1 Confidence interval, Prediction interval examples

For our small cereal data set, suppose we want to construct both a confidence interval for $E(y_{n+1})$ and also a prediction interval for y_{n+1} when $x_{n+1}=1$, using $\alpha=.05$. Remember that $\hat{y}_{n+1} = 104.62 + (13.85)(1) =$ $118.47, n = 5, \bar{x} = 1.4, S_{xx} = 5.2, t_{.025,3} = 3.182$, and that $s_{\varepsilon}^2 = 41.03$. Then we have

$$t_{\alpha/2} s_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{S_{xx}}} = 3.182\sqrt{41.03} \sqrt{\frac{1}{5} + \frac{(1 - 1.4)^2}{5.2}} = 9.79$$

so that the confidence interval is 118.47 ± 9.79 or (108.68, 128.26). Similarly, for the prediction interval

$$t_{\alpha/2} s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{S_{xx}}} = 3.182\sqrt{41.03} \sqrt{1 + \frac{1}{5} + \frac{(1 - 1.4)^2}{5.2}} = 22.61,$$

so the prediction interval is 118.47 ± 22.61 or (95.86, 141.08). What is the interpretation of these intervals?

2 The correlation coefficient (r)

The correlation coefficient, r, is defined as:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}$$

Note also that $r = (\sqrt{S_{xx}/S_{yy}})\hat{\beta}_1$. Some properties of r: 1) $-1 \le r \le 1$, 2) it is dimensionless, and 3) has the same sign as $\hat{\beta}_1$. r is an index of **linear association**, and it estimates the population correlation coefficient ρ . A related quantity, $S_{xy}/(n-1)$, is called the covariance of X and Y:

If $\beta_1 = 0$ then our predicted value of Y_i is $\widehat{Y}_i = \overline{Y}$, and $S_{yy}/(n-1)$ is an appropriate estimate of σ^2 . On the other hand, if $\beta_1 \neq 0$ then SS(Residual)/(n-2) is an appropriate estimate of σ^2 . One way to quantify the reduction in variation in Y due to X is with:

$$r^{2} = \frac{SS(\text{Total}) - SS(\text{Residual})}{SS(\text{Total})} = \frac{SS(\text{Regression})}{SS(\text{Total})}$$

which measures the strength of the relationship between Y and X. Remember that r^2 does not measure 1) the magnitude of the slope of the regression line, or 2) the appropriateness of the simple linear regression model.