A sample size calculation for the US Population data for the age range of 18-24

On page 446 of the text is some data from the 2000 Census. We will use this data as a population and aim to take a sample to estimate the total population of the US in 2000 in the age range of 18-24. The applicable formula is:

$$
n=\frac{N \sigma^{2}}{(N-1)\left(B^{2} / 4 N^{2}\right)+\sigma^{2}}
$$

In this case we know that $N=50$, so we need to provide an estimate of σ^{2} and a desired bound B for the final estimate. If we do not have any data on σ^{2} from prior studies or the literature, we can use the conservative approximation that:

$$
\sigma \approx \frac{\text { range of the observation }}{4}
$$

Suppose that we specify that $B=3,000,000$ and use the range of population $18-24$ in US states $=1,900,000$ (from 100,000 to $2,000,000-$ is this accurate?). Then we have:

$$
\sigma \approx \frac{1,900,000}{4}=475,000, \quad B^{2} / 4 N^{2}=\frac{3,000,000^{2}}{4\left(50^{2}\right)}=900,000,000
$$

and

$$
n=\frac{50\left(475,000^{2}\right)}{(50-1)\left(900,000,000+\left(475,000^{2}\right)\right)}=41.8
$$

With a population of $N=50$, this sampling fraction is too large, so what went wrong? First, we have underestimated the range of populations in the 18-24 age range, as California has over 3 million people in this range. More importantly, our bound B is too small for this total population in the 18-24 age range. You can check that if we change the bound and/or range to the following values, we get these new sample sizes:

Bound	Range	Sample size
$6,000,000$	$1,900,000$	28.1
$6,000,000$	$3,550,000$	40.9
$8,000,000$	$1,900,000$	20.9
$8,000,000$	$3,550,000$	35.8
$10,000,000$	$1,900,000$	15.8
$10,000,000$	$3,550,000$	30.8

