A closer examination of two-stage cluster sampling assuming equal-size clusters

The relationships between two-stage cluster sampling and other methods are more easily seen if we simplify matters by assuming equal-size clusters. Thus, let’s assume that all clusters contain the same number, \(M \), of elements, and that equal size samples of size \(m \), are taken from each cluster. In this case, the estimator of \(\mu \) simplifies:

\[
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \bar{y}_i = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij},
\]

which is the overall sample average. The variance expression also simplifies:

\[
\hat{V}(\hat{\mu}) = \left(\frac{N-n}{N} \right) \left(\frac{1}{nM^2} \right) \frac{s_b^2}{n} + \frac{1}{nNM^2} \sum_{i=1}^{n} M_i^2 \left(\frac{M_i - m_i}{M_i} \right) \frac{s_i^2}{m_i}
\]

\[
= \left(\frac{N-n}{N} \right) \left(\frac{1}{nM^2} \right) \sum_{i=1}^{n} (M_i \bar{y}_i - \bar{M} \hat{\mu})^2 \frac{1}{n-1} + \frac{1}{nNM^2} \sum_{i=1}^{n} M_i^2 \left(\frac{M - m}{M} \right) \frac{s_i^2}{m}
\]

\[
= \left(\frac{N-n}{N} \right) \left(\frac{1}{nM^2} \right) \sum_{i=1}^{n} \frac{M_i^2 (\bar{y}_i - \hat{\mu})^2}{n-1} + \left(\frac{M - m}{M} \right) \left(\frac{1}{N} \right) \sum_{i=1}^{n} \frac{s_i^2}{n} \frac{1}{m}
\]

\[
= \left(\frac{N-n}{N} \right) \frac{MSB}{nm} + \left(\frac{\bar{M} - m}{M} \right) \left(\frac{1}{N} \right) \frac{MSW}{m},
\]

where

\[
MSB = \frac{m \sum_{i=1}^{n} (\bar{y}_i - \hat{\mu})^2}{n-1}, \text{ and } MSW = \sum_{i=1}^{n} \frac{s_i^2}{n}.
\]

Here are some conclusions from this expression:

1. If \(N \) is large, then \(\hat{V}(\hat{\mu}) \approx MSB/(nm) \) and the variance just depends on the cluster means \(\bar{y}_i \). Thus, using an easy method for sampling within clusters, like systematic random sampling, will not usually present any problems.
2. If $m = \overline{M}$, then two-stage cluster sampling simplifies to one-stage cluster sampling.

3. If $n = N$, then $\hat{V}(\hat{\mu}) = \left(\overline{M} - \frac{m}{\overline{M}}\right) \frac{M_{SW}}{mn}$, which is the same expression as used in stratified random sampling, with $n = N$ strata and m observations sampled from each.

Thus we can now see that two-stage cluster sampling is a very general method that includes single-stage cluster sampling and stratified random sampling as special cases.