

$$
\begin{align*}
& =\left|P(R) Q_{\alpha}(R) \exp \left(-\pi^{\mathrm{t}}\left(R+X_{2}\right)\left(R+X_{2}\right)-\pi^{\mathrm{t}} X_{2} X_{2}\right)\right| \\
& =\left|\exp \left(-\pi^{\mathrm{t}} X_{2} X_{2}\right) P(R) Q_{\alpha}(R) \exp \left(-\pi^{\mathrm{t}}\left(R+X_{2}\right)\left(R+X_{2}\right)\right)\right| \tag{3.4}
\end{align*}
$$

It is well-known that the function

$$
R \mapsto \exp \left(-\pi^{\mathrm{t}} R R\right)
$$

is contained $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$. As above, this implies that

$$
\exp \left(-\pi^{\mathrm{t}}\left(R+X_{2}\right)\left(R+X_{2}\right)\right)
$$

is also contained $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$. This implies that (3.4) is bounded.
Lemma 3.2.2. Let k be a positive integer. Let $U \in \operatorname{Sym}(k, \mathbb{R})^{+}$and $X, Y \in$ $\mathrm{M}(k, 1, \mathbb{C})$. The Fourier transform (see section 2.2) of the Schwartz function $g(i U, \cdot, X, Y)$ is given by

$$
\mathcal{F}(g(i U, \cdot, X, Y))(R)=\operatorname{det}(U)^{-1 / 2} g\left(-(i U)^{-1},-R, Y,-X\right)
$$

Proof. Let $R \in \mathrm{M}(k, 1, \mathbb{R})$. We recall that for $Z \in \mathbb{H}_{k}$, the function g is given by:

$$
g(Z, R, X, Y)=\exp \left(\pi i^{\mathrm{t}}(R-Y) Z(R-Y)+2 \pi i^{\mathrm{t}} R X-\pi i^{\mathrm{t}} X Y\right)
$$

Therefore,

$$
\begin{aligned}
& \mathcal{F}(g(i U, \cdot, X, Y))(R) \\
& =\int_{\mathbb{R}^{k}} \exp \left(-\pi^{\mathrm{t}}(r-Y) U(r-Y)+2 \pi i^{\mathrm{t}} r X-\pi i^{\mathrm{t}} X Y\right) \exp \left(-2 \pi i^{\mathrm{t}} R r\right) d r \\
& =\exp \left(-\pi i^{\mathrm{t}} X Y\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r-Y) U(r-Y)-2 i^{\mathrm{t}} r X+2 i^{\mathrm{t}} R r\right]\right) d r
\end{aligned}
$$

Write $U=V^{2}$ for some $V \in \operatorname{Sym}(k, \mathbb{R})^{+}$(see (1.7)). Then:

$$
\begin{aligned}
& \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r-Y) U(r-Y)-2 i^{\mathrm{t}} r X+2 i^{\mathrm{t}} R r\right]\right) d r \\
& =\int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r-Y) U(r-Y)+2 i^{\mathrm{t}} r(-X+R)\right]\right) d r \\
& =\int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r-Y)^{\mathrm{t}} V V(r-Y)+2 i^{\mathrm{t}} r^{\mathrm{t}} V^{\mathrm{t}} V^{-1}(-X+R)\right]\right) d r \\
& =\int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(V r-V Y)(V r-V Y)+2 i^{\mathrm{t}}(V r)^{\mathrm{t}} V^{-1}(-X+R)\right]\right) d r \\
& =\operatorname{det}(V)^{-1} \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r-V Y)(r-V Y)+2 i^{\mathrm{t}} r^{\mathrm{t}} V^{-1}(-X+R)\right]\right) d r
\end{aligned}
$$

$$
=\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}}(V Y)(V Y)\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}} r r+2^{\mathrm{t}} r Q\right]\right) d r
$$

where

$$
Q=-V Y+i^{\mathrm{t}} V^{-1}(-X+R)=-V Y-i^{\mathrm{t}} V^{-1} X+i^{\mathrm{t}} V^{-1} R
$$

For the penultimate equality, we used the formula for a linear change of variables (see Theorem 2.20, (e) on page 50 and section 2.23 of [24]). Completing the square, we obtain:

$$
\begin{aligned}
& \operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}}(V Y)(V Y)\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}} r r+2^{\mathrm{t}} r Q\right]\right) d r \\
& =\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} Y U Y\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}} r r+2^{\mathrm{t}} r Q+{ }^{\mathrm{t}} Q Q-{ }^{\mathrm{t}} Q Q\right]\right) d r \\
& =\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} Y U Y\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi\left[{ }^{\mathrm{t}}(r+Q)(r+Q)-{ }^{\mathrm{t}} Q Q\right]\right) d r \\
& \left.=\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} Q Q\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi^{\mathrm{t}}(r+Q)(r+Q)\right)\right) d r \\
& =\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} Q Q\right) \int_{\mathbb{R}^{k}} \exp \left(-\pi^{\mathrm{t}} r r\right) d r \\
& =\operatorname{det}(U)^{-1 / 2} \exp \left(-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} Q Q\right) .
\end{aligned}
$$

For the penultimate equality, we used Lemma 2.2.2. Therefore,

$$
\begin{aligned}
\mathcal{F} & (g(i U, \cdot, X, Y))(R) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(-\pi i^{\mathrm{t}} X Y\right) \exp \left(-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} Q Q\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(-i \pi^{\mathrm{t}} X Y-\pi^{\mathrm{t}} X V^{-1}{ }^{\mathrm{t}} V^{-1} X+\pi^{\mathrm{t}} R V^{-1}{ }^{\mathrm{t}} V^{-1} X\right. \\
& +i \pi^{\mathrm{t}} Y^{\mathrm{t}} V^{\mathrm{t}} V^{-1} X-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} X V^{-1} V^{-1} R \\
& +i \pi^{\mathrm{t}} X V^{-1} V Y-\pi{ }^{\mathrm{t}} R V^{-1}{ }^{\mathrm{t}} V^{-1} R-i \pi^{\mathrm{t}} R V^{-1} V Y \\
& \left.-i \pi^{\mathrm{t}} Y{ }^{\mathrm{t}} V^{\mathrm{t}} V^{-1} R+\pi^{\mathrm{t}} Y{ }^{\mathrm{t}} V V Y\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(-i \pi^{\mathrm{t}} X Y-\pi^{\mathrm{t}} X U^{-1} X+\pi^{\mathrm{t}} R U^{-1} X\right. \\
& +i \pi^{\mathrm{t}} Y X-\pi^{\mathrm{t}} Y U Y+\pi^{\mathrm{t}} X U^{-1} R \\
& +i \pi^{\mathrm{t}} X Y-\pi^{\mathrm{t}} R U^{-1} R-i \pi^{\mathrm{t}} R Y \\
& \left.-i \pi^{\mathrm{t}} Y R+\pi^{\mathrm{t}} Y U Y\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(-\pi\left[{ }^{\mathrm{t}} X U^{-1} X-{ }^{\mathrm{t}} R U^{-1} X-{ }^{\mathrm{t}} X U^{-1} R+{ }^{\mathrm{t}} R U^{-1} R\right]\right. \\
& \left.-2 i \pi{ }^{\mathrm{t}} R Y+i \pi{ }^{\mathrm{t}} Y X\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(-\pi\left[{ }^{\mathrm{t}}(R-X) U^{-1}(R-X)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-2 i \pi^{\mathrm{t}} R Y-i \pi^{\mathrm{t}} Y(-X)\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(\pi i{ }^{\mathrm{t}}(R-X)\left(-(i U)^{-1}\right)(R-X)\right] \\
& \left.-2 i \pi^{\mathrm{t}} R Y-i \pi^{\mathrm{t}} Y(-X)\right) \\
= & \operatorname{det}(U)^{-1 / 2} \exp \left(\pi i\left[{ }^{\mathrm{t}}(-R-(-X))\left(-(i U)^{-1}\right)(-R-(-X))\right]\right. \\
& \left.+2 i \pi^{\mathrm{t}}(-R) Y-i \pi^{\mathrm{t}} Y(-X)\right) \\
= & \operatorname{det}(U)^{-1 / 2} g\left(-(i U)^{-1},-R, Y,-X\right) .
\end{aligned}
$$

This completes the proof.
Lemma 3.2.3. Let k be a positive integer. There exists an eighth root of unity ξ such that for $Z \in \mathbb{H}_{k}$ and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$ we have

$$
\theta(Z, X, Y)=\xi s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], Z\right)^{-1} \theta\left(-Z^{-1}, Y,-X\right)
$$

Here, $s\left(\left[{ }_{-1}{ }^{1}\right], Z\right)$ for $Z \in \mathbb{H}_{k}$ is defined as in Proposition 1.10.8, and has the property

$$
s\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], Z\right)^{2}=j\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right], Z\right)=\operatorname{det}\left(-Z^{-1}\right)
$$

for $Z \in \mathbb{H}_{k}$.
Proof. Let the function g be as in (3.3). Let $U \in \operatorname{Sym}(k, \mathbb{R})^{+}$and $X, Y \in$ $\mathrm{M}(k, 1, \mathbb{C})$. By Lemma 3.2.1 the function $g(i U, \cdot, X, Y)$ is in $\mathcal{S}(\mathrm{M}(k, 1, \mathbb{R}))$. By Theorem 2.2.4, Lemma 3.2.2, and Proposition 1.10.8, we have:

$$
\begin{aligned}
\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} g(i U, R, X, Y) & =\sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})}(\mathcal{F} g)(i U, R, X, Y) \\
\theta(i U, X, Y) & =\operatorname{det}(U)^{-1 / 2} \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} g\left(-(i U)^{-1},-R, Y,-X\right) \\
\theta(i U, X, Y) & =\operatorname{det}(U)^{-1 / 2} \theta\left(-(i U)^{-1}, Y,-X\right) \\
\theta(i U, X, Y) & =\xi s\left(\left[\begin{array}{ll}
-1 & 1 \\
& i U)^{-1} \theta\left(-(i U)^{-1}, Y,-X\right)
\end{array} .\right.\right.
\end{aligned}
$$

The assertion of the lemma follows now from Lemma 1.10.5.
Let k be a positive integer. Let V be the be \mathbb{C} vector space of all functions from $\mathbb{H}_{k} \times \mathrm{M}(k, 1, \mathbb{C}) \times \mathrm{M}(k, 1, \mathbb{C})$ to \mathbb{C}. For $g=\left[\begin{array}{c}A \\ C\end{array}{\underset{D}{B}}_{]}\right] \in \mathrm{Sp}(2 n, \mathbb{Z})$ and $F \in V$ we define another element $F \mid g$ of V by the formula

$$
(F \mid g)(Z, X, Y)=s(g, Z)^{-1} F(g \cdot Z, A X+B Y, C X+D Y)
$$

for $X \in \mathbb{H}_{k}$ and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$. We define an equivalence relation \sim on the set V by defining $F_{1}, F_{2} \in V$ to be equivalent if there exists an eighth root of unity ζ such that $F_{2}=\zeta F_{1}$. If $F \in V$, then the equivalence class determined
by F will be denoted by $[F]$. For $F \in V$ and $g \in \operatorname{Sp}(2 k, \mathbb{Z})$, we define another equivalence class in V / \sim by

$$
[F] \mid g=[F \mid g]
$$

It is easy to see that $[F] \mid g$ is well-defined, and a calculation using Corollary 1.10.9 and Lemma 1.10 .7 shows that

$$
[F]|(g h)=([F] \mid g)| h
$$

for $F \in V$ and $g, h \in \operatorname{Sp}(2 k, \mathbb{Z})$. We define a function

$$
\begin{equation*}
T: \mathbb{Z}^{2 k} \longrightarrow V / \sim \tag{3.5}
\end{equation*}
$$

by

$$
\left.T(m)=\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right)\right) \theta\left(Z, X+m_{2} / 2, Y+m_{1} / 2\right)\right]
$$

where $m \in \mathbb{Z}^{2 k}$ is (as usual) regarded as a column vector, and $m=\left[\begin{array}{l}m_{1} \\ m_{2}\end{array}\right]$ with $m_{1}, m_{2} \in \mathbb{Z}^{k}$.

Lemma 3.2.4. Let k be a positive integer. Then

$$
T(m+2 n)=T(m)
$$

for $m, n \in \mathbb{Z}^{2 k}$.
Proof. We begin with an observation about θ. Let $X_{0}, Y_{0} \in \mathrm{M}(k, 1, \mathbb{Z})$. Then for $Z \in \mathbb{H}_{k}$ and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$ we have:

$$
\begin{aligned}
& \theta\left(Z, X+X_{0}, Y+Y_{0}\right) \\
&= \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi Z\left[R-Y-Y_{0}\right]+2 \pi i{ }^{\mathrm{t}} R\left(X+X_{0}\right)-\pi i^{\mathrm{t}}\left(X+X_{0}\right)\left(Y+Y_{0}\right)\right) \\
&= \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi Z[R-Y]+2 \pi i^{\mathrm{t}}\left(R+Y_{0}\right)\left(X+X_{0}\right)\right. \\
&\left.\quad-\pi i^{\mathrm{t}}\left(X+X_{0}\right)\left(Y+Y_{0}\right)\right) \\
&= \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi Z[R-Y]+2 \pi i{ }^{\mathrm{t}} R X+2 \pi i^{\mathrm{t}} R X_{0}+2 \pi i^{\mathrm{t}} Y_{0} X+2 \pi i{ }^{\mathrm{t}} Y_{0} X_{0}\right. \\
&\left.\quad-\pi i^{\mathrm{t}} X Y-\pi i^{\mathrm{t}} X Y_{0}-\pi i^{\mathrm{t}} X_{0} Y-\pi i^{\mathrm{t}} X_{0} Y_{0}\right) \\
&= \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi Z[R-Y]+2 \pi i^{\mathrm{t}} R X+\pi i{ }^{\mathrm{t}} Y_{0} X+\right. \\
&\left.\quad-\pi i^{\mathrm{t}} X Y-\pi i^{\mathrm{t}} X_{0} Y-\pi i^{\mathrm{t}} X_{0} Y_{0}\right) \quad\left(\operatorname{since}{ }^{\mathrm{t}} R X_{0},{ }^{\mathrm{t}} Y_{0} X_{0} \in \mathbb{Z}\right) \\
&= \exp \left(\pi i{ }^{\mathrm{t}} Y_{0} X-\pi i^{\mathrm{t}} X_{0} Y-\pi i^{\mathrm{t}} X_{0} Y_{0}\right) \\
& \quad \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi Z[R-Y]+2 \pi i{ }^{\mathrm{t}} R X-\pi i^{\mathrm{t}} X Y\right)
\end{aligned}
$$

$$
=\exp \left(\pi i^{\mathrm{t}} Y_{0} X-\pi i^{\mathrm{t}} X_{0} Y-\pi i^{\mathrm{t}} X_{0} Y_{0}\right) \theta(Z, X, Y)
$$

It follows that

$$
\left[\theta\left(Z, X+X_{0}, Y+Y_{0}\right)\right]=\left[\exp \left(\pi i{ }^{\mathrm{t}} Y_{0} X-\pi i^{\mathrm{t}} X_{0} Y\right) \theta(Z, X, Y)\right]
$$

because $\exp \left(-\pi i^{\mathrm{t}} X_{0} Y_{0}\right)$ is an eighth root of unity. Now let $m, n \in \mathbb{Z}^{2 k}$. Then

$$
\begin{aligned}
& T(m+2 n) \\
& =\left[\exp \left(-\pi i^{\mathrm{t}}\left(m_{1}+2 n_{1}\right) X / 2+\pi i^{\mathrm{t}}\left(m_{2}+2 n_{2}\right) Y / 2\right)\right. \\
& \left.\quad \times \theta\left(Z, X+m_{2} / 2+n_{2}, Y+m_{1} / 2+n_{1}\right)\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2-\pi i^{\mathrm{t}} n_{1} X+\pi i^{\mathrm{t}} m_{2} Y / 2+\pi i^{\mathrm{t}} n_{2} Y\right)\right. \\
& \quad \times \exp \left(\pi i^{\mathrm{t}} n_{1}\left(X+m_{2} / 2\right)-\pi i^{\mathrm{t}} n_{2}\left(Y+m_{1} / 2\right)\right) \\
& \left.\quad \times \theta\left(Z, X+m_{2} / 2, Y+m_{1} / 2\right)\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2-\pi i^{\mathrm{t}} n_{1} X+\pi i^{\mathrm{t}} m_{2} Y / 2+\pi i^{\mathrm{t}} n_{2} Y\right)\right. \\
& \left.\quad \times \exp \left(\pi i^{\mathrm{t}} n_{1} X+\pi i^{\mathrm{t}} n_{1} m_{2} / 2-\pi i^{\mathrm{t}} n_{2} Y-\pi i^{\mathrm{t}} n_{2} m_{1} / 2\right)\right] \\
& \quad \quad \times \theta\left(Z, X+m_{1} / 2, Y+m_{2} / 2\right) \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right)\right. \\
& \quad \quad \times \exp \left(\pi i^{\mathrm{t}} n_{1} m_{2} / 2-\pi i^{\mathrm{t}} n_{2} m_{1} / 2\right) \\
& \left.\quad \quad \times \theta\left(Z, X+m_{2} / 2, Y+m_{1} / 2\right)\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right) \theta\left(Z, X+m_{2} / 2, Y+m_{1} / 2\right)\right] \\
& =T(m),
\end{aligned}
$$

because $\exp \left(\pi i^{\mathrm{t}} n_{1} m_{2} / 2-\pi i^{\mathrm{t}} n_{2} m_{1} / 2\right)$ is an eighth root of unity.
By Lemma 3.2.4, the function T induces a function

$$
T:(\mathbb{Z} / 2 \mathbb{Z})^{2 k} \longrightarrow V / \sim
$$

which we denote by the same name.
Next, if $H:(\mathbb{Z} / 2 \mathbb{Z})^{2 k} \rightarrow V / \sim$ is a function and $g \in \operatorname{Sp}(2 n, \mathbb{Z})$, then we define a new function $H \mid g:(\mathbb{Z} / 2 \mathbb{Z})^{2 k} \rightarrow V / \sim$ by

$$
(H \mid g)(m)=H(g\{m\}) \mid g
$$

for $m \in(\mathbb{Z} / 2 \mathbb{Z})^{2 k}$; here, $g\{m\}$ is defined in Proposition 1.11.2, where it is proven that this defines an action of $\operatorname{Sp}(2 k, \mathbb{Z})$ on $(\mathbb{Z} / 2 \mathbb{Z})^{2 k}$. It is easy to verify that

$$
\begin{equation*}
H|(g h)=(H \mid g)| h \tag{3.6}
\end{equation*}
$$

for $g, h \in \operatorname{Sp}(2 k, \mathbb{Z})$ and a function $H:(\mathbb{Z} / 2 \mathbb{Z})^{2 k} \rightarrow V / \sim$.
Theorem 3.2.5. Let k be a positive integer. Then

$$
T \mid g=T
$$

for $g \in \operatorname{Sp}(2 k, \mathbb{Z})$.

