
1 Matrix based approach to regression

For our small data set we have:
y1 = β0 + β1x11 + ε1,
y2 = β0 + β1x21 + ε2,
y3 = β0 + β1x31 + ε3,
y4 = β0 + β1x41 + ε4,
y5 = β0 + β1x51 + ε5, where xi1, for example, is the ith observation’s value of variable x1.

This can be rewritten as:
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or more briefly as:

Y = Xβ + ε.

For the matrix-based approach to regression, the least squares estimate of β is: β̂ =
(X′X)−1X′Y, and the variance of the estimate is V ar(β̂) = σ2

ε(X
′X)−1. We estimate σ2

ε

in the simple linear regression model with s2
ε =

∑n
i=1(yi − ŷi)

2/(n − 2), and in a mulitple
regression model with k covariates with s2

ε =
∑n

i=1(yi − ŷi)
2/(n− k − 1).

For our cereal data example we have
110 = β0 + β1(0) + ε1,
110 = β0 + β1(1) + ε2,
150 = β0 + β1(3) + ε3,
130 = β0 + β1(2) + ε4,
120 = β0 + β1(1) + ε5, so that
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Then we have
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X′X =
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so
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Also s.e.(β̂1) =

√
V ar(β̂1) =

√
σ̂2

ε(5/26) =
√

(41.03)(5/26) = 2.81.
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