1 Matrix based approach to regression

For our small data set we have:
$y_{1}=\beta_{0}+\beta_{1} x_{11}+\varepsilon_{1}$,
$y_{2}=\beta_{0}+\beta_{1} x_{21}+\varepsilon_{2}$,
$y_{3}=\beta_{0}+\beta_{1} x_{31}+\varepsilon_{3}$,
$y_{4}=\beta_{0}+\beta_{1} x_{41}+\varepsilon_{4}$,
$y_{5}=\beta_{0}+\beta_{1} x_{51}+\varepsilon_{5}$, where $x_{i 1}$, for example, is the i th observation's value of variable x_{1}.
This can be rewritten as:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\left[\begin{array}{ll}
1 & x_{11} \\
1 & x_{21} \\
1 & x_{31} \\
1 & x_{41} \\
1 & x_{51}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5}
\end{array}\right],
$$

or more briefly as:

$$
\mathbf{Y}=\mathbf{X} \beta+\varepsilon
$$

For the matrix-based approach to regression, the least squares estimate of β is: $\widehat{\beta}=$ $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$, and the variance of the estimate is $\operatorname{Var}(\widehat{\beta})=\sigma_{\varepsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. We estimate σ_{ε}^{2} in the simple linear regression model with $s_{\varepsilon}^{2}=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} /(n-2)$, and in a mulitple regression model with k covariates with $s_{\varepsilon}^{2}=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} /(n-k-1)$.

For our cereal data example we have
$110=\beta_{0}+\beta_{1}(0)+\varepsilon_{1}$,
$110=\beta_{0}+\beta_{1}(1)+\varepsilon_{2}$,
$150=\beta_{0}+\beta_{1}(3)+\varepsilon_{3}$,
$130=\beta_{0}+\beta_{1}(2)+\varepsilon_{4}$,
$120=\beta_{0}+\beta_{1}(1)+\varepsilon_{5}$, so that

$$
\mathbf{Y}=\left[\begin{array}{l}
110 \\
110 \\
150 \\
130 \\
120
\end{array}\right] \text { and } \mathbf{X}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 3 \\
1 & 2 \\
1 & 1
\end{array}\right]
$$

Then we have

$$
\begin{aligned}
& \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array} 1\right. \\
& \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
110 \\
110 \\
150 \\
130 \\
120
\end{array}\right]=\left[\begin{array}{l}
620 \\
940
\end{array}\right] \text {, and } \\
& \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{cc}
5 & 7 \\
7 & 15
\end{array}\right]^{-1}=\left[\begin{array}{cc}
15 / 26 & -7 / 26 \\
-7 / 26 & 5 / 26
\end{array}\right] \text { so } \\
& \widehat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{cc}
15 / 26 & -7 / 26 \\
-7 / 26 & 5 / 26
\end{array}\right]\left[\begin{array}{c}
620 \\
940
\end{array}\right]=\left[\begin{array}{c}
104.62 \\
13.85
\end{array}\right] .
\end{aligned}
$$

Also s.e. $\left(\widehat{\beta}_{1}\right)=\sqrt{\operatorname{Var}\left(\widehat{\beta}_{1}\right)}=\sqrt{\widehat{\sigma_{\varepsilon}^{2}}(5 / 26)}=\sqrt{(41.03)(5 / 26)}=2.81$.