Proof. Since (3.6) holds, it suffices to prove that $T \mid g=T$ for the generators of $\operatorname{Sp}(2 k, \mathbb{Z})$ from Theorem 1.9.6. Let $B \in \operatorname{Sym}(k, \mathbb{Z})$ and $m \in(\mathbb{Z} / 2 \mathbb{Z})^{2 k}$. Then, using that

$$
\begin{aligned}
& \left(T \left\lvert\,\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right]\right.\right)(m) \\
& \left.=T\left(\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right]\{m\}\right) \right\rvert\,\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right] \\
& \left.=T\left(\left[\begin{array}{c}
m_{1} \\
-B m_{1}+m_{2}+\operatorname{diag}(B)
\end{array}\right]\right) \right\rvert\,\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1}(X+B Y) / 2+\pi i^{\mathrm{t}}\left(-B m_{1}+m_{2}+\operatorname{diag}(B)\right) Y / 2\right)\right. \\
& \left.\times \theta\left(Z, X-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2, Y+m_{1} / 2\right)\right] \left\lvert\,\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right]\right. \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1}(X+B Y) / 2+\pi i^{\mathrm{t}}\left(-B m_{1}+m_{2}+\operatorname{diag}(B)\right) Y / 2\right)\right. \\
& \left.\times \theta\left(Z+B, X+B Y-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2, Y+m_{1} / 2\right)\right] \\
& \text { (use } s\left(\left[\begin{array}{cc}
1 & B \\
1
\end{array}\right], Z\right)^{2}=1 \text {, so that } s\left(\left[\begin{array}{cc}
1 & B \\
1
\end{array}\right], Z\right) \text { is identically } 1 \text { or }-1 \text {) } \\
& =\left[\exp \left(-\pi i{ }^{\mathrm{t}} m_{1}(X+B Y) / 2+\pi i^{\mathrm{t}}\left(-B m_{1}+m_{2}+\operatorname{diag}(B)\right) Y / 2\right)\right. \\
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i(Z+B)\left[R-Y-m_{1} / 2\right]\right. \\
& +2 \pi i^{\mathrm{t}} R\left(X+B Y-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2\right) \\
& \left.\left.-\pi i^{\mathrm{t}}\left(X+B Y-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2\right)\left(Y+m_{1} / 2\right)\right)\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1}(X+B Y) / 2+\pi i^{\mathrm{t}}\left(-B m_{1}+m_{2}+\operatorname{diag}(B)\right) Y / 2\right)\right. \\
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i Z\left[R-Y-m_{1} / 2\right]+2 \pi i^{\mathrm{t}} R\left(X+m_{2} / 2\right)\right. \\
& \left.-\pi i^{\mathrm{t}}\left(X+m_{2} / 2\right)\left(Y+m_{1} / 2\right)\right) \\
& \times \exp \left(\pi i B\left[R-Y-m_{1} / 2\right]+2 \pi i^{\mathrm{t}} R\left(B Y-B m_{1} / 2+\operatorname{diag}(B) / 2\right)\right. \\
& \left.\left.-\pi i^{\mathrm{t}}\left(B Y-B m_{1} / 2+\operatorname{diag}(B) / 2\right)\left(Y+m_{1} / 2\right)\right)\right] \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1}(X+B Y) / 2+\pi i^{\mathrm{t}}\left(-B m_{1}+m_{2}+\operatorname{diag}(B)\right) Y / 2\right)\right. \\
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i(Z+B)\left[R-Y-m_{1} / 2\right]\right. \\
& +2 \pi i^{\mathrm{t}} R\left(X+B Y-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2\right) \\
& \times \exp \left(\pi i^{\mathrm{t}}\left(R-Y-m_{1} / 2\right) B\left(R-Y-m_{1} / 2\right)\right. \\
& +2 \pi i{ }^{\mathrm{t}} R\left(B Y-B m_{1} / 2+\operatorname{diag}(B) / 2\right) \\
& \left.\left.-\pi i^{\mathrm{t}}\left(B Y-B m_{1} / 2+\operatorname{diag}(B) / 2\right)\left(Y+m_{1} / 2\right)\right)\right] \\
& =\left[\operatorname { e x p } \left(-\pi i^{\mathrm{t}} m_{1} X / 2-\pi i^{\mathrm{t}} m_{1} B Y / 2\right.\right. \\
& \left.-\pi i^{\mathrm{t}} m_{1} B Y / 2+\pi i^{\mathrm{t}} m_{2} Y / 2+\pi i^{\mathrm{t}} \operatorname{diag}(B) Y / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i(Z+B)\left[R-Y-m_{1} / 2\right]\right. \\
& +2 \pi i^{\mathrm{t}} R\left(X+B Y-B m_{1} / 2+m_{2} / 2+\operatorname{diag}(B) / 2\right) \\
& \times \exp \left(\pi i{ }^{\mathrm{t}} R B R-\pi i{ }^{\mathrm{t}} R B Y-\pi i{ }^{\mathrm{t}} R B m_{1} / 2\right. \\
& -\pi i^{\mathrm{t}} Y B R+\pi i^{\mathrm{t}} Y B Y+\pi i^{\mathrm{t}} Y B m_{1} / 2 \\
& -\pi i{ }^{\mathrm{t}} \mathrm{~m}_{1} B R / 2+\pi i{ }^{\mathrm{t}} m_{1} B Y / 2+\pi i{ }^{\mathrm{t}} m_{1} B m_{1} / 4 \\
& +2 \pi i{ }^{\mathrm{t}} R B Y-2 \pi i{ }^{\mathrm{t}} R B m_{1} / 2+2 \pi i{ }^{\mathrm{t}} R \operatorname{diag}(B) / 2 \\
& -\pi i^{\mathrm{t}} Y B Y-\pi i^{\mathrm{t}} Y B m_{1} / 2 \\
& +\pi i^{\mathrm{t}} \mathrm{~m}_{1} B Y / 2+\pi i{ }^{\mathrm{t}} \mathrm{~m}_{1} B m_{1} / 4 \\
& \left.\left.-\pi i^{\mathrm{t}} \operatorname{diag}(B) Y / 2-\pi i^{\mathrm{t}} \operatorname{diag}(B) m_{1} / 4\right)\right] \\
& =\left[\exp \left(-\pi i{ }^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right)\right. \\
& \times \exp \left(+\pi i^{\mathrm{t}} m_{1} B m_{1} / 2-\pi i^{\mathrm{t}} \operatorname{diag}(B) m_{1} / 4\right) \\
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i Z\left[R-Y-m_{1} / 2\right]+2 \pi i^{\mathrm{t}} R\left(X+m_{2} / 2\right)\right. \\
& \left.-\pi i^{\mathrm{t}}\left(X+m_{2} / 2\right)\left(Y+m_{1} / 2\right)\right) \\
& \left.\times \exp \left(\pi i\left({ }^{\mathrm{t}} R B R+{ }^{\mathrm{t}} R \operatorname{diag}(B)\right)-2 \pi i{ }^{\mathrm{t}} R B m_{1}\right)\right] \\
& =\left[\exp \left(-\pi i{ }^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right)\right. \\
& \times \exp \left(\pi i^{\mathrm{t}} m_{1} B m_{1} / 2-\pi i^{\mathrm{t}} \operatorname{diag}(B) m_{1} / 4\right) \\
& \times \sum_{R \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i Z\left[R-Y-m_{1} / 2\right]+2 \pi i^{\mathrm{t}} R\left(X+m_{2} / 2\right)\right. \\
& \left.-\pi i^{\mathrm{t}}\left(X+m_{2} / 2\right)\left(Y+m_{1} / 2\right)\right) \text { (See Lemma 1.11.1) } \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{1} X / 2+\pi i^{\mathrm{t}} m_{2} Y / 2\right) \theta\left(Z, X+m_{2} / 2, Y+m_{1} / 2\right)\right] \\
& =T(m) \text {. }
\end{aligned}
$$

And:

$$
\begin{aligned}
& \left(T \left\lvert\,\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\right.\right)(m) \\
& \left.=T\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\{m\}\right) \right\rvert\,\left[\begin{array}{cc}
1 \\
-1 & 1
\end{array}\right] \\
& \left.=T\left(\begin{array}{c}
m_{2} \\
-m_{1}
\end{array}\right]\right) \left\lvert\,\left[\begin{array}{cc}
-1 & 1 \\
-1 &
\end{array}\right.\right. \\
& =\left[\exp \left(-\pi i^{\mathrm{t}} m_{2} X / 2-\pi i^{\mathrm{t}} m_{1} Y\right) \theta\left(Z, X-m_{1} / 2, Y+m_{2} / 2\right)\right] \left\lvert\,\left[\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right]\right. \\
& =\left[s\left(\left[\begin{array}{ll}
-1
\end{array}\right], Z\right)^{-1} \exp \left(-\pi i^{\mathrm{t}} m_{2} Y / 2+\pi i^{\mathrm{t}} m_{1} X / 2\right)\right. \\
& = \\
& \quad\left[\exp \left(-\pi i^{\mathrm{t}} m_{2} Y / 2+\pi i^{\mathrm{t}} m_{1} X / 2\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times \theta\left(Z, X-m_{2} / 2, Y-m_{1} / 2\right)\right] \quad \text { (by Lemma 3.2.3) } \\
= & {\left[\exp \left(-\pi i^{\mathrm{t}}\left(-m_{1}\right) X / 2+\pi i^{\mathrm{t}}\left(-m_{2}\right) Y / 2\right) \theta\left(Z, X-m_{2} / 2, Y-m_{1} / 2\right)\right] } \\
= & T(-m) \\
= & T(m) .
\end{aligned}
$$

This completes the proof.
Corollary 3.2.6. Let k be a positive integer, and let Γ_{θ} be the theta group, as defined in sect. 1.11. Let μ_{8} be the group of all eighth roots of unity. There exists a function $\chi: \Gamma_{\theta} \rightarrow \mu_{8}$ such that

$$
\theta(Z, X, Y)=\chi(g) s(g, Z)^{-1} \theta(g \cdot Z, A X+B Y, C X+D Y)
$$

for $Z \in \mathbb{H}_{k}, X, Y \in \mathrm{M}(k, 1, \mathbb{C})$, and $g=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \Gamma_{\theta}$.
Proof. Let $g \in \Gamma_{\theta}$. By Theorem 3.2.5 we have $T \mid g=T$. Evaluating at $m=0 \in$ $(\mathbb{Z} / 2 \mathbb{Z})^{2 k}$, we obtain:

$$
\begin{aligned}
T(0) & =(T \mid g)(0) \\
{[\theta(Z, X, Y)] } & =T(g\{0\}) \mid g \\
& =T(0) \mid g \\
& =[\theta(Z, X, Y)] \mid g \\
{[\theta(Z, X, Y)] } & =\left[s(g, Z)^{-1} \theta(g \cdot Z, A X+B, C X+D)\right] .
\end{aligned}
$$

It follows that there exists $\xi \in \mu_{8}$ such that

$$
\theta(Z, X, Y)=\xi s(g, Z)^{-1} \theta(g \cdot Z, A X+B, C X+D)
$$

for all $Z \in \mathbb{H}_{k}$ and $X, Y \in \mathrm{M}(k, 1, \mathbb{C})$.

3.3 Application to general theta series

Lemma 3.3.1. Let m and n be positive integers. If $A \in \mathrm{M}(m, \mathbb{C})$ and $B \in$ $\mathrm{M}(n, \mathbb{C})$, then we define an element $A \otimes B \in \mathrm{M}(m n, \mathbb{C})$ by

$$
A \otimes B=\left[\begin{array}{ccc}
b_{11} A & \cdots & b_{1 n} A \\
\vdots & & \vdots \\
b_{n 1} A & \cdots & b_{n n} A
\end{array}\right] .
$$

Let $A, A^{\prime} \in \mathrm{M}(m, \mathbb{C})$ and $B, B^{\prime} \in \mathrm{M}(m, \mathbb{C})$. Then

$$
\begin{align*}
(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right) & =A A^{\prime} \otimes B B^{\prime}, \tag{3.7}\\
\operatorname{det}(A \otimes B) & =(\operatorname{det} A)^{n}(\operatorname{det} B)^{m}, \tag{3.8}\\
\mathrm{t}^{\mathrm{t}}(A \otimes B) & ={ }^{\mathrm{t}} A \otimes{ }^{\mathrm{t}} B . \tag{3.9}
\end{align*}
$$

If A and B are invertible, then $A \otimes B$ is invertible, and

$$
\begin{equation*}
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \tag{3.10}
\end{equation*}
$$

If $A \in \operatorname{Sym}(m, \mathbb{R})^{+}$and $B \in \operatorname{Sym}(n, \mathbb{R})^{+}$, then $A \otimes B \in \operatorname{Sym}(m n, \mathbb{R})^{+}$.
Proof. We write $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$ and $B=\left(b_{i j}^{\prime}\right)_{1 \leq i, j \leq n}$. Then

$$
\begin{aligned}
(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right) & =\left[\begin{array}{ccc}
b_{11} A & \cdots & b_{1 n} A \\
\vdots & & \vdots \\
b_{n 1} A & \cdots & b_{n n} A
\end{array}\right]\left[\begin{array}{ccc}
b_{11}^{\prime} A^{\prime} & \cdots & b_{1 n}^{\prime} A^{\prime} \\
\vdots & & \vdots \\
b_{n 1}^{\prime} A^{\prime} & \cdots & b_{n n}^{\prime} A^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\left(\sum_{j=1}^{n} b_{1 j} b_{j 1}^{\prime}\right) A A^{\prime} & \cdots & \left(\sum_{j=1}^{n} b_{1 j} b_{j n}^{\prime}\right) A A^{\prime} \\
\vdots & & \vdots \\
\left(\sum_{j=1}^{n} b_{n j} b_{j 1}^{\prime}\right) A A^{\prime} & \cdots & \left(\sum_{j=1}^{n} b_{n j} b_{j n}^{\prime}\right) A A^{\prime}
\end{array}\right] \\
& =A A^{\prime} \otimes B B^{\prime} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \operatorname{det}(A \otimes B) \\
& =\operatorname{det}\left(\left(A \otimes 1_{n}\right)\left(1_{m} \otimes B\right)\right) \\
& =\operatorname{det}\left(A \otimes 1_{n}\right) \operatorname{det}\left(1_{m} \otimes B\right) \\
& =\operatorname{det}\left(\left[\begin{array}{lll}
A & & \\
& \ddots & \\
& & A
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{lll}
b_{11} & & \\
& \ddots & \\
& & b_{11}
\end{array}\right] \quad \cdots \quad\left[\begin{array}{lll}
b_{1 n} & & \\
& \ddots & \\
& & \\
b_{n 1} & & \\
& \ddots & \\
& & b_{n 1}
\end{array}\right] \quad \cdots \quad\left[\begin{array}{lll}
b_{n n} & & \\
& \ddots & \\
& & b_{n n}
\end{array}\right]\right] \\
& =\operatorname{det}(A)^{n} \operatorname{det}(B)^{m} .
\end{aligned}
$$

We have

$$
\begin{aligned}
{ }^{\mathrm{t}}(A \otimes B) & =\left[\begin{array}{ccc}
\mathrm{b}_{11} A & \cdots & b_{1 n} A \\
\vdots & & \vdots \\
b_{n 1} A & \cdots & b_{n n} A
\end{array}\right] \\
& =\left[\begin{array}{ccc}
b_{11}{ }^{\mathrm{t}} A & \cdots & b_{n 1}{ }^{\mathrm{t}} A \\
\vdots & & \vdots \\
b_{1 n}{ }^{\mathrm{t}} A & \cdots & b_{n n}{ }^{\mathrm{t}} A
\end{array}\right] \\
& ={ }^{\mathrm{t}} A \otimes{ }^{\mathrm{t}} B .
\end{aligned}
$$

Assume that A and B are invertible. Then

$$
(A \otimes B)\left(A^{-1} \otimes B^{-1}\right)=A A^{-1} \otimes B B^{-1}
$$

$$
\begin{aligned}
& =1_{m} \otimes 1_{n} \\
& =1_{m n}
\end{aligned}
$$

This implies that $A \otimes B$ is invertible and has inverse $A^{-1} \otimes B^{-1}$. Finally, assume that $A \in \operatorname{Sym}(m, \mathbb{R})^{+}$and $B \in \operatorname{Sym}(n, \mathbb{R})^{+}$. Since ${ }^{\mathrm{t}}(A \otimes B)={ }^{\mathrm{t}} A \otimes{ }^{\mathrm{t}} B=A \otimes B$, it follows that $A \otimes B$ is symmetric. By (1.5), there exist $T \in \mathrm{GL}(m, \mathbb{R})$ and $S \in$ $\mathrm{GL}(n, \mathbb{R})$ such that $T^{-1}={ }^{\mathrm{t}} T$ and $S^{-1}={ }^{\mathrm{t}} S$, and there exist $\lambda_{1}>0, \ldots, \lambda_{m}>0$ and $\mu_{1}>0, \ldots, \mu_{n}>0$ such that

$$
{ }^{\mathrm{t}} T A T=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right], \quad{ }^{\mathrm{t}} S B S=\left[\begin{array}{lll}
\mu_{1} & & \\
& \ddots & \\
& & \mu_{n}
\end{array}\right]
$$

We have:

$$
\begin{aligned}
{ }^{\mathrm{t}}(T \otimes S)(A \otimes B)(T \otimes S) & =\left({ }^{\mathrm{t}} T \otimes{ }^{\mathrm{t}} S\right)(A \otimes B)(T \otimes S) \\
& ={ }^{\mathrm{t}} T A T \otimes{ }^{\mathrm{t}} S B S \\
& =\left[\begin{array}{llll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right] \otimes\left[\begin{array}{llll}
\mu_{1} & & \\
& & \ddots & \\
& & & \mu_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\mu_{1} \lambda_{1} & & & & \\
& \ddots & & & & \\
& & \mu_{1} \lambda_{m} & & & \\
& & & \ddots & & \\
& & & & \mu_{n} \lambda_{1} & \\
\\
& & & & & \ddots
\end{array}\right]
\end{aligned}
$$

This equality implies that $A \otimes B$ is positive-definite.
Lemma 3.3.2. Let m and n be positive integers. Let $F \in \operatorname{Sym}(m, \mathbb{Z})$ be even and invertible, and let N be the level of F. Let

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{Z}): C \equiv 0(\bmod N)\right\}
$$

Define a function

$$
t: \Gamma_{0}(N) \longrightarrow \Gamma_{\theta, 2 m n}
$$

by $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \mapsto \tilde{M}$, where

$$
\tilde{M}=\left[\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right]=\left[\begin{array}{cc}
1_{m} \otimes A & F \otimes B \\
F^{-1} \otimes C & 1_{m} \otimes D
\end{array}\right]
$$

The function t is a well-defined homomorphism.

