
0.1 Addressing Unbalanced Data for Factorial Treatment
Designs

Thus far we have assumed that we had balanced factorial data, meaning that
there were the same number of replicates for each combination of treatment
factors. When we have unbalanced factorial data, some issues arise as to
how to conduct tests of hypotheses. Recall in an earlier lecture that we
discussed the concept of defining a full and a reduced model as a general
way to conduct tests with linear models. With unbalanced factorial data, our
sum of squares for a factor can depend upon what models are defined as the
full and reduced models for the test. We will use the notation that SS(A|B)
is the model sum of squares to test the effect of A while ’adjusting’for effect
B. Thus SS(A|B) = SS(AB) − SS(B), where SS(AB) is the model sum
of squares for the model with both the A and B effects. For a two-factor
model with interaction, we will use the letter C to denote the interaction
effect, to avoid confusion with the AB model above. With this notation we
can explain the difference between what are called Type I, II, and III sums
of squares. Suppose the model is written as: y = A B AB, then the Type I
SS are formed as:

SS(A) = SS(A|�)
SS(B|A) = SS(AB)− SS(A)

SS(C|AB) = SS(ABC)− SS(AB)

The Type II SS are formed as:

SS(A|B) = SS(AB)− SS(B)
SS(B|A) = SS(AB)− SS(A)

SS(C|AB) = SS(ABC)− SS(AB)

The Type III SS are formed as:

SS(A|BC) = SS(ABC)− SS(BC)
SS(B|AC) = SS(ABC)− SS(AC)
SS(C|AB) = SS(ABC)− SS(AB)

The pattern that emerges is that Type I SS are sequential, Type III SS
adjust for every term in the model, and Type II SS adjust for all terms at
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the same level or below the term being tested. There is an active debate
about whether Type II SS or Type III SS are more appropriate for tests
with unbalanced data, but most would agree that Type I SS are often not
appropriate. Check the SAS and R code with this lecture to illustrate the
computation of these sums of squares.

0.2 Standard errors and interval estimates for means

Recall that for a variable y with V ar(y) = σ2, we have for the sample mean
taken with n observations, V ar(y) = σ2/n. Also recall the expression on
page 43 of the text for a generic confidence interval for a mean: unbiased
estimate ± multiplier × (estimated) standard error of estimate. Since the
standard error of a mean is the square root of its variance, once we know
how to calculate variances we can calculate standard errors and confidence
intervals.

Calculations for least squares means with unbalanced data become slightly
more complicated. In the handwritten example from the notes for an un-
balanced 2x2 factorial, the least squares mean of level 1 of factor A, y1· , is
the average of the cell means,

y1· =
y11 + y12

2
=
5 + 9

2
= 7

To calculate the (estimated) standard error of this least squares mean, we
calculate its (estimated) variance and take a square root. Since the samples
from different cells are independent, their variances add. Thus we have

V ar(y1·) =
V ar(y11) + V ar(y12)

4
=
(σ2/n11) + (σ

2/n12)

4
=
(σ2/3) + (σ2/1)

4

We estimate σ2 from the MSE of the ANOVA table, giving us σ̂2 = 6.5.
Thus our estimated standard error for y1· is:

s.e.(y1·) =

√
(σ̂2/3) + (σ̂2/1)

4
=

√
(6.5/3) + (6.5/1)

4
=

√
2.17 + 6.5

4
=
√
2.167 = 1.472

0.3 Power and Sample Size for Factorial Treatment Designs

Power and sample size for factorial models is discussed in section 10.3, along
with a listing of the noncentrality parameter for the interaction test in a 2
factor model.
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