1 Review problem set 5 solutions

Here are solutions to review problem set 5:
9.3 a) Linear combinations 1,2 , and 4 have coefficients that satisfy $\sum a_{i}=0$, so they are contrasts.
b) Contrasts 2 and 4 are orthogonal, since the coefficients for l_{2} are $110-2$ and for l_{4} they are $1-31$, so when we multiply corresponding coefficients we get $(1)(1)+(1)(1)$ $+(0)(-3)+(-2)(1)=0$. Since the sum is equal to zero, and (presumably) their sample sizes are equal, they are orthogonal.
c) Yes those two contrasts are testing the same hypothesis, because $l_{1}=3 l_{2}$, so if one of them is 0 then they both are equal to 0 .
$9.14 \mathrm{a}) \mathrm{LSD}=t_{\alpha / 2, d f} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}=t_{.025,45} \sqrt{.982\left(\frac{1}{10}+\frac{1}{10}\right)} \approx(2.021) \sqrt{.982\left(\frac{1}{10}+\frac{1}{10}\right)}=$ 896. See the computer printout for results of mean comparisons.
b) $\mathrm{W}=q_{t, d f, \alpha} \sqrt{M S E\left(\frac{1}{n}\right)}=q_{5,45, .05} \sqrt{.982\left(\frac{1}{10}\right)}=(4.04) \sqrt{.982\left(\frac{1}{10}\right)}=1.27$. See the computer printout for results of mean comparisons.
15.6 a) The model is $y_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}$. To estimate the effects, just use the sample means. For example, $\alpha_{\text {classical }}=\mu_{\text {classical }}-\mu_{\text {nomusic }}$., so our estimate is $\widehat{\alpha}_{\text {classical }}=$ $\bar{y}_{\text {classical. }}-\bar{y}_{\text {nomusic. }}=23.0-20.86=2.14$.
b) Yes, $F=6.54, P=.012$ so we reject $H_{0}: \alpha_{\text {classical }}=\alpha_{\text {nomusic }}=\alpha_{\text {hardrock }}=0$.
c) From the plot of the data, the additivity assumption seems reasonable as there is little evidence of lack of parallelism.
d) $R E=\frac{(b-1) M S B+b(t-1) M S E}{(b t-1) M S E}=[6(24.9)+14(2.37)] /[20(2.37)]=3.85$. Yes, the blocks were effective. We would need approximately 3.85 times as many observations per treatment group to obtain the same precision if we had conducted a completely randomized design instead of this randomized block design.
15.7) Yes, the residuals appear normal and the residual-by-predicted plot shows a roughly horizontal band of data points.
15.10 a) The model is $y_{i j k}=\mu+\tau_{k}+\beta_{i}+\gamma_{j}+\varepsilon_{i j k}$.
b) See the printout, as above the parameter estimates can be obtained from the means.
c) From the ANOVA, $F=8.22, p=.015$, so reject H_{0} at $\alpha=.05$.
d) From the Tukey results, gasoline blend C has lower MPG than blends B or D .
e) $R E=\frac{M S R+M S C+(t-1) M S E}{(t+1) M S E}=[2.78+251.8+3(4.31)] /[5(4.31)]=12.4$. We would need approximately 12.4 times as many observations per treatment group to obtain the same precision if we had conducted a completely randomized design instead of this Latin Square design. Cars were very effective in reducing variability, but drivers were not.
f) If a future study was planned that was similar to the present study, perhaps a RCB design using only cars would be a better choice.
14.23 a) The profile plot shows clear evidence of interaction.
b) The model is: $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$.
c) The ANOVA results for these data can be obtained from the SAS code and are displayed in the next problem.
14.24 a) For interaction, $F=8.00, P<.0001$ so we reject $H_{0}: \alpha \beta_{11}=\alpha \beta_{12}=\ldots=$ $\alpha \beta_{43}=0$. For CA, $F=10.82, P=.0004$ so we reject $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$. For PH, $F=21.94, P<.0001$ so we reject $H_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$.
b) Referring to the profile plot in 15.24 a , we see that there is an interaction between Calcium and pH so that, for example, the comparison of Calcium levels depends upon which pH is being applied.
14.25 a) $\mathrm{W}=q_{t, d f, \alpha} \sqrt{M S E\left(\frac{1}{n}\right)}=q_{3,24, .05} \sqrt{.0678\left(\frac{1}{12}\right)}=3.53 \sqrt{.0678\left(\frac{1}{12}\right)}=.265$. We should not continue with the mean comparisons because of the interaction.
b) If we are comparing the mean response among calcium levels separately by pH , then we should use $\mathrm{W}=q_{t, d f, \alpha} \sqrt{M S E\left(\frac{1}{n}\right)}=q_{12,24, .05} \sqrt{.0678\left(\frac{1}{3}\right)}=5.10 \sqrt{.0678\left(\frac{1}{3}\right)}=.767$, which leads to different conclusions for different pH values. We are using $t=12$ because we are exploring pairwise combinations that are a subset of all interaction pairwise combinations, thus $t=3 * 4=12$.

For the cuckoo data problem, the contrast is $L=\left(\mu_{T P}+\mu_{M P}\right) / 2-\left(\mu_{H S}+\mu_{P W}+\right.$ $\left.\mu_{R}+\mu_{W}\right) / 4$. Our estimate of L is $\widehat{L}=\left(\bar{y}_{T P}+\bar{y}_{M P}\right) / 2-\left(\bar{y}_{H S}+\bar{y}_{P W}+\bar{y}_{R}+\bar{y}_{W}\right) / 4=$ $(22.28+23.09) / 2-(23.17+22.90+22.54+21.13) / 4=.25$. The standard error of the contrast is $\widehat{\text { s.e. }(\widehat{L})}=\sqrt{M S E \sum \frac{a_{i}^{2}}{n_{i}}}=\sqrt{(.904)\left(\frac{1}{15}\right)\left[4\left(-\frac{1}{4}\right)^{2}+2\left(\frac{1}{2}\right)^{2}\right]}=.213$. Thus the t statistic is $t=$ $.25 / .213=1.18$, which we compare to $t_{84, .025} \simeq 2$, so we fail to reject $H_{0}: L=0$. For Scheffe's method, we compare \widehat{L} to $S=\sqrt{M S E \sum \frac{a_{i}^{2}}{n_{i}}} \sqrt{(t-1) F_{.05, t-1, d f(M S E)}}=.213 \sqrt{5 F_{.05,5,84}}=$ $.213 \sqrt{5(2.37)}=.73$. Since $\widehat{L}<|S|$, we fail to reject $H_{0}: L=0$.