Proof. We first verify that t is well-defined. Let $M=\left[\begin{array}{cc}A & B \\ D\end{array}\right] \in \Gamma_{0}(N)$. By Lemma 1.9.2, we have

$$
{ }^{\mathrm{t}} A C={ }^{\mathrm{t}} C A, \quad{ }^{\mathrm{t}} B D={ }^{\mathrm{t}} B D, \quad{ }^{\mathrm{t}} A D-{ }^{\mathrm{t}} C B=1_{n},
$$

and to see that $\tilde{M} \in \operatorname{Sp}(2 m n, \mathbb{Z})$ it suffices to check that $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}$ are integral, and

$$
{ }^{\mathrm{t}} \tilde{A} \tilde{C}={ }^{\mathrm{t}} \tilde{C} \tilde{A}, \quad{ }^{\mathrm{t}} \tilde{B} \tilde{D}={ }^{\mathrm{t}} \tilde{D} \tilde{B}, \quad{ }^{\mathrm{t}} \tilde{A} \tilde{D}-{ }^{\mathrm{t}} \tilde{C} \tilde{B}=1_{m n}
$$

It is clear that \tilde{A}, \tilde{B} and \tilde{D} are integral. Concerning \tilde{C}, we have:

$$
\tilde{C}=F^{-1} \otimes C=N F^{-1} \otimes N^{-1} C
$$

Since $N F^{-1}$ and $N^{-1} C$ are integral, by the definition of the level of N and as $C \equiv 0(\bmod N)$, it follows that \tilde{C} is integral. Now

$$
\begin{aligned}
{ }^{\mathrm{t}} \tilde{A} \tilde{C} & ={ }^{\mathrm{t}}\left(1_{m} \otimes A\right)\left(F^{-1} \otimes C\right) \\
& =\left(1_{m} \otimes{ }^{\mathrm{t}} A\right)\left(F^{-1} \otimes C\right) \\
& =F^{-1} \otimes{ }^{\mathrm{t}} A C \\
& =F^{-1} \otimes{ }^{\mathrm{t}} C A \\
& =\left(F^{-1} \otimes{ }^{\mathrm{t}} C\right)\left(1_{m} \otimes A\right) \\
& =\left({ }^{\mathrm{t}} F^{-1} \otimes{ }^{\mathrm{t}} C\right)\left(1_{m} \otimes A\right) \\
& ={ }^{\mathrm{t}}\left(F^{-1} \otimes C\right)\left(1_{m} \otimes A\right) \\
& ={ }^{\mathrm{t}} \tilde{C} \tilde{A} .
\end{aligned}
$$

A similar calculation shows that ${ }^{\mathrm{t}} \tilde{B} \tilde{D}={ }^{\mathrm{t}} \tilde{D} \tilde{B}$. Next,

$$
\begin{aligned}
{ }^{\mathrm{t}} \tilde{A} \tilde{D}-{ }^{\mathrm{t}} \tilde{C} \tilde{B} & =\left(1_{m} \otimes{ }^{\mathrm{t}} A\right)\left(1_{m} \otimes D\right)-\left({ }^{\mathrm{t}} F^{-1} \otimes{ }^{\mathrm{t}} C\right)(F \otimes B) \\
& =1_{m} \otimes{ }^{\mathrm{t}} A D-1_{m} \otimes{ }^{\mathrm{t}} C B \\
& =1_{m} \otimes\left({ }^{\mathrm{t}} A D-{ }^{\mathrm{t}} C B\right) \\
& =1_{m} \otimes 1_{n} \\
& =1_{m n}
\end{aligned}
$$

It follows that $\tilde{M} \in \operatorname{Sp}(2 m n, \mathbb{Z})$. To now prove that $\tilde{M} \in \Gamma_{\theta, m n}$ it suffices to prove that

$$
\operatorname{diag}\left(\tilde{A}^{\mathrm{t}} \tilde{B}\right) \equiv 0(\bmod 2) \quad \text { and } \quad \operatorname{diag}\left(\tilde{C}^{\mathrm{t}} \tilde{D}\right) \equiv 0(\bmod 2)
$$

We have

$$
\begin{aligned}
\operatorname{diag}\left(\tilde{A}^{\mathrm{t}} \tilde{B}\right) & \equiv \operatorname{diag}\left(\left(1_{m} \otimes A\right)^{\mathrm{t}}(F \otimes B)(\bmod 2)\right. \\
& \equiv \operatorname{diag}\left(F \otimes A^{\mathrm{t}} B\right)(\bmod 2) \\
& \equiv 0(\bmod 2)
\end{aligned}
$$

by the definition of \otimes, and because $\operatorname{diag}(F) \equiv 0(\bmod 2)$. And

$$
\begin{aligned}
\operatorname{diag}\left(\tilde{C}^{\mathrm{t}} \tilde{D}\right) & \equiv \operatorname{diag}\left(\left(F^{-1} \otimes C\right)^{\mathrm{t}}\left(1_{m} \otimes D\right)\right)(\bmod 2) \\
& \equiv \operatorname{diag}\left(F^{-1} \otimes C^{\mathrm{t}} D\right)(\bmod 2) \\
& \equiv \operatorname{diag}\left(N F^{-1} \otimes N^{-1} C^{\mathrm{t}} D\right)(\bmod 2) \\
& \equiv 0(\bmod 2)
\end{aligned}
$$

by the definition of $\otimes, \operatorname{diag}\left(N F^{-1}\right) \equiv 0(\bmod 2)$, and $N^{-1} C^{\mathrm{t}} D \in \mathrm{M}(n, \mathbb{Z})$. Finally, we verify that t is a homomorphism. Let $\left[\begin{array}{cc}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right],\left[\begin{array}{cc}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right] \in \Gamma_{0}(N)$. Then

$$
\begin{aligned}
& t\left(\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\right)=t\left(\left[\begin{array}{ll}
A_{1} A_{2}+B_{1} C_{2} & A_{1} B_{2}+B_{1} D_{2} \\
C_{1} A_{2}+D_{1} C_{2} & C_{1} B_{2}+D_{1} D_{2}
\end{array}\right]\right) \\
& \quad=t\left(\left[\begin{array}{cc}
1_{m} \otimes\left(A_{1} A_{2}+B_{1} C_{2}\right) & F \otimes\left(A_{1} B_{2}+B_{1} D_{2}\right) \\
F^{-1} \otimes\left(C_{1} A_{2}+D_{1} C_{2}\right) & 1_{m} \otimes\left(C_{1} B_{2}+D_{1} D_{2}\right)
\end{array}\right]\right) \\
& \quad=t\left(\left[\begin{array}{l}
\left(1_{m} \otimes A_{1}\right)\left(1_{m} \otimes A_{2}\right)+\left(F \otimes B_{1}\right)\left(F^{-1} \otimes C_{2}\right) \\
\left(F^{-1} \otimes C_{1}\right)\left(1_{m} \otimes A_{2}\right)+\left(1 \otimes D_{1}\right)\left(F^{-1} \otimes C_{2}\right) \\
\left(1_{m} \otimes A_{1}\right)\left(F \otimes B_{2}\right)+\left(F \otimes B_{1}\right)\left(1_{m} \otimes D_{2}\right) \\
\left(F^{-1} \otimes C_{1}\right)\left(F \otimes B_{2}\right)+\left(1 \otimes D_{1}\right)\left(1 \otimes D_{2}\right)
\end{array}\right]\right) \\
& \quad=\left[\begin{array}{cc}
1_{m} \otimes A_{1} & F \otimes B_{1} \\
F^{-1} \otimes C_{1} & 1_{m} \otimes D_{1}
\end{array}\right]\left[\begin{array}{cc}
1_{m} \otimes A_{2} & F \otimes B_{2} \\
F^{-1} \otimes C_{2} & 1_{m} \otimes D_{2}
\end{array}\right] \\
& \quad=t\left(\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\right) t\left(\left[\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\right)
\end{aligned}
$$

This completes the proof.
Lemma 3.3.3. Let m and n be positive integers, and let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. For $Z \in \mathbb{H}_{n}$ and $Y \in \mathrm{M}(m, n, \mathbb{C})$ define

$$
\tilde{Z}=F \otimes Z, \quad \tilde{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

where $Y=\left[Y_{1} \cdots Y_{n}\right]$ with $Y_{1}, \ldots, Y_{n} \in \mathrm{M}(m, 1, \mathbb{C})$. We have

$$
\begin{aligned}
\tilde{Z} & \in \mathbb{H}_{m n}, \\
\tilde{X} & \in \mathrm{M}(m n, 1, \mathbb{C}), \\
\tilde{Z}[\tilde{Y}] & =\operatorname{tr}(Z F[Y]), \\
{ }^{\mathrm{t}} \tilde{X} \tilde{Y} & =\operatorname{tr}\left({ }^{\mathrm{t}} X Y\right) \\
\tilde{M} \cdot \tilde{Z} & =\widetilde{M \cdot Z} \\
\tilde{A} \tilde{X}+\tilde{B} \tilde{Y} & =X^{\mathrm{t}} \widetilde{A+F Y^{\mathrm{t}}} B \\
\tilde{C} \tilde{X}+\tilde{D} \tilde{Y} & =F^{-1} \widehat{X^{\mathrm{t}} C+} Y^{\mathrm{t}} D
\end{aligned}
$$

for $Z \in \mathbb{H}_{n}, X, Y \in \mathrm{M}(m, n, \mathbb{C})$, and $M \in \operatorname{Sp}(2 n, \mathbb{Z})$. Moreover, for every $M \in \operatorname{Sp}(2 n, \mathbb{Z})$ there exists $\varepsilon \in\{ \pm 1\}$ such that

$$
s(\tilde{M}, \tilde{Z})=\varepsilon s(M, Z)^{m}
$$

for $Z \in \mathbb{H}_{n}$.
Proof. Let $Z \in \mathbb{H}_{n}$ and $X, Y \in \mathrm{M}(m, n, \mathbb{C})$. We have ${ }^{\mathrm{t}} \tilde{Z}=\tilde{Z}$ by Lemma 3.3.1. Write $Z=U+i V$ with $U, V \in \operatorname{Sym}(n, \mathbb{R})$ and $V>0$. Then $\tilde{Z}=F \otimes(U+i V)=$ $(F \otimes U)+i(F \otimes V)$. By Lemma 3.3.1 we have $F \otimes V>0$. It follows that $Z \in \mathbb{H}_{m n}$. Next,

$$
\begin{aligned}
\tilde{Z}[\tilde{Y}] & =\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]\left[\begin{array}{cc}
z_{11} F & \cdots z_{1 n} F \\
\vdots & \vdots \\
z_{n 1} F & \cdots z_{n n} F
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
{ }^{\mathrm{t}} Y_{1} & \cdots & { }^{\mathrm{t}} Y_{n}
\end{array}\right]\left[\begin{array}{c}
z_{11} F Y_{1}+\cdots+z_{1 n} F Y_{n} \\
\vdots \\
z_{n 1} F Y_{1}+\cdots+z_{n n} F Y_{n}
\end{array}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i j}{ }^{\mathrm{t}} Y_{i} F Y_{j} .
\end{aligned}
$$

And:

$$
\begin{aligned}
\operatorname{tr}(Z F[Y]) & =\operatorname{tr}\left(Z^{\mathrm{t}} Y F Y\right) \\
& =\operatorname{tr}\left(Z^{\mathrm{t}}\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right] F\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]\right) \\
& \left.=\operatorname{tr}\left(Z\left[\begin{array}{c}
{ }^{\mathrm{t}} Y_{1} \\
\vdots \\
{ }^{\mathrm{t}} Y_{n}
\end{array}\right] \text { F } \begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(Z\left[\begin{array}{c}
{ }^{\mathrm{t}} Y_{1} F \\
\vdots \\
{ }^{\mathrm{t}} Y_{n} F
\end{array}\right]\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
z_{11} & \cdots & z_{1 n} \\
\vdots & & \vdots \\
z_{n 1} & \cdots & z_{n n}
\end{array}\right]\left[\begin{array}{ccc}
{ }^{\mathrm{t}} Y_{1} F Y_{1} & \cdots & { }^{\mathrm{t}} Y_{1} F Y_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} Y_{n} F Y_{1} & \cdots & { }^{\mathrm{t}} Y_{n} F Y_{n}
\end{array}\right]\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i j}{ }^{\mathrm{t}} Y_{i} F Y_{j} .
\end{aligned}
$$

It follows that $\tilde{Z}[\tilde{Y}]=\operatorname{tr}(Z F[Y])$. Next, we have:

$$
{ }^{\mathrm{t}} \tilde{X} \tilde{Y}={ }^{\mathrm{t}}\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
{ }^{\mathrm{t}} X_{1} & \cdots & { }^{\mathrm{t}} X_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \\
& =\sum_{i=1}^{n}{ }^{\mathrm{t}} X_{i} Y_{i} .
\end{aligned}
$$

And:

$$
\begin{aligned}
\operatorname{tr}\left({ }^{\mathrm{t}} X Y\right) & =\operatorname{tr}\left({ }^{\mathrm{t}}\left[\begin{array}{lll}
X_{1} & \cdots & X_{n}
\end{array}\right]\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
{ }^{\mathrm{t}} X_{1} \\
\vdots \\
{ }^{\mathrm{t}} X_{n}
\end{array}\right]\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
{ }^{\mathrm{t}} X_{1} Y_{1} & \cdots & { }^{\mathrm{t}} X_{1} Y_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} X_{n} Y_{1} & \cdots & { }^{\mathrm{t}} X_{n} Y_{n}
\end{array}\right]\right) \\
& =\sum_{i=1}^{n}{ }^{\mathrm{t}} X_{i} Y_{i} .
\end{aligned}
$$

It follows that ${ }^{\mathrm{t}} \tilde{X} \tilde{Y}=\operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)$. Let $M=\left[\begin{array}{cc}A & B \\ D\end{array}\right] \in \operatorname{Sp}(2 n, \mathbb{Z})$. Then

$$
\begin{aligned}
\tilde{M} \cdot \tilde{Z} & =\left[\begin{array}{cc}
1_{m} \otimes A & F \otimes B \\
F^{-1} \otimes C & 1_{m} \otimes D
\end{array}\right] \cdot(F \otimes Z) \\
& =\left(\left(1_{m} \otimes A\right)(F \otimes Z)+F \otimes B\right)\left(\left(F^{-1} \otimes C\right)(F \otimes Z)+1_{m} \otimes D\right)^{-1} \\
& =(F \otimes A Z+F \otimes B)\left(1_{m} \otimes C Z+1_{m} \otimes D\right)^{-1} \\
& =(F \otimes(A Z+B))\left(1_{m} \otimes(C Z+D)\right)^{-1} \\
& =(F \otimes(A Z+B))\left(1_{m} \otimes(C Z+D)^{-1}\right) \\
& =F \otimes(A Z+B)(C Z+D)^{-1} \\
& =F \otimes M \cdot Z \\
& =\widetilde{M \cdot Z} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\tilde{A} \tilde{X} & +\tilde{B} \tilde{Y}=\left(1_{m} \otimes A\right)\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]+(F \otimes B)\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{11} 1_{m} & \cdots & a_{1 n} 1_{m} \\
\vdots & & \vdots \\
a_{n 1} 1_{m} & \cdots & a_{n n} 1_{m}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} F & \cdots & b_{1 n} F \\
\vdots & & \vdots \\
b_{n 1} F & \cdots & b_{n n} F
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} X_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{n i} X_{i}
\end{array}\right]+\left[\begin{array}{c}
\sum_{i=1}^{n} b_{1 i} F Y_{i} \\
\vdots \\
\sum_{i=1}^{n} b_{n i} F Y_{i}
\end{array}\right] .
$$

And:

$$
\left.\begin{array}{l}
X^{\mathrm{t}} \widetilde{A+F Y^{\mathrm{t}} B=\left[\begin{array}{lll}
X_{1} & \cdots & X_{n}
\end{array}\right]^{\mathrm{t}} \widetilde{A+F}\left[\begin{array}{lll}
Y_{1} & \cdots & Y_{n}
\end{array}\right]^{\mathrm{t}} B} \\
=\left[\begin{array}{lll}
\sum_{i=1}^{n} a_{1 i} X_{i} & \cdots & \sum_{i=1}^{n} a_{n i} X_{i}
\end{array}\right]+F\left[\begin{array}{ll}
\sum_{i=1}^{n} b_{1 i} Y_{i} & \cdots
\end{array} \sum_{i=1}^{n} b_{n i} Y_{i}\right.
\end{array}\right] \quad \begin{gathered}
=\left[\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} X_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{n i} X_{i}
\end{array}\right]+\left[\begin{array}{c}
\sum_{i=1}^{n} b_{1 i} F Y_{i} \\
\vdots \\
\sum_{i=1}^{n} b_{n i} F Y_{i}
\end{array}\right] .
\end{gathered}
$$

Hence, $\tilde{A} \tilde{X}+\tilde{B} \tilde{Y}=X^{\mathrm{t}} \widetilde{A+F Y}{ }^{\mathrm{t}} B$. The proof of $\tilde{C} \tilde{X}+\tilde{D} \tilde{Y}=F^{-1} \widetilde{X^{\mathrm{t} C+}+} Y^{\mathrm{t}} D$ is similar. Finally, let $M \in \operatorname{Sp}(2 n, \mathbb{Z})$. For $Z \in \mathbb{H}_{n}$ we have

$$
\begin{aligned}
s(\tilde{M}, \tilde{Z})^{2} & =\operatorname{det}(\tilde{C} \tilde{Z}+\tilde{D}) \\
& =\operatorname{det}\left(\left(F^{-1} \otimes C\right)(F \otimes Z)+\left(1_{m} \otimes D\right)\right) \\
& =\operatorname{det}\left(1_{m} \otimes C Z+1_{m} \otimes D\right) \\
& =\operatorname{det}\left(1_{m} \otimes(C Z+D)\right) \\
& =\operatorname{det}(C Z+D)^{m} \\
& =s(M, Z)^{2 m}
\end{aligned}
$$

It follows that for each $Z \in \mathbb{H}_{n}$ there exists $\varepsilon(Z) \in\{ \pm 1\}$ such that $s(\tilde{M}, \tilde{Z})=$ $\varepsilon(Z) s(M, Z)^{m}$. The function on \mathbb{H}_{n} that sends Z to $\varepsilon(Z)$ is continuous and takes values in $\{ \pm 1\}$. Since \mathbb{H}_{n} is connected (see Proposition 1.10.3), the intermediate value theorem (see Theorem 6 on page 90 of [18]) implies now that this function is constant, which completes the proof of the lemma.

Lemma 3.3.4. Let m and n be positive integers, and let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. For $Z \in \mathbb{H}_{n}, X, Y \in \mathrm{M}(m \times n, \mathbb{C})$, define
$\theta(F, Z, X, Y)=\sum_{R \in \mathrm{M}(m \times n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}(Z F[R-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} R X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right)$.
By Lemma 3.1.8, this series converges absolutely and uniformly on compact subsets of $\mathbb{H}_{n} \times \mathrm{M}(m, n, \mathbb{C}) \times \mathrm{M}(m, n, \mathbb{C})$ and defines an analytic function on this set. With the notation of Lemma 3.3.3, we have

$$
\begin{equation*}
\theta(F, Z, X, Y)=\theta(\tilde{Z}, \tilde{X}, \tilde{Y}) \tag{3.11}
\end{equation*}
$$

Proof. By definition,

$$
\theta(\tilde{Z}, \tilde{X}, \tilde{Y})=\sum_{R^{\prime} \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i \tilde{Z}\left[R^{\prime}-\tilde{Y}\right]+2 \pi i^{\mathrm{t}} R^{\prime} \tilde{X}-\pi i^{\mathrm{t}} \tilde{X} \tilde{Y}\right)
$$

The map $\mathrm{M}(m, n, \mathbb{Z}) \rightarrow \mathrm{M}(k, 1, \mathbb{Z})$ defined by $R \mapsto \tilde{R}$ is an isomorphism of groups. Using this, and Lemma 3.3.3,

$$
\begin{aligned}
\theta(\tilde{Z}, \tilde{X}, \tilde{Y}) & =\sum_{R^{\prime} \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \tilde{Z}[\tilde{R}-\tilde{Y}]+2 \pi i{ }^{\mathrm{t}} \tilde{R} \tilde{X}-\pi i^{\mathrm{t}} \tilde{X} \tilde{Y}\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}(Z F[R-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} R X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) \\
\theta(\tilde{Z}, \tilde{X}, \tilde{Y}) & =\theta(F, Z, X, Y)
\end{aligned}
$$

This completes the proof.
Theorem 3.3.5. Let m and n be positive integers, and let $F \in \operatorname{Sym}(m, \mathbb{Z})^{+}$be even. Let N be the level of F. For $Z \in \mathbb{H}_{n}, X, Y \in \mathrm{M}(m \times n, \mathbb{C})$, define

$$
\theta(F, Z, X, Y)=\sum_{R \in \mathrm{M}(m \times n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}(Z F[R-Y])+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} R X\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} X Y\right)\right) .
$$

