
1 Inferences about regression parameters

For our linear regression model yi = β0+β1xi+εi, we have not made any assumptions about
the data to calculate the parameter estimates β̂0 and β̂1, since we are simply applying the
method of least squares. To conduct inference about regression parameters, however, we
need to make the following assumptions about the errors εi :
1. Linearity: the above model is actually correct, we are not neglecting any terms,
2. Independence: the errors εi are independent,
3. Normality: the errors εi follow a normal distribution, and
4. Homogeneity of variance: Var(εi) = σ2ε for all observations.

2 Inference for the regression coeffi cients β0 and β1

With the assumptions above, we can show that the least squares estimators are unbiased
and have the following variances:
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In a similar way, we can conduct tests of hypotheses as illustrated in the text on page
591.

3 Inference for E(yn+1) and yn+1 (Confidence intervals
and prediction intervals)

Two common uses of regression analyses are to predict the mean value of y at a given
xn+1 value (E(yn+1)), and to predict the value of an individual observation at a given xn+1
value (yn+1). In both cases, the estimated value is obtained by evaluating the least-squares
prediction equation at xn+1. The difference is that an interval estimate for an individual
value should be much wider than for a mean. Thus we have:

1



ŷn+1= β̂0+β̂1xn+1= y+β̂1(xn+1−x) ,
as the estimate for either E(yn+1) or yn+1. For the confidence interval for E(yn+1) we

have

ŷn+1 ± tα/2 sε

√
1

n
+
(xn+1 − x)2

Sxx
.

We can compute these intervals for individual values of xn+1, or we can compute them
for many values of xn+1 to create confidence bands. Interval estimates for an individual
observation at a given xn+1 value are called prediction intervals, and are given by:
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The extra ’1’under the square root sign arises from the extra variability for an individual
observation. As with confidence interval calculations, often several prediction intervals are
calculated to create prediction bands. Check the SAS code for this lecture to see how to
generate confidence bands and prediction bands.

4 The ANOVA table

A summary of the regression results that is used for many linear model analyses is called
the analysis of variance (ANOVA) table. It is based on the idea that the variability of the y
values about their mean can be partitioned into two sources: one part describing variability
in y ’explained’by the regression, and a second part due to error in predicting y from the
regression model. This relationship can be seen by noting that:

yi − y = (ŷi − y) + (yi − ŷi) (also see Figure 11-10 of page 565 of the Ott text). When
each side is squared and summed (and the crossproduct term vanishes) we get the result:
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which is also expressed as SSY= SS(Regression)+ SS(Residual). The term SS(Regression)
is called the sum of squares due to regression. These sums of squares are presented in the
ANOVA table, and then SS(Regression) and SS(Residual) are divided by their degrees of
freedom to obtain mean squares, denoted MS(Regression) and MS(Residual), respectively.
MS(Regression) and MS(Residual) are statistically independent, and if the null hypothesis
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of H0 : β1 = 0 is true, then they both estimate the population variance σ2. Thus we can take
the ratio F =MS(Regression)/MS(Residual) and use it as a test of H0 : β1 = 0. F follows
an F distribution with numerator degrees of freedom = df1=1 and denominator degrees of
freedom = df2= n-2. This test is equivalent to the t-test of H0 : β1 = 0 presented earlier,
and in fact Fα,1,n−2 = t2α/2,n−2.
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