1 Solutions to diagnostic review problems

1a. Since there are six sides on a die and all are assumed equally likely, the probability of any single number, such as ' 3 ', is equal to $1 / 6$.

1 b . There are three odd numbers out of the six numbers on the die; therefore the probability of rolling an odd number is $3 / 6=1 / 2$.

1c. There are two even numbers that are less than 5 , namely 2 and 4 . Thus the probability of rolling an even number less than 5 is $2 / 6=1 / 3$.

11a. in the text: $\mu=190, \sigma^{2}=100$, and $n=25$. Since the standard deviation of the sample mean \bar{W}, s.e. $(\bar{W})=\sqrt{\sigma^{2} / n}$, we have $Z=\sqrt{n}(\bar{W}-\mu) / \sigma=\sqrt{25}(180-190) / 10=-10 / 2=-5$. Thus $P(\bar{W}<$ $180)=P(Z<-5)$. Since the Z distribution is symmetric, $P(Z<-5)=P(Z>5)$.
13. The 99% confidence interval for weight loss is given by $\bar{X} \pm t(1-\alpha / 2, n-1) s / \sqrt{n}$. Here $\bar{X}=$ $30, s=11, n=32$, and $\alpha=.01$. From Table A-2 on page 715 we find that $t .995,31 \approx t .995,30=2.75$. Thus our confidence interval is given by $30 \pm(2.75)(11 / \sqrt{32})$ which yields 30 ± 5.35 for a final confidence interval of (24.65, 35.35).
15. Note that for the data of problem $14, n_{1}=15$, and $n_{2}=19$, so that $d f=n_{1}+n_{2}-2=32$. Looking at the t table on page 715, we can use the $d f=30$ which is just below our value of 32 . We see that for $d f=30$, the observed value of $t=2.55$ is in between the values of 2.457 and 2.75 , which correspond to the $99^{t h}$ and $99.5^{t h}$ percentiles of the t distribution. Since our observed t value exceeds 2.457 , our P value is less than .01 . Therefore we will reject the null hypothesis H_{0} at α values of either .05 or .01 . Note that we can read the P value directly off the table because we are conducting a one-tailed test. If we were conducting a two-tailed test, we would double our value to conclude that $P<.02$.
19. The answers are as listed in the book: Type I, correct decision, correct decision, and Type II error, because of the definitions of Type I and Type II errors.
20. Since our observed t value of -2.75 falls in the critical region of $|T| \geq 2.5$ we should reject H_{0}, which is answer a. None of the other statements are true.
23. The answers are as listed in the back of the book: $1-\alpha, \alpha, \beta, 1-\beta$.
24. Assuming that α is set at the industry-wide standard of .05 , our decision is to not reject H_{0}. Note that it is preferable to 'fail to reject $H_{0}{ }^{\prime}$ instead of 'accepting H_{0} ' as the latter statement is essentially implying that the test has high power.
25. Again using the standard value of $\alpha=.05$, we would reject H_{0}.