By Lemma 3.1.8, this series converges absolutely and uniformly on compact subsets of $\mathbb{H}_{n} \times \mathrm{M}(m, n, \mathbb{C}) \times \mathrm{M}(m, n, \mathbb{C})$ and defines an analytic function on this set. Let μ_{8} be the group of eighth roots of unity. There exists a function $\chi: \Gamma_{0}(N) \rightarrow \mu_{8}$ such that

$$
\begin{aligned}
& \chi(M) \theta(F, Z, X, Y) \\
& \quad=s(M, Z)^{-m} \theta\left(F, M \cdot Z, X^{\mathrm{t}} A+F Y^{\mathrm{t}} B, F^{-1} X^{\mathrm{t}} C+Y^{\mathrm{t}} D\right)
\end{aligned}
$$

for $M=\left[\begin{array}{ll}A & B \\ C & B\end{array}\right] \in \Gamma_{0}(N), Z \in \mathbb{H}_{n}$, and $X, Y \in \mathrm{M}(m, n, \mathbb{C})$.
Proof. Let $k=m n$. By Corollary 3.2.6 there exists a function $\mu: \Gamma_{\theta} \rightarrow \mu_{8}$ such that

$$
\begin{align*}
& \mu\left(M^{\prime}\right) \theta\left(Z^{\prime}, X^{\prime}, Y^{\prime}\right) \\
& \quad=s\left(M^{\prime}, Z^{\prime}\right)^{-1} \theta\left(M^{\prime} \cdot Z^{\prime}, A^{\prime} X^{\prime}+B^{\prime} Y^{\prime}, C^{\prime} X^{\prime}+D^{\prime} Y^{\prime}\right) \tag{3.12}
\end{align*}
$$

for $Z^{\prime} \in \mathbb{H}_{k}, X^{\prime}, Y^{\prime} \in \mathrm{M}(k, 1, \mathbb{C})$, and $M^{\prime}=\left[\begin{array}{cc}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right] \in \Gamma_{\theta, k}$. Here,

$$
\theta\left(Z^{\prime}, X^{\prime}, Y^{\prime}\right)=\sum_{R^{\prime} \in \mathrm{M}(k, 1, \mathbb{Z})} \exp \left(\pi i Z^{\prime}\left[R^{\prime}-Y^{\prime}\right]+2 \pi i^{\mathrm{t}} R^{\prime} X-\pi i^{\mathrm{t}} X^{\prime} Y^{\prime}\right)
$$

for $Z^{\prime} \in \mathbb{H}_{k}, X^{\prime}, Y^{\prime} \in \mathrm{M}(k, 1, \mathbb{C})$. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \Gamma_{0}(N), Z \in \mathbb{H}_{n}$, and $X, Y \in \mathrm{M}(m, n, \mathbb{C})$. To prove the theorem we will substitute \tilde{M} for M^{\prime}, \tilde{Z} for Z^{\prime}, \tilde{X} for X^{\prime} and \tilde{Y} for Y^{\prime} in both sides of (3.12); note that $\tilde{M} \in \Gamma_{\theta, 2 k}$ by Lemma 3.3.2. Substituting in the left hand side, we have, by (3.11),

$$
\theta(\tilde{Z}, \tilde{X}, \tilde{Y})=\theta(F, Z, X, Y)
$$

Substituting \tilde{M} for M^{\prime}, \tilde{Z} for Z^{\prime}, \tilde{X} for X^{\prime} and \tilde{Y} for Y^{\prime} in the right hand side of (3.12), using Lemma 3.3.3 again, and also (3.11), we get:

$$
s\left(M^{\prime}, Z^{\prime}\right)^{-1} \theta\left(M^{\prime} \cdot Z^{\prime}, A^{\prime} X^{\prime}+B^{\prime} Y^{\prime}, C^{\prime} X^{\prime}+D^{\prime} Y^{\prime}\right)
$$

$$
\begin{aligned}
& =s(\tilde{M}, \tilde{Z})^{-1} \theta(\tilde{M} \cdot \tilde{Z}, \tilde{A} \tilde{X}+\tilde{B} \tilde{Y}, \tilde{C} \tilde{X}+\tilde{D} \tilde{Y}) \\
& =\varepsilon s(M, Z)^{-m} \theta\left(\widetilde{M \cdot Z}, X^{\mathrm{t}} \widetilde{A+F Y^{\mathrm{t}} B, F^{-1} \widehat{\left.X^{\mathrm{t}} C+Y^{\mathrm{t}} D\right)}}\right. \\
& =\varepsilon s(M, Z)^{-m} \theta\left(F, M \cdot Z, X^{\mathrm{t}} A+F Y^{\mathrm{t}} B, F^{-1} X^{\mathrm{t}} C+Y^{\mathrm{t}} D\right) .
\end{aligned}
$$

Here, ε depends only on M. The theorem is proven.

3.4 The multiplier

In this section we compute the multiplier $\chi(M)$ from Theorem 3.3.5 in the case that m is even.

Lemma 3.4.1. Let m and n be positive integers, and assume that m is even. Let $F \in \operatorname{Sym}(m, \mathbb{Z})^{+}$be even, and let N be the level of F. Let $\chi: \Gamma_{0}(N) \rightarrow \mu_{8}$ be as in Theorem 3.3.5. Then χ is a character.

Proof. Let $M_{1}, M_{2} \in \Gamma_{0}(N)$. By Theorem 3.3.5, if $Z \in \mathbb{H}_{n}$, then:

$$
\begin{aligned}
& \chi\left(M_{1} M_{2}\right) \theta(F, Z)=s\left(M_{1} M_{2}, Z\right)^{-m} \theta\left(F,\left(M_{1} M_{2}\right) \cdot Z\right) \\
&= j\left(M_{1} M_{2}, Z\right)^{-m / 2} \theta\left(F, M_{1} \cdot\left(M_{2} \cdot Z\right)\right) \\
&= j\left(M_{1}, M_{2} \cdot Z\right)^{-m / 2} j\left(M_{2}, Z\right)^{-m / 2} \\
& \times \chi\left(M_{1}\right) s\left(M_{1}, M_{2} \cdot Z\right)^{m} \theta\left(F, M_{2} \cdot Z\right) \\
&= j\left(M_{1}, M_{2} \cdot Z\right)^{-m / 2} j\left(M_{2}, Z\right)^{-m / 2} \\
& \times \chi\left(M_{1}\right) j\left(M_{1}, M_{2} \cdot Z\right)^{m / 2} \theta\left(F, M_{2} \cdot Z\right) \\
&= j\left(M_{2}, Z\right)^{-m / 2} \chi\left(M_{1}\right) \theta\left(F, M_{2} \cdot Z\right) \\
&= j\left(M_{2}, Z\right)^{-m / 2} \chi\left(M_{1}\right) \chi\left(M_{2}\right) s\left(M_{2}, Z\right)^{m} \theta(F, Z) \\
&= j\left(M_{2}, Z\right)^{-m / 2} \chi\left(M_{1}\right) \chi\left(M_{2}\right) j\left(M_{2}, Z\right)^{m / 2} \theta(F, Z) \\
&= \chi\left(M_{1}\right) \chi\left(M_{2}\right) \theta(F, Z) .
\end{aligned}
$$

Since $\theta(F, \cdot)$ is not zero, we obtain $\chi\left(M_{1} M_{2}\right)=\chi\left(M_{1}\right) \chi\left(M_{2}\right)$.
Lemma 3.4.2. Let m and n be positive integers. Assume that m is even. Let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. Then

$$
\theta(F, Z, X, Y)=\operatorname{det}(F)^{-n / 2} \operatorname{det}(-i Z)^{-m / 2} \theta\left(F^{-1},-Z^{-1}, Y,-X\right)
$$

for $T \in \operatorname{Sym}(n, \mathbb{R})^{+}$and $X, Y \in \mathrm{M}(m, n, \mathbb{C})$.
Proof. Let $k=m n$. From the proof of Lemma 3.2.3 we have

$$
\begin{equation*}
\theta\left(i T^{\prime}, X^{\prime}, Y^{\prime}\right)=\operatorname{det}\left(T^{\prime}\right)^{-1 / 2} \theta\left(-\left(i T^{\prime}\right)^{-1}, Y^{\prime},-X^{\prime}\right) \tag{3.13}
\end{equation*}
$$

for $T^{\prime} \in \operatorname{Sym}(k, \mathbb{R})^{+}$and $X^{\prime}, Y^{\prime} \in \mathrm{M}(k, 1, \mathbb{C})$. Let $T \in \operatorname{Sym}(n, \mathbb{R})^{+}$and $X, Y \in$ $\mathrm{M}(m, n, \mathbb{C})$. To prove the lemma we will substitute $T^{\prime}=F \otimes T, X^{\prime}=\tilde{X}$ and $Y^{\prime}=\tilde{Y}$ in (3.13). Now

$$
\theta(i(F \otimes T), \tilde{X}, \tilde{Y})=\theta(F \otimes i T, \tilde{X}, \tilde{Y})
$$

$$
\begin{aligned}
& =\theta(\widetilde{i T}, \tilde{X}, \tilde{Y}) \\
& =\theta(F, i T, X, Y) . \quad \text { (use Lemma 3.3.4) }
\end{aligned}
$$

And

$$
\begin{aligned}
\theta((- & \left.(i(F \otimes T))^{-1}, \tilde{Y},-\tilde{X}\right) \\
& =\theta\left(F^{-1} \otimes\left(-(i T)^{-1}\right), \tilde{Y},-\tilde{X}\right) \\
& \left.=\theta\left(F^{-1},-(i T)^{-1}, Y,-X\right) . \quad \text { (use Lemma 3.3.4 with } F^{-1}\right)
\end{aligned}
$$

Finally,

$$
\operatorname{det}(F \otimes T)=\operatorname{det}(F)^{n} \operatorname{det}(T)^{m}
$$

The equality (3.13) now implies that

$$
\theta(F, i T, X, Y)=\operatorname{det}(F)^{-n / 2} \operatorname{det}(T)^{-m / 2} \theta\left(F^{-1},-(i T)^{-1}, Y,-X\right)
$$

or equivalently,

$$
\theta(F, i T, X, Y)=\operatorname{det}(F)^{-n / 2} \operatorname{det}((-i) i T)^{-m / 2} \theta\left(F^{-1},-(i T)^{-1}, Y,-X\right) .
$$

The assertion of the lemma follows now from Lemma 1.10.5.
Lemma 3.4.3. Let m and n be positive integers. Let $M, N \in \mathrm{M}(m, n, \mathbb{C})$, $E \in \operatorname{Sym}(n, \mathbb{C})$, and $F \in \operatorname{Sym}(m, \mathbb{C})$. Then

$$
\operatorname{tr}\left(E^{\mathrm{t}} M F N\right)=\operatorname{tr}\left(E^{\mathrm{t}} N F M\right)
$$

Proof. Let $E=\left(e_{i j}\right), M=\left[M_{1} \cdots M_{n}\right]$, and $N=\left[N_{1}, \cdots M_{n}\right]$. We have

$$
\begin{aligned}
\operatorname{tr}\left(E^{\mathrm{t}} M F N\right) & =\operatorname{tr}\left(\left[\begin{array}{ccc}
e_{11} & \cdots & e_{1 n} \\
\vdots & & \vdots \\
e_{n 1} & \cdots & e_{n n}
\end{array}\right]\left[\begin{array}{ccc}
{ }^{\mathrm{t}} M_{1} F N_{1} & \cdots & { }^{\mathrm{t}} M_{1} F N_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} M_{n} F N_{1} & \cdots & { }^{\mathrm{t}} M_{n} F N_{n}
\end{array}\right]\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} e_{i j}{ }^{\mathrm{t}} M_{j} F N_{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} e_{j i}{ }^{\mathrm{t}} N_{i} F M_{j} \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
e_{11} & \cdots & e_{1 n} \\
\vdots & & \vdots \\
e_{n 1} & \cdots & e_{n n}
\end{array}\right]\left[\begin{array}{ccc}
{ }^{\mathrm{t}} N_{1} F M_{1} & \cdots & { }^{\mathrm{t}} N_{1} F M_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} N_{n} F M_{1} & \cdots & { }^{\mathrm{t}} N_{n} F M_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(E^{\mathrm{t}} N F M\right) .
\end{aligned}
$$

This completes the proof.
Lemma 3.4.4. Let m and n be positive integers, and let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. Let $R \in \mathrm{M}(m, n, \mathbb{R})$. Then $\operatorname{tr}(F[R]) \geq 0$, and $\operatorname{tr}(F[R])=0$ if and only if $R=0$.

Proof. Write $R=\left[R_{1} \cdots R_{n}\right]$. Then

$$
\begin{aligned}
\operatorname{tr}(F[R]) & =\operatorname{tr}\left(\left[\begin{array}{c}
{ }^{\mathrm{t}} R_{1} \\
\vdots \\
{ }^{\mathrm{t}} R_{n}
\end{array}\right] F\left[\begin{array}{lll}
R_{1} & \cdots & R_{n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left([\begin{array} { c }
{ { } ^ { \mathrm { t } } R _ { 1 } } \\
{ \vdots } \\
{ { } ^ { \mathrm { t } } R _ { n } }
\end{array}] \left[\begin{array}{lll}
F R_{1} & \cdots & \left.\left.F R_{n}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
{ }^{\mathrm{t}} R_{1} F R_{1} & \cdots & { }^{\mathrm{t}} R_{1} F R_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} R_{n} F R_{1} & \cdots & { }^{\mathrm{t}} R_{n} F R_{n}
\end{array}\right]\right) \\
& =\sum_{i=1}^{n} F\left[R_{i}\right]
\end{array}\right.\right.
\end{aligned}
$$

Since F is positive-definite, we have $F\left[R_{i}\right] \geq 0$ for $1 \leq i \leq n$. It follows that $\operatorname{tr}(F[R]) \geq 0$. Assume that $\operatorname{tr}(F[R])=0$. Then $F\left[R_{i}\right]=0$ for $1 \leq i \leq n$. Since F is positive-definite, $R_{1}=\cdots=R_{n}=0$.

Lemma 3.4.5. Let m and n be positive integers. Let $F \in \operatorname{Sym}(m, \mathbb{Z})$ be even. If $W \in \mathrm{M}(n, \mathbb{Z})$ and $N \in \mathrm{M}(m, n, \mathbb{Z})$, then $\operatorname{tr}(W F[N])=\operatorname{tr}(F[N] W)$ is an even integer.

Proof. Write $W=\left(w_{i j}\right)$ and $N=\left[N_{1} \cdots N_{n}\right]$. Then

$$
\begin{aligned}
\operatorname{tr}(W F[N]) & =\operatorname{tr}\left(\left[\begin{array}{ccc}
w_{11} & \cdots & w_{1 n} \\
\vdots & & \vdots \\
w_{n 1} & \cdots & w_{n n}
\end{array}\right]\left[\begin{array}{ccc}
{ }^{\mathrm{t}} N_{1} F N_{1} & \cdots & { }^{\mathrm{t}} N_{1} F N_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} N_{n} F N_{1} & \cdots & { }^{\mathrm{t}} N_{n} F N_{n}
\end{array}\right]\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}{ }^{\mathrm{t}} N_{j} F N_{i} \\
& =\sum_{\substack{i, j \in\{1, \ldots, n\}, i \neq j}} w_{i j}{ }^{\mathrm{t}} N_{j} F N_{i}+\sum_{i=1}^{n} w_{i i}{ }^{\mathrm{t}} N_{i} F N_{i} \\
& =\sum_{\substack{i, j \in\{1, \ldots, n\}, i<j}} 2 w_{i j}{ }^{\mathrm{t}} N_{j} F N_{i}+\sum_{i=1}^{n} w_{i i}{ }^{\mathrm{t}} N_{i} F N_{i} \\
& \equiv 0(\bmod 2)
\end{aligned}
$$

because F is an even integral symmetric matrix (see Lemma 1.5.1).
Lemma 3.4.6. For every positive integer ℓ, let

$$
f_{\ell}: \mathrm{M}(m, n, \mathbb{Z}) \rightarrow \mathbb{C}
$$

be a function, and assume that the limit $\lim _{\ell \rightarrow \infty} f_{\ell}(N)$ exists for every $N \in$ $\mathrm{M}(m, n, \mathbb{C})$. Define $f: \mathrm{M}(m, n, \mathbb{Z}) \rightarrow \mathbb{C}$ by

$$
f(N)=\lim _{\ell \rightarrow \infty} f_{\ell}(N)
$$

for $N \in \mathrm{M}(m, n, \mathbb{Z})$. Suppose that $g: \mathrm{M}(m, n, \mathbb{Z}) \rightarrow \mathbb{R}_{\geq 0}$ is a function such that

$$
\left|f_{\ell}(N)\right| \leq g(N)
$$

for every $\ell \in \mathbb{Z}^{+}$and $N \in \mathrm{M}(m, n, \mathbb{Z})$, and $\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} g(N)$ converges. Then

$$
\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} f(N) \quad \text { and } \quad \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} f_{\ell}(N) \text { for } \quad \ell \in \mathbb{Z}^{+}
$$

converge absolutely, and

$$
\lim _{\ell \rightarrow \infty} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} f_{\ell}(N)=\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} f(N)
$$

Proof. This is an application of Lebesgue's dominated convergence theorem (see the theorem on p. 26 of [24]).
Lemma 3.4.7. Let m and n be positive integers, and assume that m is even. Let $F \in \operatorname{Sym}(m, \mathbb{Z})^{+}$be even, and let N be the level of F. Let $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \Gamma_{0}(N)$. Assume that D is invertible, and let d be a non-zero integer such that $d D^{-1}$ is integral. Let $\chi(M)$ be as in Theorem 3.3.5. Then

$$
\chi(M)=d^{-m n} \operatorname{det}(D)^{m / 2} \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right)
$$

Proof. For every positive integer ℓ, we define

$$
T_{\ell}=\ell^{-1} \cdot 1_{n}
$$

Evidently, $T_{\ell} \in \operatorname{Sym}(n, \mathbb{R})^{+}$for $\ell \in \mathbb{Z}^{+}$. Let $\ell \in \mathbb{Z}^{+}$. By Theorem 3.3.5

$$
\begin{align*}
& \chi(M) \theta(F, Z, X, Y) \\
& \quad=s(M, Z)^{-m} \theta\left(F, M \cdot Z, X^{\mathrm{t}} A+F Y^{\mathrm{t}} B, F^{-1} X^{\mathrm{t}} C+Y^{\mathrm{t}} D\right) \tag{3.14}
\end{align*}
$$

for $Z \in \mathbb{H}_{n}$ and $X, Y \in \mathrm{M}(m, n, \mathbb{C})$. Since m is even, we have

$$
s(M, Z)^{-m}=\operatorname{det}(C Z+D)^{-m / 2}
$$

for $Z \in \mathbb{H}_{n}$. Let $Z=i T_{\ell}$ and $X=Y=0$ in (3.14), we obtain

$$
\begin{equation*}
\chi(M) \theta\left(F, i T_{\ell}\right)=\operatorname{det}\left(i C T_{\ell}+D\right)^{-m / 2} \theta\left(F, M \cdot i T_{\ell}\right) \tag{3.15}
\end{equation*}
$$

where we write $\theta(F, Z)=\theta(F, Z, 0,0)$ for $Z \in \mathbb{H}_{n}$. Multiplying this equation by $\operatorname{det}\left(T_{\ell}\right)^{m / 2}$, we obtain:

$$
\begin{align*}
& \operatorname{det}\left(T_{\ell}\right)^{m / 2} \chi(M) \theta\left(F, i T_{\ell}\right) \\
& \quad=\operatorname{det}\left(T_{\ell}\right)^{m / 2} \operatorname{det}\left(i C T_{\ell}+D\right)^{-m / 2} \theta\left(F, M \cdot i T_{\ell}\right) \tag{3.16}
\end{align*}
$$

