
1 Introduction

In analysis of covariance we wish to test equality of group means, after first adjusting for the effect of a
continous covariate. In the text example, we see that the raw y = keyboard pain values look somewhat
different between groups. However, y is linearly related to x = hours spent keyboarding, so that yij =
µ+β1xij+εij . In the example the group means were not equal, and this inequality of the x values obscured
group differences for y. Even if the covariate means were equal for the groups, variability among the x
values can also obscure the true group difference for y by creating large within-group variation. Thus the
x variable is a nuisance variable, and we wish to adjust for it as we test hypotheses about the y variable.
This approach is quite similar to using a blocking factor in a randomized block design to remove nuisance
variation.

2 Two assumptions

To perform a standard ANCOVA, we will make two assumptions. The first of these assumptions we can
check with a statistical test discussed below. The first assumption is that of parallelism. We assume that
the slope β1 is equal for each group. This assumption allows us to make a global conclusion about the
treatment that is applicable for all values of x. If this assumption does not hold we then have to qualify any
statements about the treatment, because it can change as x changes. A test for the parallelism assumption
is discussed below. The second assumption is that the covariate x is unaffected by the treatment. As an
example if we are comparing the weight of two species of mice at 1 year of age, we may consider using their
weights at 6 months as a covariate. The problem is that if weight differs at 1 year by species, it will also
likely differ at 6 months as well. If we adjust for weight at 6 months, we will probably remove the true
difference due to species. This assumption must be considered each time ANCOVA is used.

3 ANCOVA assuming parallelism

In the most common ANCOVA application, we assume a linear relationship between x and y. If the slope
(β) is equal in the groups then the regression lines are parallel, and the test for equality of group means is
equivalent to equality of the intercepts among groups. If we have a completely randomized design for the
treatment, using β as the slope the model is:

yij = µi + β(xij − x··) + eij .

See our code examples for an illustration. Note that the covariate is not treated as a factor in the analysis,
so that in SAS it is not in the CLASS statement, and in R it is not declared to be a factor.

4 Testing the parallelism assumption

Complications arise if the regression lines for the separate groups are not all parallel. When parallelism
fails, then the comparison of y values depends on the x values, as the y comparison will change with x. We
can test this assumption by introducing a new crossproduct term to the model, as shown in the example
code.
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5 Comparison of means

If we have more than 2 groups, if the parallelism assumption is satisfied and we have rejected the global null
hypothesis of equality of means, we may then want to do additional tests such as pairwise tests of means.
Multiple comparison tests should be based on the adjusted group means, in which the mean covariate value
x·· is used to compare groups. Then we have

yi(adj) = yi· − β̂(xi· − x··) ,

where x·· is the mean of xij for the entire data set. The standard error of an adjusted mean is:

s.e.( yi(adj)) =

√
MSE(

1

ni
+
(xi· − x··)2
SXX

),

where SXX =
∑

i

∑
j(xij − xi·)

2 is the sum of squares of the covariate values about their group means.
These calculations are illustrated in the code examples.

6 Final remarks

1) We have discussed ANCOVA for the completely randomized design, but it can be used with other ANOVA
designs as well.
2) We have required that the relationship between y and x be linear, but ANCOVA can be used with

nonlinear patterns as well. In these cases it remains important to have parallelism.
3) It is preferred that the ranges of the x values overlap between different treatment groups. If they

do not overlap at all, then the ANCOVA test is extrapolating beyond observed x values, which may not be
justified.
4) Comparing ANCOVA to blocking: If y and x are linearly related then ANCOVA is more effi cient than

using a randomized block design, if not then a randomized block design may be better.
5) ANCOVA versus differencing: Differencing (analyzing y − x) is a special case of ANCOVA in which

β = 1.
6) For heterogeneous slopes, an article by Hendrix et al. (Biometrics, 1982, pp 641-650) discusses some

approaches to data analysis. Also see our example SAS code for an unequal slopes situation.
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