1 Multiple Comparisons: examples

We will use the cuckoo egg data set to exemplify various multiple comparison procedures. Examples will include 1) Two *a priori* orthogonal contrasts, 2) Tukey's and Fisher's methods for pairwise differences, and 3) Scheffe's method for a *post hoc* contrast.

1.1 ANOVA results

Since these tests will rely on results from the ANOVA of the cuckoo egg data, here are the results of that analysis:

		T	he GLM Pi	rocedure	e		
Dependent V	Variable: length	ı					
			Sı	um of			
Source	ource		DF Squa		Mean Square	F Value	Pr > F
Model		5	5 43.2928889		8.6585778	9.58	<.0001
Error		84	84 75.9200000		0.9038095		
Corrected Total		89	119.212	28889			
	R-Square	Coeff	Var	Root M	ISE length	Mean	
	-		0.9506	589 22.5			
Source		DF	Type II	II SS	Mean Square	F Value	Pr > F
species		5	43.2928	38889	8.65857778	9.58	<.0001
		T	he GLM Pi	rocedure	9		
	Level of	length					
	species	Ν		Mean	Std	Dev	
	HSprw	15	23.3	1700000	1.04690	019	
	MPipit	15	22.2	2766667	1.15601	944	
	PWtail	15	22.9	9033333	1.06761	862	
	Robin	15	22.5	5433333	0.69638	522	
	TPipit	15	23.0	0900000	0.90142	744	
	Wren	15	21.3	1300000	0.74373	574	

1.2 Two *a priori* orthogonal contrasts

Suppose before data collection has occurred, it was desired to test i) whether the mean cuckoo egg length differed between Tree Pipit nests and Meadow Pipit nests, and also ii) whether mean cuckoo egg length for Pipit nests (Tree and Meadow averaged) differed from Robin nests. Then the two contrasts are:

$$L_1 = \mu_{TP} - \mu_{MP}$$
 and $L_2 = (\mu_{TP} + \mu_{MP})/2 - \mu_R$.

Here μ_{TP} , for example, is the population mean of the Tree Pipit (TP) group. Since they were specified *a priori* and they are orthogonal (check this as an exercise), we can use separate t tests for each contrast. We use $\alpha = .05$ separately for each test. We get

 $\widehat{L}_1 = \overline{y}_{TP} - \overline{y}_{MP} = 23.09 - 22.27 = .82, \text{ and } \widehat{L}_2 = (\overline{y}_{TP} + \overline{y}_{MP})/2 - \overline{y}_R = (23.09 + 22.27)/2 - 22.54 = .14.23 +$

and also

$$\widehat{Var}(\widehat{L}_1) = \text{MSE } \sum_{i=1}^t \frac{a_{1i}^2}{n_i} = (.904)((1)^2/15 + (-1)^2/15) = .121, \text{ and}$$
$$\widehat{Var}(\widehat{L}_2) = \text{MSE } \sum_{i=1}^t \frac{a_{2i}^2}{n_i} = (.904)((\frac{1}{2})^2/15 + (\frac{1}{2})^2/15 + (-1)^2/15) = .0904.$$

Then for $H_0: L_1 = 0$ we have $t = \hat{L} / s.e.(\hat{L}) = .82/\sqrt{.121} = 2.36$, and for $H_0: L_2 = 0$ we have t $=\hat{L}/s.e.(\hat{L})=.14/\sqrt{.0904}=.47$. The degrees of freedom for MSE is 84 so if we are conservative and use df = 80 we get $t_{80,.975} = 1.99$. Thus we reject $H_0: L_1 = 0$ in favor of $H_A: L_1 \neq 0$, but fail to reject $H_0: L_2 = 0$. Equivalently, we can use the CONTRAST or ESTIMATE statement in PROC GLM to get a P value of .02 for $H_0: L_1 = 0$ and a P value of .64 for $H_0: L_2 = 0$.