To prove the lemma we will determine the limits of both sides of (3.16) as $\ell \rightarrow \infty$. Using Lemma 3.4.2, the left-hand side of (3.16) can be computed as:

$$
\text { LHS of } \begin{aligned}
(3.16) & =\operatorname{det}\left(T_{\ell}\right)^{m / 2} \chi(M) \theta\left(F, i T_{\ell}\right) \\
& =\operatorname{det}\left(T_{\ell}\right)^{m / 2} \chi(M) \operatorname{det}(F)^{-n / 2} \operatorname{det}\left(T_{\ell}\right)^{-m / 2} \theta\left(F^{-1},-\left(i T_{\ell}\right)^{-1}\right) \\
& =\chi(M) \operatorname{det}(F)^{-n / 2} \theta\left(F^{-1},-\left(i T_{\ell}\right)^{-1}\right)
\end{aligned}
$$

We claim that

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \theta\left(F^{-1},-\left(i T_{\ell}\right)^{-1}\right)=1 \tag{3.17}
\end{equation*}
$$

To prove this, we first note that

$$
\begin{aligned}
\theta\left(F^{-1},-\left(i T_{\ell}\right)^{-1}\right) & =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(-\left(i T_{\ell}\right)^{-1} F^{-1}[R]\right)\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right) .
\end{aligned}
$$

Since F^{-1} is positive-definite, it follows that for $R \in \mathrm{M}(m, n, \mathbb{Z})$ we have $\operatorname{tr}\left(F^{-1}[R]\right) \geq 0$ with $\operatorname{tr}\left(F^{-1}[R]\right)=0$ if and only if $R=0$ (see Lemma 3.4.4). It follows that

$$
\lim _{\ell \rightarrow \infty} \exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right)= \begin{cases}0 & \text { if } R \neq 0 \\ 1 & \text { if } R=0\end{cases}
$$

We also have

$$
\left|\exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right)\right|=\exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right) \leq \exp \left(-\pi \operatorname{tr}\left(F^{-1}[R]\right)\right)
$$

for $R \in \mathrm{M}(m, n, \mathbb{Z})$, and the series

$$
\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(-\pi \operatorname{tr}\left(F^{-1}[R]\right)\right)
$$

converges absolutely by Proposition 3.1 .8 (with $A=F^{-1}, Z=i 1_{n}$, and $X=$ $Y=0$). Lemma 3.4.6 now implies that

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \theta\left(F^{-1},-\left(i T_{\ell}\right)^{-1}\right) & =\lim _{\ell \rightarrow \infty} \sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \lim _{\ell \rightarrow \infty} \exp \left(-\pi \ell \operatorname{tr}\left(F^{-1}[R]\right)\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})}\left\{\begin{array}{ll}
0 & \text { if } R \neq 0, \\
1 & \text { if } R=0
\end{array}\right\} \\
& =1
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \text { LHS of }(3.16)=\chi(M) \operatorname{det}(F)^{-n / 2} . \tag{3.18}
\end{equation*}
$$

We now consider the right-hand side of (3.16). We first rewrite $M \cdot i T_{\ell}$. Let $Z \in \mathbb{H}_{n}$, and define

$$
W={ }^{\mathrm{t}} D^{-1} Z(C Z+D)^{-1} .
$$

We claim that

$$
\begin{equation*}
M \cdot Z=B D^{-1}+W \tag{3.19}
\end{equation*}
$$

To see this, we calculate:

$$
\begin{aligned}
B D^{-1}+W & =B D^{-1}+{ }^{\mathrm{t}} D^{-1} Z(C Z+D)^{-1} \\
& =\left(B D^{-1}(C Z+D)+{ }^{\mathrm{t}} D^{-1} Z\right)(C Z+D)^{-1} \\
& =\left(B D^{-1} C Z+B+{ }^{\mathrm{t}} D^{-1} Z\right)(C Z+D)^{-1} \\
& =\left(\left(B D^{-1} C+{ }^{\mathrm{t}} D^{-1}\right) Z+B\right)(C Z+D)^{-1} \\
& =\left(\left(B D^{-1} C^{\mathrm{t}} D+1\right)^{\mathrm{t}} D^{-1} Z+B\right)(C Z+D)^{-1} \\
& =\left(\left(B D^{-1} D^{\mathrm{t}} C+1\right)^{\mathrm{t}} D^{-1} Z+B\right)(C Z+D)^{-1} \\
& =\left(\left(B^{\mathrm{t}} C+1\right)^{\mathrm{t}} D^{-1} Z+B\right)(C Z+D)^{-1} \\
& =\left(A^{\mathrm{t}} D^{\mathrm{t}} D^{-1} Z+B\right)(C Z+D)^{-1} \\
& =(A Z+B)(C Z+D)^{-1} \\
& =M \cdot Z .
\end{aligned}
$$

In this calculation we used Lemma 1.9.2. We now define

$$
T_{\ell}^{\prime}={ }^{\mathrm{t}} D^{-1} T_{\ell}\left(C\left(i T_{\ell}\right)+D\right)^{-1} .
$$

Multiplying by i, we obtain

$$
i T_{\ell}^{\prime}={ }^{\mathrm{t}} D^{-1}\left(i T_{\ell}\right)\left(C\left(i T_{\ell}\right)+D\right)^{-1}
$$

By the general identity (3.19) we have

$$
M \cdot i T_{\ell}=B D^{-1}+i T_{\ell}^{\prime}
$$

Since $B D^{-1} \in \operatorname{Sym}(n, \mathbb{R})$ by Lemma 1.9.2, and since $M \cdot i T_{\ell} \in \mathbb{H}_{n}$, it follows that $i T_{\ell}^{\prime} \in \mathbb{H}_{n}$. We now have:

$$
\begin{aligned}
\theta(F, & \left.M \cdot i T_{\ell}\right)=\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(\left(M \cdot i T_{\ell}\right) F[R]\right)\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(\left(B D^{-1}+i T_{\ell}^{\prime}\right) F[R]\right)\right) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in d \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(\left(B D^{-1}+i T_{\ell}^{\prime}\right) F[R+N]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(\left(B D^{-1}+i T_{\ell}^{\prime}\right) F[R+d N]\right)\right) \\
= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname { t r } \left(\left(B D^{-1}+i T_{\ell}^{\prime}\right)\right.\right. \\
& \left.\left.\times\left(F[R]+d^{\mathrm{t}} N F R+d^{\mathrm{t}} R F N+d^{2} F[N]\right)\right)\right) \\
= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
& \times \exp \left(-\pi d \operatorname{tr}\left(T_{\ell}^{\prime t} N F R\right)-\pi d \operatorname{tr}\left(T_{\ell}^{\prime} t R F N\right)-\pi d^{2} \operatorname{tr}\left(T_{\ell}^{\prime} F[N]\right)\right) \\
& \times \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B d D^{-1}\left({ }^{\mathrm{t}} N F R+{ }^{\mathrm{t}} R F N\right)\right) \exp \left(\pi i d \operatorname{tr}\left(B d D^{-1} F[N]\right)\right)\right. \\
& \times \exp \left(-2 \pi d \operatorname{tr}\left(T_{\ell}^{\prime t} N F R\right)-\pi d^{2} \operatorname{tr}\left(T_{\ell}^{\prime} F[N]\right)\right) \\
& \times \exp \left(2 \pi i \operatorname{tr}\left(B d D^{-1}\left({ }^{\mathrm{t}} N F R\right)\right) \exp \left(\pi i d \operatorname{tr}\left(B d D^{-1} F[N]\right)\right)\right. \\
= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
& \times \exp \left(-2 \pi d \operatorname{tr}\left(T_{\ell}^{\prime} N F R\right)-\pi d^{2} \operatorname{tr}\left(T_{\ell}^{\prime} F[N]\right)\right) \\
& \times \exp \left(\pi i d \operatorname{tr}\left(B d D^{-1} F[N]\right)\right) .
\end{aligned}
$$

For the last two equalities we used Lemma 3.4.3, along with the fact that the matrix $B d D^{-1}$ is integral (by the definition of d) and symmetric (by Lemma 1.9.2). By Lemma 3.4.5 we also have $\exp \left(\pi i d \operatorname{tr}\left(B d D^{-1} F[N]\right)\right)=1$. Hence,

$$
\begin{aligned}
\theta\left(F, M \cdot i T_{\ell}\right)= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
& \times \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(-2 \pi d \operatorname{tr}\left(T_{\ell}^{\prime \mathrm{t}} N F R\right)-\pi d^{2} \operatorname{tr}\left(T_{\ell}^{\prime} F[N]\right)\right) \\
& \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(i d^{2} T_{\ell}^{\prime} F[N]\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N d F R\left(i T_{\ell}^{\prime}\right)\right)\right) \\
& \left.\exp N F R)-\pi d^{2} \operatorname{tr}\left(T_{\ell}^{\prime} F[N]\right)\right) \\
& \times \theta\left(F, i \operatorname{tr}\left(B D^{-1} F[R]\right)-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
\theta\left(F, M \cdot i T_{\ell}\right)= & \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B T_{\ell}^{\prime}\right), 0\right)
\end{aligned}
$$

$$
\begin{equation*}
\exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F, i d^{2} T_{\ell}^{\prime}, d F R\left(i T_{\ell}^{\prime}\right), 0\right) \tag{3.20}
\end{equation*}
$$

Let $R \in \mathrm{M}(m, n, \mathbb{Z})$. By Lemma 3.4.2 we have:

$$
\begin{align*}
& \theta\left(F, i d^{2} T_{\ell}^{\prime}, d F R\left(i T_{\ell}^{\prime}\right), 0\right) \\
& \quad=\operatorname{det}(F)^{-n / 2} \operatorname{det}\left(d^{2} T_{\ell}^{\prime}\right)^{-m / 2} \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \tag{3.21}
\end{align*}
$$

Now

$$
\begin{aligned}
\theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}\right. & \left., 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \\
& =\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1} F^{-1}\left[N+d F R\left(i T_{\ell}^{\prime}\right)\right]\right)\right)
\end{aligned}
$$

Let $N \in \mathrm{M}(m, n, \mathbb{Z})$. Then

$$
\begin{aligned}
& \exp (\left.\pi i \operatorname{tr}\left(-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1} F^{-1}\left[N+d F R\left(i T_{\ell}^{\prime}\right)\right]\right)\right) \\
&= \exp \left(-\pi d^{-2} \operatorname{tr}\left(T_{\ell}^{\prime-1}{ }^{\mathrm{t}}\left(N+d F R i T_{\ell}^{\prime}\right) F^{-1}\left(N+d F R i T_{\ell}^{\prime}\right)\right)\right) \\
&= \exp \left(-\pi d^{-2} \operatorname{tr}\left(T_{\ell}^{\prime-1}\left({ }^{\mathrm{t}} N+d i T_{\ell}^{\prime \mathrm{t}} R F\right)\left(F^{-1} N+d i R T_{\ell}^{\prime}\right)\right)\right) \\
&= \exp \left(-\pi d^{-2} \operatorname{tr}\left(\left(T_{\ell}^{\prime-1}{ }^{\mathrm{t}} N+d i{ }^{\mathrm{t}} R F\right)\left(F^{-1} N+d i R T_{\ell}^{\prime}\right)\right)\right) \\
&= \exp \left(-\pi d^{-2} \operatorname{tr}\left(T_{\ell}^{\prime-1} F^{-1}[N]+d i T_{\ell}^{\prime-1}{ }^{\mathrm{t}} N R T_{\ell}^{\prime}+d i^{\mathrm{t}} R N-d^{2}{ }^{\mathrm{t}} R F R T_{\ell}^{\prime}\right)\right) \\
&=\exp \left(-\pi d^{-2} \operatorname{tr}\left(T_{\ell}^{\prime-1} F^{-1}[N]\right)\right) \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \\
& \quad \times \exp \left(\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
&=\exp \left(-\pi d^{-2} \operatorname{tr}\left(\left(C i T_{\ell}+D\right) T_{\ell}^{-1}{ }^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \\
& \quad \times \exp \left(\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
&=\exp \left(-\pi d^{-2} \operatorname{tr}\left(\ell\left(i \ell^{-1} C+D\right){ }^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \\
& \quad \quad \times \exp \left(\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
&=\exp \left(-\pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(D^{\mathrm{t}} D F^{-1}[N]\right)\right) \\
& \quad \times \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \exp \left(\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \\
&=\exp \left(-\pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(F^{-1}[N D]\right)\right) \\
& \quad \times \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \exp \left(\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\exp (- & \left.\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \tag{3.22}\\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(-\pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \\
& \quad \times \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(F^{-1}[N D]\right)\right) \tag{3.23}
\end{align*}
$$

We claim that

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right)=1 \tag{3.24}
\end{equation*}
$$

To prove this we use (3.23) and Lemma 3.4.6. Since F^{-1} is positive-definite we have, for $N \in \mathrm{M}(m, n, \mathbb{Z}), \operatorname{tr}\left(F^{-1}[N D]\right) \geq 0$, and $\operatorname{tr}\left(F^{-1}[N D]\right)=0$ if and only if $N D=0$, that is, if and only $N=0$ (see Lemma 3.4.4. This implies that for $N \in \mathrm{M}(m, n, \mathbb{Z})$,

$$
\begin{align*}
& \lim _{\ell \rightarrow \infty} \exp \left(-\pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \\
&=\exp (\left.\times \pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \\
& \times \lim _{\ell \rightarrow \infty} \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(F^{-1}[N D]\right)\right) \tag{3.25}\\
&= \begin{cases}1 & \text { if } N=0 \\
0 & \text { if } N \neq 0\end{cases}
\end{align*}
$$

We also have

$$
\begin{aligned}
& \mid \exp \left(-\pi i d^{-2} \operatorname{tr}\left(C^{\mathrm{t}} D F^{-1}[N]\right)\right) \exp \left(-2 \pi i d^{-1} \operatorname{tr}\left({ }^{\mathrm{t}} R N\right)\right) \\
& \quad \times \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(F^{-1}[N D]\right)\right) \mid \\
& \quad \leq \exp \left(-\pi d^{-2} \ell \operatorname{tr}\left(F^{-1}[N D]\right)\right) \\
& \quad \leq \exp \left(-\pi d^{-2} \operatorname{tr}\left(F^{-1}[N D]\right)\right)
\end{aligned}
$$

and the series

$$
\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(-\pi d^{-2} \operatorname{tr}\left(F^{-1}[N D]\right)\right)
$$

converges by Proposition 3.1.8. We now may apply Lemma 3.4.6 and conclude that (3.24) holds. Going back, we have

$$
\begin{aligned}
& \text { RHS of }(3.16)=\operatorname{det}\left(T_{\ell}\right)^{m / 2} \operatorname{det}\left(i C T_{\ell}+D\right)^{-m / 2} \theta\left(F, M \cdot i T_{\ell}\right) \\
& =\operatorname{det}\left(T_{\ell}\right)^{m / 2} \operatorname{det}\left(i C T_{\ell}+D\right)^{-m / 2} \operatorname{det}(F)^{-n / 2} \operatorname{det}\left(d^{2} T_{\ell}^{\prime}\right)^{-m / 2} \\
& \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right) \\
& \exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \\
& =\operatorname{det}(F)^{-n / 2} d^{-m n} \operatorname{det}\left(i C T_{\ell}+D\right)^{-m / 2} \operatorname{det}\left(T_{\ell} T_{\ell}^{\prime-1}\right)^{m / 2} \\
& \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right) \\
& \quad \exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \\
& =\operatorname{det}(F)^{-n / 2} d^{-m n} \operatorname{det}\left(i \ell^{-1} C+D\right)^{-m / 2} \operatorname{det}\left(\left(i \ell^{-1} C+D\right)^{\mathrm{t}} D\right)^{m / 2} \\
& \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right) \\
& \exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) \\
& =\operatorname{det}(F)^{-n / 2} d^{-m n} \operatorname{det}(D)^{m / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right) \\
& \exp \left(-\pi \operatorname{tr}\left(T_{\ell}^{\prime} F[R]\right)\right) \theta\left(F^{-1},-\left(i d^{2} T_{\ell}^{\prime}\right)^{-1}, 0,-d F R\left(i T_{\ell}^{\prime}\right)\right) .
\end{aligned}
$$

By (3.26) we now have

$$
\begin{align*}
& \lim _{\ell \rightarrow \infty} \text { RHS of }(3.16) \\
& =\operatorname{det}(F)^{-n / 2} d^{-m n} \operatorname{det}(D)^{m / 2} \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(B D^{-1} F[R]\right)\right) . \tag{3.27}
\end{align*}
$$

A comparison of (3.18) and (3.27) completes the proof.
Let n and N be positive integers. We have the subgroup $\Gamma_{0}(N)$ of $\operatorname{Sp}(2 n, \mathbb{Z})$. Sometimes, to indicate the dependence of $\Gamma_{0}(N)$ we will write $\Gamma_{0}^{(n)}(N)$ for $\Gamma_{0}(N)$. Let K be the subgroup of $\Gamma_{0}^{(n)}(N)$ generated by the matrices of the form

$$
\begin{align*}
& {\left[\begin{array}{ll}
{ }^{t} U^{-1} & \\
& \\
& U
\end{array}\right], \quad U \in \operatorname{SL}(n, \mathbb{Z})} \tag{3.28}\\
& {\left[\begin{array}{ll}
1 & S \\
& 1
\end{array}\right], \quad S \in \operatorname{Sym}(n, \mathbb{Z}),} \tag{3.29}\\
& {\left[\begin{array}{ll}
1 & \\
T & 1
\end{array}\right], \quad T \in \operatorname{Sym}(n, \mathbb{Z}) \quad \text { and } \quad T \equiv 0(\bmod N) .} \tag{3.30}
\end{align*}
$$

Let $M_{1}, M_{2} \in \Gamma_{0}^{(n)}(N)$. We will say that M_{1} and M_{2} are equivalent, and write $M_{1} \sim M_{2}$, if there exist $k_{1}, k_{2} \in K$ such that $k_{1} M_{1} k_{2}=M_{2}$. Clearly, \sim is an equivalence relation on $\Gamma_{0}^{(n)}(N)$.
Lemma 3.4.8. Let n and N be positive integers with $N>1$. Let $k \in K$. Then $\chi(k)=1$.

Proof. Since χ is a character by Lemma 3.4.1, we may assume that k is of the form (3.28), (3.29), or (3.30). We now use the formula from Lemma 3.4.7 to conclude that $\chi(k)=1$.
Lemma 3.4.9. Let n and N be positive integers with $N>1$. Let

$$
M_{1}=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right], \quad M_{2}=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] \in \Gamma_{0}(N) \subset \operatorname{Sp}(2 n, \mathbb{Z}) .
$$

If $M_{1} \sim M_{2}$, then $\operatorname{det}\left(D_{1}\right) \equiv \operatorname{det}\left(D_{2}\right)(\bmod N)$.
Proof. Let g be one of the generators for K, so that g is of the form (3.28), (3.29), or (3.30). It suffices to verify that if $g M_{1}=M_{2}$ or $M_{1} g=M_{2}$, then $\operatorname{det}\left(D_{1}\right) \equiv \operatorname{det}\left(D_{2}\right)(\bmod N)$. This follows by direct computations.

Lemma 3.4.10. Let n and N be positive integers with $N>1$. Let $M \in$ $\Gamma_{0}^{(n)}(N)$. Then M is equivalent to

$$
\left[\begin{array}{cccc|cccc}
1 & & & & & & \tag{3.31}\\
& \ddots & & & & & & \\
& & 1 & & & & & \\
& & & a & & & & b \\
\hline & & & & 1 & & & \\
& & & & \ddots & & \\
& & & & & & 1 & \\
& & & c & & & & d
\end{array}\right]
$$

for some $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}^{(1)}(N)$.
Proof. We will prove the lemma by induction on n. If $n=1$, the lemma is trivially true. Assume that $n \geq 2$ and that the lemma hold for $n-1$; we will prove that it holds for n.

We will first prove the following claim: The element M is equivalent to an element of the form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where D has the form

$$
\left[\begin{array}{llll}
1 & & & \tag{3.32}\\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right], \quad d_{2}\left|d_{3}, \quad \ldots, \quad d_{n-1}\right| d_{n}
$$

To begin the proof of the claim, let $M=\left[\begin{array}{cc}A & B \\ C & \underset{D}{B}\end{array}\right]$. Since $N>1$ and ${ }^{\mathrm{t}} A D-{ }^{\mathrm{t}} C B=1$ (see Lemma 1.9.2), we have ${ }^{\mathrm{t}} A D \equiv 1(\bmod N)$; this implies that D is non-zero. By the theorem on elementary divisors, Theorem 1.12.1, there exist $g_{1}, g_{2} \in$ $\mathrm{SL}(n, \mathbb{Z})$, and positive integers d_{1}, \ldots, d_{n} such that

$$
d_{1}\left|d_{2}, \quad d_{2}\right| d_{3}, \quad \ldots, \quad d_{n_{1}} \mid d_{n}
$$

and

$$
g_{1} D g_{2}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right] .
$$

Moreover, d_{1} is the greatest common divisor of the entries of D. It follows that

$$
\left[\begin{array}{ll}
{ }^{\mathrm{t}} g_{1}{ }^{-1} & \\
& g_{1}
\end{array}\right] M\left[\begin{array}{ll}
{ }^{\mathrm{t}} g_{2}-1 & \\
& g_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]
$$

where

$$
D_{1}=\left[\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right]
$$

Since

$$
\left[\begin{array}{ll}
{ }^{\mathrm{t}} g_{1}-1 & \\
& g_{1}
\end{array}\right], \quad\left[\begin{array}{ll}
\mathrm{t}_{2}^{\mathrm{t}}{ }_{2}-1 & \\
& g_{2}
\end{array}\right] \in K
$$

we have

$$
M \sim\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right] .
$$

By Lemma 1.9.2 we have $A_{1}{ }^{\mathrm{t}} D_{1}-B_{1}{ }^{\mathrm{t}} C_{1}=1$. Taking the transpose of this equation, and letting $A_{1}=\left(a_{i j}\right), B_{1}=\left(b_{i j}\right), C_{1}=\left(c_{i j}\right)$, we obtain:

$$
\begin{aligned}
1 & =D_{1}{ }^{\mathrm{t}} A_{1}-C_{1}{ }^{\mathrm{t}} B_{1} \\
& =\left[\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & a_{n 1} \\
\vdots & & \vdots \\
a_{1 n} & \cdots & a_{n n}
\end{array}\right]-\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{n 1} \\
\vdots & & \vdots \\
b_{1 n} & \cdots & b_{n n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
d_{1} a_{11}-c_{11} b_{11}-\cdots & c_{1 n} b_{1 n} & * \\
* & *
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
1=d_{1} a_{11}-c_{11} b_{11}-\cdots-c_{1 n} b_{1 n} . \tag{3.33}
\end{equation*}
$$

This equation implies that one of $c_{11}, \ldots, c_{1 n}$ is non-zero; let c be their common divisor. Equation (3.33) also implies that d_{1} and c are relatively prime. Let s_{1}, \ldots, s_{n} be integers such that

$$
c=c_{11} s_{1}+\cdots+c_{1 n} s_{n} .
$$

Define $S \in \operatorname{Sym}(n, \mathbb{Z})$ by

$$
S=\left[\begin{array}{cccc}
& s_{1} & & \\
s_{1} & s_{2} & \cdots & s_{n} \\
& \vdots & & \\
& s_{n} & &
\end{array}\right]
$$

and define

$$
\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
1 & S \\
& 1
\end{array}\right]
$$

Since

$$
\left[\begin{array}{ll}
1 & S \\
& 1
\end{array}\right] \in K
$$

we have

$$
\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right] \sim\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] .
$$

Moreover,

$$
\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & A_{1} S+B_{1} \\
C_{1} & C_{1} S+D_{1}
\end{array}\right]
$$

with

$$
\begin{aligned}
D_{2} & =C_{1} S+D_{1} \\
& =\left[\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right]+\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]\left[\begin{array}{ccc}
& s_{1} & \\
s_{1} & s_{2} & \cdots \\
& \vdots & \\
& s_{n} \\
& s_{n}
\end{array}\right. \\
& =\left[\begin{array}{ccc}
d_{1}+c_{12} s_{1} & c & * \\
* & * & *
\end{array}\right]
\end{aligned}
$$

Since d_{1} and c are relatively prime, and c is the greatest common divisor of $c_{11}, c_{12}, \ldots, c_{1 n}$, it follows that $d_{1}+c_{12} s_{1}$ and c are relatively prime. As a consequence of this, the greatest common divisor of the entries of D_{2} is 1 . An application of the theorem on elementary divisors to D_{2} similar to the first application above then proves that

$$
\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] \sim\left[\begin{array}{ll}
A_{3} & B_{3} \\
C_{3} & D_{3}
\end{array}\right]
$$

where D_{3} has the form (3.32); the key point is that the greatest common divisor of the entries of D_{2} is 1 . This proves the claim.

Thanks to the claim, we may assume that $M=\left[\begin{array}{cc}A \\ C & B \\ D\end{array}\right]$ with D having the form (3.32). Define

$$
S=\left[\begin{array}{cccc}
-b_{11} & -b_{21} & \cdots & -b_{n 1} \\
-b_{21} & & & \\
\vdots & & & \\
-b_{n 1} & & &
\end{array}\right] \text { and } T=\left[\begin{array}{cccc}
-c_{11} & -c_{12} & \cdots & -c_{1 n} \\
-c_{12} & & & \\
\vdots & & & \\
-c_{1 n} & & &
\end{array}\right]
$$

Let

$$
\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & S \\
& 1
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
1 & \\
T & 1
\end{array}\right]
$$

Since

$$
\left[\begin{array}{ll}
1 & S \\
& 1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & \\
T & 1
\end{array}\right] \in K
$$

we have

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \sim\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right] .
$$

Explicitly,

$$
\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]=\left[\begin{array}{cc}
A+S C+B T+S D T & B+S D \\
C+D T & D
\end{array}\right]
$$

By the choice of S and T and the fact that D as the form (3.32), the first column of B_{1} is zero, and the first row of C_{1} is zero; of course, $D_{1}=D$, so that D_{1} has the form (3.32). By Lemma 1.9.2 we have ${ }^{\mathrm{t}} D_{1} B_{1}={ }^{\mathrm{t}} B_{1} D_{1}$ and $C_{1}{ }^{\mathrm{t}} D_{1}=D_{1}{ }^{\mathrm{t}} C_{1}$. Therefore, letting $B_{1}=\left(b_{i j}\right)$,

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & & & \\
& d_{2} & & \\
& & \ddots & \\
& & {\left[\begin{array}{cccc}
0 & b_{12} & \cdots & b_{1 n} \\
\vdots & \vdots & & \vdots \\
0 & b_{n 2} & \cdots & b_{n n}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
b_{12} & \cdots & b_{n 2} \\
\vdots & & \vdots \\
b_{1 n} & \cdots & b_{n n}
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& d_{2} & \\
& & \ddots
\end{array}\right.} \\
& & b_{12} & \cdots
\end{array} b_{1 n}\right.} \\
\vdots & \vdots \\
0 & d_{n} b_{n 2}
\end{array} \cdots d_{n} b_{n n}\right]\left[\begin{array}{ccc}
0 & \cdots & 0 \\
b_{12} & \cdots & d_{n} b_{n 2} \\
\vdots & & \vdots \\
b_{1 n} & \cdots & d_{n} b_{n n}
\end{array}\right] .
$$

This equality implies that the first row of B_{1} is also zero. Similarly, the first column of C_{1} is zero, so that B_{1} and C_{1} have the form

$$
B_{1}=\left[\begin{array}{cc}
0 & 0 \\
0 & B_{2}
\end{array}\right], \quad C_{1}=\left[\begin{array}{cc}
0 & 0 \\
0 & C_{2}
\end{array}\right]
$$

for some $B_{2} \in \mathrm{M}(n-1, \mathbb{Z})$ and $C_{2} \in N \mathrm{M}(n-1, \mathbb{Z})$. By Lemma 1.9.2 we have $1=A_{1}{ }^{\mathrm{t}} D_{1}-B_{1}{ }^{\mathrm{t}} C_{1}$. Writing this in terms of matrices, we find that A_{1} has the form

$$
A_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & A_{2}
\end{array}\right]
$$

for some $A_{2} \in \mathrm{M}(n-1, \mathbb{Z})$. Clearly, D_{1} has the form

$$
D_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & D_{2}
\end{array}\right]
$$

for some $D_{2} \in \mathrm{M}(n-1, \mathbb{Z})$. We now have

$$
M \sim\left[\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & A_{2} & 0 & B_{2} \\
\hline 0 & 0 & 1 & 0 \\
0 & C_{2} & 0 & D_{2}
\end{array}\right]
$$

By Lemma 1.9.2, the matrix $\left[\begin{array}{cc}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$ is contained in $\operatorname{Sp}(2(n-1), \mathbb{Z})$; since $C_{2} \equiv 0(\bmod N)$ we have

$$
\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] \in \Gamma_{0}^{(n-1)}(N)
$$

Applying the induction hypothesis to $\left[\begin{array}{cc}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$ now completes the proof.

Theorem 3.4.11. Let m and n be positive integers, and assume that m is even. Let $F \in \operatorname{Sym}(m, \mathbb{Z})^{+}$be even, and let N be the level of F. Let χ : $\Gamma_{0}(N) \rightarrow \mu_{8}$ be as in Theorem 3.3.5. If $N=1$, then χ is the trivial character of $\Gamma_{0}(N)=\operatorname{Sp}(2 n, \mathbb{Z})$. Assume that $N>1$. We recall from Lemma 1.5.4 that N divides $\operatorname{det}(F)$, and that $\operatorname{det}(F)$ and N have the same set of prime divisors. Let $\Delta=\Delta(F)=(-1)^{m / 2} \operatorname{det}(F)$ be the discriminant of F. Let $(\underline{\Delta})$ be the Kronecker symbol from section 1.4, which is a Dirichlet character modulo $\operatorname{det}(F)$ by Proposition 1.4.2 and Lemma 1.5.2. Define $\chi_{F}: \mathbb{Z} \rightarrow \mathbb{C}$ as in Lemma 2.7.7; by this lemma, χ_{F} is a Dirichlet character modulo N. The function χ takes values in $\{ \pm 1\}$, and the diagram

commutes. Here, the map $\Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$is defined by $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \mapsto \operatorname{det}(D)$. Consequently,

$$
\chi\left(\left[\begin{array}{cc}
A & B \tag{3.34}\\
C & D
\end{array}\right]\right)=\left(\frac{\Delta}{\operatorname{det}(D)}\right)=\left(\frac{(-1)^{k} \operatorname{det}(F)}{\operatorname{det}(D)}\right)
$$

for $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \Gamma_{0}(N)$.
Proof. Assume first that $N=1$. By Lemma 1.5.4 we have $\operatorname{det}(F)=1$. By Theorem 3.3.5 we have

$$
\begin{equation*}
\chi(M) \theta(F, Z)=s(M, Z)^{-m} \theta(F, M \cdot Z) \tag{3.35}
\end{equation*}
$$

for $M \in \operatorname{Sp}(2 n, \mathbb{Z})$ and $Z \in \mathbb{H}_{n}$. In particular, for $Z \in \mathbb{H}_{n}$,

$$
\begin{align*}
& \chi\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\right) \theta(F, Z)=s\left(\left[\begin{array}{ll}
-1 & 1
\end{array}\right], Z\right)^{-m} \theta\left(F,\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right] \cdot Z\right) \\
& \chi\left(\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\right) \theta(F, Z)=\operatorname{det}(-Z)^{-m / 2} \theta\left(F,-Z^{-1}\right) \tag{3.36}
\end{align*}
$$

On the other hand, by Lemma 3.4.2 we have

$$
\theta(F, Z)=\operatorname{det}(-i Z)^{-m / 2} \theta\left(F^{-1},-Z^{-1}\right)
$$

for $Z \in \mathbb{H}_{n}$. Now for $Z \in \mathbb{H}_{n}$,

$$
\begin{aligned}
\theta\left(F^{-1}, Z\right) & =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(F^{-1}[N] Z\right)\right. \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}} N F^{-1} N Z\right)\right. \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}} N F^{-1} F F^{-1} N Z\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}} F^{-1} N F\left(F^{-1} N\right) Z\right)\right. \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}} N F N Z\right)\right) \\
& =\theta(F, Z) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\theta(F, Z)=\operatorname{det}(-i Z)^{-m / 2} \theta\left(F,-Z^{-1}\right) \tag{3.37}
\end{equation*}
$$

for $Z \in \mathbb{H}_{n}$. Comparing (3.36) and (3.37), we obtain

$$
\chi\left(\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\right)=i^{-m n / 2}
$$

By Proposition 2.5.1, m is divisible by 8 . This implies that $i^{-m n / 2}=1$. Hence,

$$
\chi\left(\left[\begin{array}{ll}
& 1 \tag{3.38}\\
-1 &
\end{array}\right]\right)=1
$$

Next, by (3.35), we have for $Z \in \mathbb{H}_{n}$,

$$
\begin{aligned}
\chi\left(\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right]\right) \theta(F, Z) & =s\left(\left[\begin{array}{ll}
1 & B \\
1
\end{array}\right], Z\right)^{-m} \theta\left(F,\left[\begin{array}{cc}
1 & B \\
& 1
\end{array}\right] \cdot Z\right) \\
& =j\left(\left[\begin{array}{cc}
1 & B \\
1
\end{array}\right], Z\right)^{-m} \theta(F, Z+B) \\
& =\theta(F, Z+B) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp (\pi i \operatorname{tr}(F[N](Z+B))) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp (\pi i \operatorname{tr}(F[N] Z)) \exp (\pi i \operatorname{tr}(F[N] B)) \\
& =\sum_{R \in \mathrm{M}(m, n, \mathbb{Z})} \exp (\pi i \operatorname{tr}(F[N] Z)) \\
& =\theta(F, Z) .
\end{aligned}
$$

Here, the penultimate step follows from Lemma 3.4.5. It follows that

$$
\chi\left(\left[\begin{array}{ll}
1 & B \tag{3.39}\\
& 1
\end{array}\right]\right)=1 .
$$

We now have $\chi(M)=1$ for all $M \in \operatorname{Sp}(2 n, \mathbb{Z})$ by Theorem 1.9.6.
Next, assume that $N>1$. The commutativity of the left side of the diagram was proven in Lemma 2.7.9. To prove the commutativity of right side of the diagram, let

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \Gamma_{0}(N)
$$

By Lemma 3.4.10, M is equivalent to

for some $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}^{(1)}(N)$. By Lemma 3.4.8 we have $\chi(M)=\chi\left(M_{1}\right)$. Also, by Lemma 3.4.9, we have $\operatorname{det}(D) \equiv d(\bmod N)$. Define the function $\alpha: \Gamma_{0}^{(1)}(N) \rightarrow$ \mathbb{C} as in (2.19) and (2.20). We claim that

$$
\chi(M)=\chi\left(M_{1}\right)=\alpha\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)
$$

Assume first that $d>0$. By Lemma 3.4.7,

$$
\chi(M)=\chi\left(M_{1}\right)=d^{-m n+m / 2} \sum_{R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(b d^{-1} F\left[R_{n}\right]\right)\right)
$$

where we write $R=\left[R_{1} \cdots R_{n}\right]$ for $R \in \mathrm{M}(m, n, \mathbb{Z} / d \mathbb{Z})$. Hence,

$$
\begin{aligned}
\chi(M) & =d^{-m n+m / 2+m n-m} \sum_{q \in \mathrm{M}(m, 1, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(b d^{-1} F[q]\right)\right) \\
& =d^{-m / 2} \sum_{q \in \mathrm{M}(m, 1, \mathbb{Z} / d \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(b d^{-1} F[q]\right)\right) \\
& =\alpha\left(\left[\begin{array}{lr}
a & b \\
c & d
\end{array}\right]\right)
\end{aligned}
$$

Assume next that $d<0$. We have $M_{1}=M_{2} M_{3}$, where

and

The formula from Lemma 3.4.7 implies that $\chi\left(M_{2}\right)=(-1)^{m / 2}$, and by an argument as in the case $d>0$, we have

$$
\chi\left(M_{3}\right)=\alpha\left(\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]\right)
$$

Then

$$
\begin{aligned}
\chi(M) & =\chi\left(M_{1}\right) \\
& =\chi\left(M_{2} M_{3}\right) \\
& =\chi\left(M_{2}\right) \chi\left(M_{3}\right) \\
& =(-1)^{m / 2} \alpha\left(\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]\right) \\
& =\alpha\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)
\end{aligned}
$$

where the last step follows from the definition of α (see (2.20)). Next, by (2.22), we have

$$
\alpha\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\chi_{F}(d)
$$

where χ_{F} is the Dirichlet character $\bmod N$ defined in Lemma 2.7.7. Since $\operatorname{det}(D) \equiv d(\bmod N)$, we obtain

$$
\chi(M)=\chi_{F}(\operatorname{det}(D))
$$

This proves the commutativity of the right side of the diagram. Finally, by Lemma 2.7.9 we have

$$
\chi_{F}(\operatorname{det}(D))=\left(\frac{(-1)^{m / 2} \operatorname{det}(F)}{\operatorname{det}(D)}\right)
$$

This completes the proof.