The GLM Procedure						
Dependent Variable: length						
Contrast	DF	Contrast SS	Mean Squa	are	F Value	e Pr > F
Tree vs Meadow Pipits	1	4.96133333	4.961333	333	5.49	0.0215
Pipits vs Robins	1	0.19600000	0.196000	000	0.22	0.6426
			Standard			
Parameter		Estimate	Error	t	Value	Pr > \vert t\vert
Tree vs Meadow Pipits	0.	81333333	0.34714253		2.34	0.0215
Pipits vs Robins	0.	1400000	0.30063425		0.47	0.6426

1.3Tukey's and Fisher's methods

For Tukey's method we use

$$W = q_{t,df,1-\alpha} \sqrt{\frac{\text{MSE}}{n}}$$
, while for Fisher's LSD method we use $LSD = t_{df,1-\alpha/2} \sqrt{\text{MSE}(\frac{1}{n_i} + \frac{1}{n_{i'}})}$.

The Studentized range term for W is now approximated using df = 60 to get $q_{6.60.95} = 4.16$, and the t value for LSD is still $t_{80,.975} = 1.99$. Thus we have

$$W = 4.16\sqrt{\frac{.904}{15}} = 1.02 \text{ and } LSD = 1.99\sqrt{.904(\frac{1}{15} + \frac{1}{15})} = .69.$$

Any two sample means that differ by 1.02 for Tukey or .69 for Fisher's LSD lead us to declare their population means different. See the SAS output for an illustration of the results.

The GLM Procedure t Tests (LSD) for length NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 0.05 Alpha Error Degrees of Freedom 84 Error Mean Square 0.90381 Critical Value of t 1.98861 Least Significant Difference 0.6903 Means with the same letter are not significantly different. t Grouping Mean Ν species 23.1700 15 HSprw А А А 23.0900 15 TPipit А 22.9033 PWtail В А 15 В А В А 22.5433 15 Robin В В 22.2767 15 MPipit С 21.1300 15 Wren The GLM Procedure Tukey's Studentized Range (HSD) Test for length NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 84 Error Mean Square 0.90381 Critical Value of Studentized Range 4.12462 Minimum Significant Difference 1.0125 Means with the same letter are not significantly different. Tukey Grouping species Ν Mean 23.1700 15 HSprw А А 23.0900 А 15 TPipit А А 22.9033 15 PWtail А A 22.5433 15 Robin Α А 22.2767 15 MPipit

В	21.1300	15	Wren
---	---------	----	------

Note in the SAS output that the values for W and LSD are slightly different than ours, because they do not have to approximate the degrees of freedom from the MSE.

1.4 Scheffe's method

Suppose that after seeing the data, we decide to compare the mean length of cuckoo eggs in Wren nests to all other species combined. Then $L = \mu_W - (\mu_{TP} + \mu_{MP} + \mu_R + \mu_P + \mu_H)/5$, where W = Wrens, TP = Tree Pipits, MP = Meadow Pipits, R = Robins, P = Pied Wagtails, and H = Hedge Sparrows. To test $H_0: L = 0$ as a post hoc contrast, we use Scheffe's method. Then we have

 $\widehat{L} = \overline{y}_W - (\overline{y}_{TP} + \overline{y}_{MP} + \overline{y}_R + \overline{y}_P + \overline{y}_H)/5 = 21.13 - (23.09 + 22.27 + 22.54 + 22.90 + 23.17)/5 = 1.66 \text{ and } 1.06 \text{ and } 1.0$

$$\widehat{Var}(\widehat{L}) = \text{MSE} \sum_{i=1}^{t} \frac{a_i^2}{n_i} =$$
(.904) $((1)^2/15 + (-\frac{1}{5})^2/15 + (-\frac{1}{5})^2/15 + (-\frac{1}{5})^2/15 + (-\frac{1}{5})^2/15 = .072$

We need to compare \hat{L} to Scheffe's $S = \sqrt{(t-1)F_{t-1,df,1-\alpha}} \sqrt{\widehat{Var}(\hat{L})}$. Here we approximate the 84 degrees of freedom with df = 80, and get

$$S = \sqrt{(t-1)F_{t-1,df,1-\alpha}}\sqrt{\widehat{Var}(\widehat{L})} = \sqrt{5F_{5,80,.95}}\sqrt{.072} = \sqrt{5(2.33)}\sqrt{.072} = (3.41)(.27) = .92.$$

Since $|\hat{L}| > S$, we reject $H_0 : L = 0$, and conclude that $\mu_W - (\mu_{TP} + \mu_{MP} + \mu_R + \mu_P + \mu_H)/5 \neq 0$. Unfortunately, SAS only implements Scheffe's method for pairwise contrasts, for which it is too conservative to use.