3.5 Spherical harmonics

Lemma 3.5.1. Let m and n be positive integers. Assume that $1 \leq n<m$. Let $\eta \in \mathrm{M}(m, n, \mathbb{C})$ be such that

$$
{ }^{\mathrm{t}} \eta \eta=0 .
$$

Let $\xi_{\alpha \beta}$ for $1 \leq \alpha \leq m$ and $1 \leq \beta \leq n$ be variables. Define $\xi=\left(\xi_{\alpha \beta}\right)$, and let $\partial=\left(\partial / \partial \xi_{\alpha \beta}\right)$. Define

$$
L=\operatorname{det}\left({ }^{\mathrm{t}} \eta \partial\right)
$$

We have

$$
\begin{align*}
& L^{r}\left(\exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} Q \xi+R\right)\right)\right) \\
& \quad=\operatorname{det}\left(2 \pi i\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right)^{r} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \tag{3.40}
\end{align*}
$$

for positive integers $r, R \in \mathrm{M}(n, \mathbb{C}), P \in \operatorname{Sym}(n, \mathbb{C})$, and $Q \in \mathrm{M}(m, n, \mathbb{C})$.
Proof. Let $\alpha \in\{1, \ldots, m\}$ and $\beta \in\{1, \ldots, n\}$. We begin by proving

$$
\begin{align*}
\frac{\partial}{\partial \xi_{\alpha \beta}}\left(\operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} Q \xi\right)\right) & =2(\xi P+Q)_{\alpha \beta} \tag{3.41}\\
\frac{\partial}{\partial \xi_{\gamma \delta}} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} Q \xi\right)\right) & =0 \quad \text { if } \gamma \neq \alpha, \tag{3.42}\\
\frac{\partial}{\partial \xi_{\gamma \delta}}\left((\xi P+Q)_{\alpha \beta}\right) & = \begin{cases}0 & \text { if } \gamma \neq \alpha \\
P_{\beta \delta}=P_{\delta \beta} & \text { if } \gamma=\alpha\end{cases} \tag{3.43}
\end{align*}
$$

Write $\xi=\left[\xi_{1} \cdots \xi_{n}\right], P=\left(P_{i j}\right)$ and $Q=\left(Q_{i j}\right)$. Then

$$
\begin{aligned}
& \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} Q\right)=\operatorname{tr}\left(\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 n} \\
\vdots & & \vdots \\
P_{n 1} & \cdots & P_{n n}
\end{array}\right]\left[\begin{array}{c}
{ }^{\mathrm{t}} \xi_{1} \\
\vdots \\
{ }^{\mathrm{t}} \xi_{n}
\end{array}\right]\left[\begin{array}{lll}
\xi_{1} & \cdots & \xi_{n}
\end{array}\right]\right. \\
& \left.+2\left[\begin{array}{ccc}
Q_{11} & \cdots & Q_{m 1} \\
\vdots & & \vdots \\
Q_{1 n} & \cdots & Q_{m n}
\end{array}\right]\left[\begin{array}{ccc}
\xi_{11} & \cdots & \xi_{1 n} \\
\vdots & & \vdots \\
\xi_{m 1} & \cdots & \xi_{m n}
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 n} \\
\vdots & & \vdots \\
P_{n 1} & \cdots & P_{n n}
\end{array}\right]\left[\begin{array}{ccc}
{ }^{\mathrm{t}} \xi_{1} \xi_{1} & \cdots & { }^{\mathrm{t}} \xi_{1} \xi_{n} \\
\vdots & & \vdots \\
{ }^{\mathrm{t}} \xi_{n} \xi_{1} & \cdots & { }^{\mathrm{t}} \xi_{n} \xi_{n}
\end{array}\right]\right) \\
& +2 \operatorname{tr}\left(\left[\begin{array}{ccc}
\sum_{i=1}^{m} Q_{i 1} \xi_{i 1} & \cdots & * \\
\vdots & & \vdots \\
* & \cdots & \sum_{i=1}^{m} Q_{i n} \xi_{i n}
\end{array}\right]\right) \\
& \begin{array}{r}
=\operatorname{tr}\left(\left[\begin{array}{ccc}
\sum_{j=1}^{n} P_{1 j}{ }^{\mathrm{t}} \xi_{j} \xi_{1} & \cdots & * \\
\vdots & & \\
* & & \cdots \\
\sum_{j=1}^{n} P_{n j}{ }^{\mathrm{t}} \xi_{j} \xi_{n}
\end{array}\right]\right) \\
\quad+2 \operatorname{tr}\left(\left[\begin{array}{cccc}
\sum_{i=1}^{m} Q_{i 1} \xi_{i 1} & \cdots & * \\
\vdots & & \vdots \\
* & & \cdots & \sum_{i=1}^{m} Q_{i n} \xi_{i n}
\end{array}\right]\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{n} P_{i j}{ }^{\mathrm{t}} \xi_{j} \xi_{i}+2 \sum_{j=1}^{n} \sum_{i=1}^{m} Q_{i j} \xi_{i j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} P_{i j} \xi_{k i} \xi_{k j}+2 \sum_{j=1}^{n} \sum_{i=1}^{m} Q_{i j} \xi_{i j} .
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
& \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} P_{i j} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{k i} \xi_{k j}\right) \\
& +2 \sum_{j=1}^{n} \sum_{i=1}^{m} Q_{i j} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{i j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} P_{i j}\left(\xi_{k i} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{k j}\right)+\xi_{k j} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{k i}\right)\right) \\
& +2 \sum_{j=1}^{n} \sum_{i=1}^{m} Q_{i j} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{i j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m}\left(\left\{\begin{aligned}
P_{i \beta} \xi_{\alpha i} & \text { if } k=\alpha, j=\beta, \\
0 & \text { if } k \neq \alpha \text { or } j \neq \beta
\end{aligned}\right\}\right. \\
& \left.+\left\{\begin{aligned}
P_{\beta j} \xi_{\alpha j} & \text { if } k=\alpha, i=\beta, \\
0 & \text { if } k \neq \alpha \text { or } i \neq \beta
\end{aligned}\right\}\right) \\
& +2 \sum_{j=1}^{n} \sum_{i=1}^{m} Q_{i j} \frac{\partial}{\partial \xi_{\alpha \beta}}\left(\xi_{i j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m}\left\{\begin{aligned}
2 P_{\beta \beta} \xi_{\alpha \beta} & \text { if } k=\alpha, i=j=\beta, \\
P_{\beta j} \xi_{\alpha j} & \text { if } k=\alpha, i=\beta, j \neq \beta, \\
P_{i \beta} \xi_{\alpha i} & \text { if } k=\alpha, i \neq \beta, j=\beta \\
0 & \text { if } k \neq \alpha \text { or } \beta \notin\{i, j\}
\end{aligned}\right\} \\
& +2 Q_{\alpha \beta} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\{\begin{array}{cl}
2 P_{\beta \beta} \xi_{\alpha \beta} & \text { if } i=j=\beta, \\
P_{\beta j} \xi_{\alpha j} & \text { if } i=\beta, j \neq \beta, \\
P_{i \beta} \xi_{\alpha i} & \text { if } i \neq \beta, j=\beta \\
0 & \beta \notin\{i, j\}
\end{array}\right\} \\
& +2 Q_{\alpha \beta} \\
& =\sum_{i=1}^{n} P_{i \beta} \xi_{\alpha i}+\sum_{j=1}^{n} P_{\beta j} \xi_{\alpha j}+2 Q_{\alpha \beta} \\
& =2 \sum_{\ell=1}^{n} \xi_{\alpha \ell} P_{\ell \beta}+2 Q_{\alpha \beta}
\end{aligned}
$$

$$
=2(\xi P+Q)_{\alpha \beta}
$$

This proves (3.41). Since we proved above that

$$
\frac{\partial}{\partial \xi_{\alpha \beta}}\left(\operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi\right)\right)=2 \sum_{\ell=1}^{n} P_{\ell \beta} \xi_{\alpha \ell}+2 Q_{\alpha \beta}
$$

we also see that (3.42) holds. Finally, (3.43) follows from the identity

$$
(\xi P+Q)_{\alpha \beta}=\sum_{\ell=1}^{n} P_{\ell \beta} \xi_{\alpha \ell}+Q_{\alpha \beta}
$$

which we have already noted.
Let I be the set of all n-tuples $G=\left(g_{1}, \ldots, g_{n}\right)$ where g_{1}, \ldots, g_{n} are integers such that $1 \leq g_{1}<g_{2} \leq \cdots<g_{n} \leq m$. Let $G=\left(g_{1}, \ldots, g_{n}\right) \in I$, and let X be an $m \times n$ matrix with entries from some commutative ring R. Write

$$
X=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right]
$$

where each $X_{i} \in \mathrm{M}(1, n, R)$. Then

$$
\left[\begin{array}{c}
X_{g_{1}} \\
\cdots \\
X_{g_{n}}
\end{array}\right]
$$

is an $n \times n$ matrix, and we define

$$
X_{G}=\operatorname{det}\left(\left[\begin{array}{c}
X_{g_{1}} \\
\cdots \\
X_{g_{n}}
\end{array}\right]\right)
$$

By the Cauchy-Binet formula, we have

$$
\operatorname{det}\left({ }^{\mathrm{t}} \eta \partial\right)=\sum_{G \in I} \eta_{G} \partial_{G} .
$$

We may further write, for $G \in I$,

$$
\partial_{G}=\sum_{\sigma} \operatorname{sign}(\sigma) \frac{\partial}{\partial \xi_{g_{1} \sigma\left(g_{1}\right)}} \cdots \frac{\partial}{\partial \xi_{g_{n} \sigma\left(g_{n}\right)}},
$$

where σ ranges over the permutations of the set $\left\{g_{1}, \ldots, g_{n}\right\}$. The differential operator L is now given by the following formula:

$$
L=\sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \frac{\partial}{\partial \xi_{g_{1} \sigma\left(g_{1}\right)}} \cdots \frac{\partial}{\partial \xi_{g_{n} \sigma\left(g_{n}\right)}}
$$

It follows that:

$$
\begin{aligned}
& L\left(\exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right) \\
& \quad=\sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \\
& \quad \times \frac{\partial}{\partial \xi_{g_{1} \sigma\left(g_{1}\right)}} \cdots \frac{\partial}{\partial \xi_{g_{n} \sigma\left(g_{n}\right)}}\left(\exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right) \\
& \quad=2 \pi i \sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \frac{\partial}{\partial \xi_{g_{1} \sigma\left(g_{1}\right)}} \cdots \frac{\partial}{\partial \xi_{g_{n-2} \sigma\left(g_{n-2}\right)}} \\
& \quad \times \frac{\partial}{\partial \xi_{g_{n-1} \sigma\left(g_{n-1}\right)}}\left((\xi P+Q)_{g_{n} \sigma\left(g_{n}\right)} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right)
\end{aligned}
$$

where we have used (3.41). Next, taking into account that $g_{n-1} \neq g_{n}$, using (3.42), and also (3.41) again, we have by the product rule:

$$
\begin{aligned}
& L\left(\exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right) \\
& \quad=(2 \pi i)^{2} \sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \frac{\partial}{\partial \xi_{g_{1} \sigma\left(g_{1}\right)}} \cdots \frac{\partial}{\partial \xi_{g_{n-2} \sigma\left(g_{n-2}\right)}} \\
& \quad\left((\xi P+Q)_{g_{n-1} \sigma\left(g_{n-1}\right)}(\xi P+Q)_{g_{n} \sigma\left(g_{n}\right)} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right) .
\end{aligned}
$$

Continuing, we obtain:

$$
\begin{aligned}
& L\left(\exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right)\right) \\
& \quad=(2 \pi i)^{n} \sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \prod_{j=1}^{n}(\xi P+Q)_{g_{j} \sigma\left(g_{j}\right)} \\
& \quad \times \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \\
& \quad=(2 \pi i)^{n} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \\
& \quad \times \sum_{G \in I} \eta_{G} \sum_{\sigma} \operatorname{sign}(\sigma) \prod_{j=1}^{n}(\xi P+Q)_{g_{j} \sigma\left(g_{j}\right)} \\
& \quad=(2 \pi i)^{n} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \sum_{G \in I} \eta_{G}(\xi P+Q)_{G} \\
& \left.\quad=(2 \pi i)^{n} \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \operatorname{det}^{\mathrm{t}} \eta^{\mathrm{t}}(\xi P+Q)\right) \\
& \quad=\operatorname{det}\left(2 \pi i{ }^{\mathrm{t}} \eta(\xi P+Q)\right) \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) \\
& \quad=\operatorname{det}\left(2 \pi i\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) \exp \left(\pi i \operatorname{tr}\left(P^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} Q \xi+R\right)\right) .
\end{aligned}
$$

This proves (3.40) in the case $r=1$. To prove that (3.40) holds for all positive integers r it will suffice to prove that if $f: \mathrm{M}(m, n, \mathbb{C}) \rightarrow \mathbb{C}$ is a smooth function, then

$$
\begin{equation*}
L\left(\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) f(\xi)\right)=\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) L(f(\xi)) \tag{3.44}
\end{equation*}
$$

We first assert that if $\beta, \gamma, \mu, \lambda \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \eta_{i \beta} \frac{\partial}{\partial \xi_{i \gamma}}\right)\left(\sum_{\ell=1}^{m}(\xi P+Q)_{\ell \mu} \eta_{\ell \lambda}\right)=0 \tag{3.45}
\end{equation*}
$$

To see this, we calculate as follows:

$$
\begin{aligned}
\left(\sum_{i=1}^{m} \eta_{i \beta} \frac{\partial}{\partial \xi_{i \gamma}}\right)\left(\sum_{\ell=1}^{m}(\xi P+Q)_{\ell \mu} \eta_{\ell \lambda}\right) & =\sum_{i=1}^{m} \sum_{\ell=1}^{m} \eta_{i \beta} \eta_{\ell \lambda} \frac{\partial}{\partial \xi_{i \gamma}}\left((\xi P+Q)_{\ell \mu}\right) \\
& =\sum_{i=1}^{m} \eta_{i \beta} \eta_{\ell \lambda} P_{\gamma \mu} \quad(\text { by }(3.43)) \\
& =P_{\gamma \mu} \sum_{i=1}^{m} \eta_{i \beta} \eta_{i \lambda} \\
& =P_{\gamma \mu}\left({ }^{\mathrm{t}} \eta \eta\right)_{\beta \lambda} \\
& =0
\end{aligned}
$$

because ${ }^{\mathrm{t}} \eta \eta=0$ by assumption. We may write L as:

$$
\begin{aligned}
L & =\operatorname{det}\left({ }^{\mathrm{t}} n \partial\right) \\
& =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma)\left({ }^{\mathrm{t}} \eta \partial\right)_{\sigma(1) 1} \cdots\left({ }^{\mathrm{t}} \eta \partial\right)_{\sigma(n) n} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{j=1}^{n}\left({ }^{\mathrm{t}} \eta \partial\right)_{\sigma(j) j} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{j=1}^{n} \sum_{i=1}^{m} \eta_{i \sigma(j)} \frac{\partial}{\partial \xi_{i j}}
\end{aligned}
$$

We will apply this expression for L to $\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) f(\xi)$. To do this, we note first that $\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right)$ is a sum of products of terms of the form

$$
\sum_{\ell=1}^{m}(\xi P+Q)_{\ell \mu} \eta_{\ell \lambda}
$$

for $\lambda, \mu \in\{1, \ldots, n\}$. By (3.45), any such term is annihilated by

$$
\sum_{i=1}^{m} \eta_{i \beta} \frac{\partial}{\partial \xi_{i \gamma}}
$$

for any $\beta, \gamma \in\{1, \ldots, n\}$. By this fact, and the product rule, we have

$$
\left(\sum_{i=1}^{m} \eta_{i \sigma(j)} \frac{\partial}{\partial \xi_{i j}}\right)\left(\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) f(\xi)\right)
$$

$$
=\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right)\left(\sum_{i=1}^{m} \eta_{i \sigma(j)} \frac{\partial}{\partial \xi_{i j}}\right)(f(\xi)) .
$$

We now find that

$$
\begin{aligned}
& L\left(\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) f(\xi)\right) \\
& \quad=\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma)\left(\prod_{j=1}^{n} \sum_{i=1}^{m} \eta_{i \sigma(j)} \frac{\partial}{\partial \xi_{i j}}\right)(f(\xi)) \\
& =\operatorname{det}\left(\left(P^{\mathrm{t}} \xi+{ }^{\mathrm{t}} Q\right) \eta\right) L(f(\xi)) .
\end{aligned}
$$

This proves (3.44), and thus completes the proof.
Let m and n be positive integers, let r be a non-negative integer, and let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. For r a non-negative integer, we let $\mathcal{H}_{r, n}(F)$ be the \mathbb{C} vector space spanned by the polynomials

$$
\operatorname{det}\left({ }^{\mathrm{t}} X F \zeta\right)^{r}
$$

where X is an $m \times n$ matrix of variables, and $\zeta \in \mathrm{M}(m, n, \mathbb{C})$ is such that

$$
{ }^{\mathrm{t}} \zeta F \zeta=0 .
$$

We refer to the elements of $\mathcal{H}_{r, n}(F)$ as spherical functions of degree n and weight r with respect to F.
Lemma 3.5.2. Let m and n be positive integers, let r be a non-negative integer, and let $F \in \operatorname{Sym}(m, \mathbb{R})^{+}$. If $n>m$, then $\mathcal{H}_{r, n}(F)=0$.
Proof. Assume that $m>n$. Let $\zeta \in \mathrm{M}(m, n, \mathbb{C})$ be such that ${ }^{\mathrm{t}} \zeta F \zeta=0$. It will suffice to prove that the function $\mathrm{M}(m, n, \mathbb{C}) \rightarrow \mathbb{C}$ defined by $X \mapsto \operatorname{det}\left({ }^{\mathrm{t}} X F \zeta\right)^{r}$ is identically zero. Let $X \in \mathrm{M}(m, n, \mathbb{C})$. The product ${ }^{\mathrm{t}} X F \zeta$ is the matrix of the composition

$$
\mathbb{C}^{n} \xrightarrow{\zeta} \mathbb{C}^{m} \xrightarrow{F} \mathbb{C}^{m} \xrightarrow{{ }^{\mathrm{t}} X} \mathbb{C}^{n}
$$

Since $n>m$, the first operator in the composition is has a non-trivial kernel; hence, the composition also has a non-trivial kernel. This implies that $\operatorname{det}\left({ }^{\mathrm{t}} X F \zeta\right)=0$.

Theorem 3.5.3. Let m and n be positive inters, let r be a non-negative integer, and let $F \in \operatorname{Sym}(m, \mathbb{Z})^{+}$be even. Let $\Phi \in \mathcal{H}_{r, n}(F)$. For $Z \in \mathbb{H}_{n}$ define

$$
\theta(F, Z, \Phi)=\sum_{\mathrm{M}(m, n, \mathbb{Z})} \Phi(N) \exp (\pi i \operatorname{tr}(Z F[N]))
$$

If D is a product of closed disks in \mathbb{C} such that $D \subset \mathbb{H}_{n}$, then the series $\theta(F, Z, \Phi)$ converges absolutely and uniformly on D. The resulting function on \mathbb{H}_{n} is analytic in each complex variable, and satisfies the equation

$$
\operatorname{det}(C Z+D)^{-r} s(M, Z)^{-m} \theta(F, M \cdot Z, \Phi)=\chi(M) \theta(F, Z, \Phi)
$$

for $Z \in \mathbb{H}_{n}$ and $M=\left[\begin{array}{cc}A & B \\ C & B\end{array}\right] \in \Gamma_{0}(N)$. Here, $\chi: \Gamma_{0}(N) \rightarrow \mu_{8}$ is as in Theorem 3.3.5.

Proof. By Lemma 3.5 .2 we may assume that $m \geq n$. We may also assume that $\Phi(X)=\operatorname{det}\left({ }^{\mathrm{t}} X F \zeta\right)^{r}$ for some $\zeta \in \mathrm{M}(m, n, \mathbb{C})$ such that ${ }^{\mathrm{t}} \zeta F \zeta=0$. Let $E \in \operatorname{Sym}(m, \mathbb{R})^{+}$be such that $E^{2}=F$. Define $\eta=E \zeta$. Then ${ }^{\mathrm{t}} \eta \eta={ }^{\mathrm{t}} \zeta E^{2} \zeta=$ ${ }^{\mathrm{t}} \zeta F \zeta=0$. Also,

$$
\begin{align*}
\Phi(X) & =\operatorname{det}\left({ }^{\mathrm{t}} X F \zeta\right)^{r} \\
& =\operatorname{det}\left({ }^{\mathrm{t}} X F E^{-1} \eta\right) \\
\Phi(X) & =\operatorname{det}\left({ }^{\mathrm{t}} X E \eta\right) \tag{3.46}
\end{align*}
$$

By Theorem 3.3.5 we have

$$
\begin{aligned}
\theta\left(F, M \cdot Z, X^{\mathrm{t}} A+F Y^{\mathrm{t}} B, F^{-1} X^{\mathrm{t}} C+Y^{\mathrm{t}} D\right) & \\
& =\chi(M) s(M, Z)^{m} \theta(F, Z, X, Y)
\end{aligned}
$$

for $X, Y \in \mathrm{M}(m, n, \mathbb{C}), Z \in \mathbb{H}_{n}$, and $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \Gamma_{0}(N)$. Let $\xi \in \mathrm{M}(m, n, \mathbb{C})$ and $M=\left[\begin{array}{cc}A & B \\ C & B\end{array}\right] \in \Gamma_{0}(N)$. Letting $X=0$ and $Y=E^{-1} \xi$ in the last equation yields

$$
\begin{equation*}
\theta\left(F, M \cdot Z, E \xi^{\mathrm{t}} B, E^{-1} \xi^{\mathrm{t}} D\right)=\chi(M) s(M, Z)^{m} \theta\left(F, Z, 0, E^{-1} \xi\right) \tag{3.47}
\end{equation*}
$$

We consider each side of this equation. First of all,

$$
\begin{aligned}
\theta(F, M \cdot & \left.Z, E \xi^{\mathrm{t}} B, E^{-1} \xi^{\mathrm{t}} D\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left((M \cdot Z) F\left[N-E^{-1} \xi^{\mathrm{t}} D\right]\right)\right. \\
& \left.+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi^{\mathrm{t}} B\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}}\left(E \xi^{\mathrm{t}} B\right) E^{-1} \xi^{\mathrm{t}} D\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left((M \cdot Z) F\left[N-E^{-1} \xi^{\mathrm{t}} D\right]\right)\right. \\
& \left.+2 \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi^{\mathrm{t}} B\right)-\operatorname{tr}\left(B^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left((M \cdot Z)^{\mathrm{t}}\left(N-E^{-1} \xi^{\mathrm{t}} D\right) F\left(N-E^{-1} \xi^{\mathrm{t}} D\right)\right)\right. \\
& \left.+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi^{\mathrm{t}} B\right)-\pi i \operatorname{tr}\left(B{ }^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left((M \cdot Z)\left({ }^{\mathrm{t}} N F N-{ }^{\mathrm{t}} N E \xi^{\mathrm{t}} D-D^{\mathrm{t}} \xi E N+D^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)\right)\right. \\
& \left.+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi^{\mathrm{t}} B\right)-\pi i \operatorname{tr}\left(B{ }^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left((M \cdot Z) D^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)-\pi i \operatorname{tr}\left(B^{\mathrm{t}} \xi \xi^{\mathrm{t}} D\right)\right. \\
& -\pi i \operatorname{tr}\left((M \cdot Z)^{\mathrm{t}} N E \xi^{\mathrm{t}} D\right)-\pi i \operatorname{tr}\left((M \cdot Z) D{ }^{\mathrm{t}} \xi E N\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi^{\mathrm{t}} B\right) \\
& \left.+\pi i \operatorname{tr}\left((M \cdot Z)^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left({ }^{\mathrm{t}} D(M \cdot Z) D^{\mathrm{t}} \xi \xi\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} D B^{\mathrm{t}} \xi \xi\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\pi i \operatorname{tr}\left({ }^{\mathrm{t}} D(M \cdot Z){ }^{\mathrm{t}} N E \xi\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} N E \xi{ }^{\mathrm{t}} D(M \cdot Z)\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} B^{\mathrm{t}} N E \xi\right) \\
& \left.+\pi i \operatorname{tr}\left((M \cdot Z){ }^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname { t r } \left(\left({ }^{\mathrm{t}} D((M \cdot Z) D-B){ }^{\mathrm{t}} \xi \xi\right)\right.\right. \\
& -\pi i \operatorname{tr}\left({ }^{\mathrm{t}} D(M \cdot Z){ }^{\mathrm{t}} N E \xi\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} D(M \cdot Z){ }^{\mathrm{t}} N E \xi\right)+2 \pi i \operatorname{tr}\left({ }^{\mathrm{t}} B{ }^{\mathrm{t}} N E \xi\right) \\
& \left.+\pi i \operatorname{tr}\left((M \cdot Z){ }^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname { t r } \left(\left({ }^{\mathrm{t}} D((M \cdot Z) D-B){ }^{\mathrm{t}} \xi \xi\right)\right.\right. \\
& \left.-2 \pi i \operatorname{tr}\left(\left({ }^{\mathrm{t}} D(M \cdot Z)-{ }^{\mathrm{t}} B\right){ }^{\mathrm{t}} N E \xi\right)+\pi i \operatorname{tr}\left((M \cdot Z){ }^{\mathrm{t}} N F N\right)\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
{ }^{\mathrm{t}} D((M \cdot Z) D-B) & ={ }^{\mathrm{t}} D(M \cdot Z) D-{ }^{\mathrm{t}} D B \\
& ={ }^{\mathrm{t}} D(A Z+B)(C Z+D)^{-1} D-{ }^{\mathrm{t}} B D \\
& =\left({ }^{\mathrm{t}} D(A Z+B)(C Z+D)^{-1}-{ }^{\mathrm{t}} B\right) D \\
& =\left({ }^{\mathrm{t}} D(A Z+B)-{ }^{\mathrm{t}} B(C Z+D)\right)(C Z+D)^{-1} D \\
& =\left({ }^{\mathrm{t}} D A Z+{ }^{\mathrm{t}} D B-{ }^{\mathrm{t}} B C Z-{ }^{\mathrm{t}} B D\right)(C Z+D)^{-1} D \\
& =\left(\left({ }^{\mathrm{t}} D A-{ }^{\mathrm{t}} B C\right) Z+{ }^{\mathrm{t}} D B-{ }^{\mathrm{t}} B D\right)(C Z+D)^{-1} D \\
& =Z(C Z+D)^{-1} D .
\end{aligned}
$$

We also note that $Z(C Z+D)^{-1} D$ is symmetric because it is equal to the symmetric matrix ${ }^{\mathrm{t}} D(M \cdot Z) D-{ }^{\mathrm{t}} D B$. And

$$
\begin{aligned}
{ }^{\mathrm{t}} D(M \cdot Z)-{ }^{\mathrm{t}} B & ={ }^{\mathrm{t}} D(A Z+B)(C Z+D)^{-1}-{ }^{\mathrm{t}} B \\
& =\left({ }^{\mathrm{t}} D(A Z+B)-{ }^{\mathrm{t}} B(C Z+D)\right)(C Z+D)^{-1} \\
& =\left({ }^{\mathrm{t}} D A Z+{ }^{\mathrm{t}} D B-{ }^{\mathrm{t}} B C Z-{ }^{\mathrm{t}} B D\right)(C Z+D)^{-1} \\
& =Z(C Z+D)^{-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\theta(F, & \left.M \cdot Z, E \xi^{\mathrm{t}} B, E^{-1} \xi^{\mathrm{t}} D\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z(C Z+D)^{-1} D^{\mathrm{t}} \xi \xi\right)\right. \\
& \left.-2 \pi i \operatorname{tr}\left(Z(C Z+D)^{-1}{ }^{\mathrm{t}} N E \xi\right)+\pi i \operatorname{tr}\left((M \cdot Z)^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname { t r } \left(Z(C Z+D)^{-1} D^{\mathrm{t}} \xi \xi\right.\right. \\
& \left.\left.-2 Z(C Z+D)^{-1 \mathrm{t}} N E \xi+(M \cdot Z)^{\mathrm{t}} N F N\right)\right)
\end{aligned}
$$

Next,

$$
\theta\left(F, Z, 0, E^{-1} \xi\right)
$$

$$
\begin{aligned}
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z F\left[N-E^{-1} \xi\right]\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi-Z^{\mathrm{t}} N E \xi-Z^{\mathrm{t}} \xi E N+Z^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi\right)-\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N E \xi\right)-\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi E N\right)\right. \\
& \left.+\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi\right)-\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N E \xi\right)-\pi i \operatorname{tr}\left({ }^{\mathrm{t}} \xi E N Z\right)\right. \\
& \left.+\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi\right)-\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N E \xi\right)-\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N E \xi\right)\right. \\
& \left.+\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N F N\right)\right) \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi-2 Z^{\mathrm{t}} N E \xi+Z^{\mathrm{t}} N F N\right)\right) .
\end{aligned}
$$

We will now apply the differential operator L^{r} from Lemma 3.5.1 to both sides of (3.47). Because of the convergence properties of Proposition 3.1.8 we may exchange differentiation and summation (see p. 162 of [17]). By Lemma 3.5.1 we have

$$
\begin{aligned}
& L^{r}\left(\theta\left(F, M \cdot Z, E \xi^{\mathrm{t}} B, E^{-1} \xi^{\mathrm{t}} D\right)\right) \\
&= \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} L^{r}\left(\operatorname { e x p } \left(\pi i \operatorname { t r } \left(Z(C Z+D)^{-1} D^{\mathrm{t}} \xi \xi\right.\right.\right. \\
&\left.\left.\left.-2 Z(C Z+D)^{-1 \mathrm{t}} N E \xi+(M \cdot Z)^{\mathrm{t}} N F N\right)\right)\right) \\
&= \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left(2 \pi i\left(Z(C Z+D)^{-1} D^{\mathrm{t}} \xi-Z(C Z+D)^{-1}{ }^{\mathrm{t}} N E\right) \eta\right)^{r} \\
& \times \exp \left(\pi i \operatorname { t r } \left(Z(C Z+D)^{-1} D^{\mathrm{t}} \xi \xi\right.\right. \\
&\left.\left.-2 Z(C Z+D)^{-1 \mathrm{t}} N E \xi+(M \cdot Z)^{\mathrm{t}} N F N\right)\right)
\end{aligned}
$$

Evaluating at $\xi=0$, we get

$$
\begin{aligned}
L^{r}(\theta(& \left.\left.F, M \cdot Z, E \xi^{\mathrm{t}} B, E^{-1} \xi^{\mathrm{t}} D\right)\right)\left.\right|_{\xi=0} \\
= & \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left(2 \pi i\left(-Z(C Z+D)^{-1}{ }^{\mathrm{t}} N E\right) \eta\right)^{r} \\
& \times \exp \left(\pi i \operatorname{tr}\left((M \cdot Z)^{\mathrm{t}} N F N\right)\right) \\
= & \operatorname{det}\left(-2 \pi i Z(C Z+D)^{-1}\right)^{r} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left({ }^{\mathrm{t}} N E \eta\right)^{r} \\
& \quad \times \exp (\pi i \operatorname{tr}((M \cdot Z) F[N])) .
\end{aligned}
$$

And

$$
\begin{aligned}
& L^{r}\left(\theta\left(F, Z, 0, E^{-1} \xi\right)\right) \\
& \quad=\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} L^{r}\left(\exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi-2 Z^{\mathrm{t}} N E \xi+Z^{\mathrm{t}} N F N\right)\right)\right) \\
& \quad=\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left(2 \pi i\left(Z^{\mathrm{t}} \xi-Z^{\mathrm{t}} N E\right) \eta\right)^{r} \\
& \quad \quad \times \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} \xi \xi-2 Z^{\mathrm{t}} N E \xi+Z^{\mathrm{t}} N F N\right)\right) .
\end{aligned}
$$

Evaluating at $\xi=0$, we obtain:

$$
\begin{aligned}
& L^{r}\left(\theta\left(F, Z, 0, E^{-1} \xi\right)\right) \mid \xi=0 \\
& \quad=\sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left(2 \pi i\left(-Z^{\mathrm{t}} N E\right) \eta\right)^{r} \exp \left(\pi i \operatorname{tr}\left(Z^{\mathrm{t}} N F N\right)\right) \\
& \quad=\operatorname{det}(-2 \pi i Z)^{r} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left({ }^{\mathrm{t}} N E \eta\right)^{r} \exp (\pi i \operatorname{tr}(Z F[N])) .
\end{aligned}
$$

By (3.47) we now have

$$
\begin{aligned}
& \operatorname{det}\left(-2 \pi i Z(C Z+D)^{-1}\right)^{r} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left({ }^{\mathrm{t}} N E \eta\right)^{r} \exp (\pi i \operatorname{tr}((M \cdot Z) F[N])) \\
& \quad=\operatorname{det}(-2 \pi i Z)^{r} \chi(M) s(M, Z)^{m} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \operatorname{det}\left({ }^{\mathrm{t}} N E \eta\right)^{r} \exp (\pi i \operatorname{tr}(Z F[N]))
\end{aligned}
$$

so that by (3.46),

$$
\begin{aligned}
& \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \Phi(N) \exp (\pi i \operatorname{tr}((M \cdot Z) F[N])) \\
& =\chi(M) \operatorname{det}(C Z+D)^{r} s(M, Z)^{m} \sum_{N \in \mathrm{M}(m, n, \mathbb{Z})} \Phi(N) \exp (\pi i \operatorname{tr}(Z F[N])) .
\end{aligned}
$$

This proves the theorem.

Appendix A

Some tables

A. 1 Tables of fundamental discriminants

$$
\begin{aligned}
& -3=-3 \\
& -4=-4 \\
& -7=-7 \\
& -8=-8 \\
& -11=-11 \\
& -15=(-3) \cdot 5 \\
& -19=-19 \\
& -20=(-4) \cdot 5 \\
& -23=-23 \\
& -24=(-3) \cdot 8 \\
& -31=-31
\end{aligned}
$$

$$
\begin{aligned}
& -35=(-7) \cdot 5 \\
& -39=(-3) \cdot 13 \\
& -40=(-8) \cdot 5 \\
& -43=-43 \\
& -47=-47 \\
& -51=(-3) \cdot 17 \\
& -52=(-4) \cdot 13 \\
& -55=(-11) \cdot 5 \\
& -56=(-7) \cdot 8 \\
& -59=-59 \\
& -67=-67
\end{aligned}
$$

$$
-68=(-4) \cdot 17
$$

$$
-71=-71
$$

$$
-79=-79
$$

$$
-83=-83
$$

$$
-84=(-4) \cdot(-3) \cdot(-7)
$$

$$
-51=(-3) \cdot 17 \quad-87=(-3) \cdot 29
$$

$$
\begin{array}{l|l}
-52=(-4) \cdot 13 & -88=(-11) \cdot 8
\end{array}
$$

$$
-55=(-11) \cdot 5 \quad-91=(-7) \cdot 13
$$

$$
\begin{array}{l|l}
-56=(-7) \cdot 8 & -95=(-19) \cdot 5
\end{array}
$$

Table A.1: Negative fundamental discriminants between -1 and -100 , factored into products of prime fundamental discriminants.

$1=1$	$37=37$	$73=73$
$5=1$	$40=8 \cdot 5$	$76=(-4) \cdot(-19)$
$8=8$	$41=41$	$77=(-7) \cdot(-11)$
$12=(-4)(-3)$	$44=(-4) \cdot(-11)$	$85=5 \cdot 15$
$13=13$	$53=53$	$88=(-8) \cdot(-11)$
$17=17$	$56=(-8) \cdot(-7)$	$89=89$
$21=(-3)(-7)$	$57=57$	$92=(-4) \cdot(-23)$
$24=(-8)(-3)$	$60=(-4) \cdot(-3) \cdot 5$	$93=(-3) \cdot(-31)$
$28=(-4)(-7)$	$61=61$	$97=97$
$29=29$	$65=(-8) \cdot(-7)$	
$33=33$	$69=(-3)(-23)$	

Table A.2: Positive fundamental discriminants between 1 and 100, factored into products of prime fundamental discriminants.

Index

A
adjoint.................................... 23

C

congruence subgroup............... . 29
cusp form............................... 31

D
 determinant . 20

Dirichlet character 1
conductor 3
induced........................... . . . 3
Legendre symbol............... . . 3
primitive.......................... . . 3
principal.......................... . . 2
product . 5
discriminant......................... . . 21

E

Euclidean domain.................... 34
even integral symmetric matrix . 19
level.............................. . . 25
extension of a Dirichlet character. 1

F

Fourier transform 50
fundamental discriminant 6
prime............................. 6

G

Gauss sum............................. . 84
H
Hecke congruence subgroup 29
holomorphic at the cusps 31
Hecke congruence subgroup 29
holomorphic at the cusps 31
K
Kronecker symbol 16

L

Legendre symbol...................... 3

M

modular form......................... . 31

P

positive semi-definite............... 24
positive-definite....................... 24
prime fundamental discriminant. . 6
principal congruence subgroup . . 29

Q
quadratic form....................... . . 20
level............................. . . . 25

R

real valued.............................. . . 3
represents.............................. 97
S
Schwartz function................... . . 49
Schwartz space 50
Siegel upper half-space............ . . 34
smooth function 49
spherical functions................. . . 61
symplectic group.................... 31
T
theta group.......................... . . 43
V
vanishes at the cusps............... 31

Symbols

$A>0, A$ is a positive-definite symmetric real matrix 24
$A[X]={ }^{\mathrm{t}} X A X$ for $A \in \mathrm{M}(m, \mathbb{C})$ and $X \in \mathrm{M}(m \times n, \mathbb{C})$ 97
$A \geq 0, A$ is a postive semi-definite symmetric real matrix 24
$M_{k}(\Gamma)$, the space of modular forms of weight k with respect to Γ 31
$S_{k}(\Gamma)$, the space of cusp forms of weight k with respect to $\Gamma \ldots$ 31
$\Gamma(N)$, the principal congruence subgroup 29
$\Gamma_{0}(N)$, the Hecke congruence subgroup 29
Γ_{θ}, the theta group contained in $\operatorname{Sp}(2 n, \mathbb{Z})$ 43
$\operatorname{Sp}(2 n, R)$, the symplectic group of degree n over $R(2 n \times 2 n$ matrices $)$ 31
$\operatorname{Sym}(m, R)$, the set of $m \times m$ symmetric matrices over R 24
\mathbb{H}_{n}, the Siegel upper half-space of degree n 34
$r(A, B)$, the number of ways A represents B. 97

Bibliography

[1] A. N. Andrianov. Quadratic Forms and Hecke Operators. Grundlehren der mathematischen Wissenschaften 286. Springer-Verlag, 1987.
[2] A. N. Andrianov and G. N. Maloletkin. Behavior of theta-series of genus n under modular substitutions. Izv. Akad. Nauk SSSR Ser. Mat., 39(2):243258, 471, 1975.
[3] Emil Artin. Geometric Algebra. Interscience, 1957.
[4] Martin Eichler. Introduction to the theory of algebraic numbers and functions. Translated from the German by George Striker. Pure and Applied Mathematics, Vol. 23. Academic Press, New York-London, 1966.
[5] E. Freitag. Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254. Springer-Verlag, 1983.
[6] E. Freitag. Singular Modular Forms and Theta Relations. Lecture Notes in Mathematics 1487. Springer-Verlag, 1991.
[7] Eberhard Freitag. Complex analysis. 2. Universitext. Springer, Heidelberg, 2011. Riemann surfaces, several complex variables, abelian functions, higher modular functions.
[8] E. Hecke. Lectures on Theory of Algebraic Numbers. Graduate Texts in Mathematics 77. Springer-Verlag, 1981.
[9] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, Inc., second edition, 1971.
[10] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original.
[11] J. Igusa. Theta Functions. Grundlehren der mathematischen Wissenschaften 194. Springer-Verlag, 1972.
[12] H. Iwaniec. Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17. American Mathematical Society, 1997.
[13] H. Klingen. Introductory lectures on Siegel modular forms. Cambridge Studies in Advanced Mathematics 20. Cambridge University Press, 1990.
[14] E. Landau. Elementary Number Theory. AMS Chelsea Publishing, 1966.
[15] S. Lang. Algebraic Number Theory. Springer-Verlag, 1986.
[16] D. A. Marcus. Number Fields. Springer-Verlag, 1977.
[17] J. E. Marsden. Basic Complex Analysis. W. H. Freeman and Company, 1973.
[18] J. E. Marsden. Elementary Classical Analysis. W. H. Freeman and Company, 1974.
[19] Raghavan Narasimhan. Several complex variables. The University of Chicago Press, Chicago, Ill.-London, 1971. Chicago Lectures in Mathematics.
[20] A. Ogg. Modular Forms and Dirichlet Series. W. A. Benjamin, Inc., 1969.
[21] H. Petersson. Modulfunktionen und quadratische Formen. Ergebnisse der Mathematik und ihrer Grenzgebiete 100. Springer-Verlag, 1982.
[22] R. A. Rankin. Modular forms and functions. Cambridge University Press, 1977.
[23] W. Rudin. Functional Analysis. McGraw-Hill Book Company, 1973.
[24] W. Rudin. Real and Complex Analysis. McGraw-Hill Book Company, third edition, 1987.
[25] B. Schoeneberg. Elliptic Modular Functions. Grundlehren der mathematischen Wissenschaften 203. Springer-Verlag, 1974.
[26] Jean-Pierre Serre. A Course in Arithmetic. Springer-Verlag, 1973.
[27] G. Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971.
[28] William Stein. Modular forms, a computational approach, volume 79 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells.
[29] D. B. Zagier. Zetafunktionen und quadratische Körper. Springer-Verlag, 1981.

