Statistics 550 Homework assignment 2

Problems 1-3 are problems 8.10, 9.6, and 9.15 in the text, respectively.
4. For the simple linear regression model, $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, verify that the vector partial derivatives of the sum of squares function $S(\mathbf{b})$ are correct. In other words, write out the scalar expression for $\mathbf{y}^{\prime} \mathbf{y}-\left(2 \mathbf{y}^{\prime} \mathbf{X}\right) \mathbf{b}+\mathbf{b}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}$ and then verify that the partial derivative equations can be rewritten in the form $-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X b}$.
5. For a small data set in which two values (12 and 36) are recorded for group 1 and two values (54 and 72) are recorded for group 2, consider the model

$$
y_{i j}=\mu+\alpha_{j}+\epsilon_{i j},
$$

where deviation coding is used for the α_{j} parameter (use a full rank approach, so there is just one α_{j} parameter). Write down the \mathbf{X} matrix for the model and then use the matrix-based approach to calculate the least-squares estimates $\widehat{\boldsymbol{\beta}}$ and their sampling variances $\widehat{V}(\widehat{\boldsymbol{\beta}})$ by hand (for estimating $\widehat{V}(\widehat{\boldsymbol{\beta}})$, use the fact that $\widehat{\sigma}_{\varepsilon}^{2}=225$.). Specify a matrix \boldsymbol{L} and a vector co so that the null hypothesis of no difference between groups can be tested with the F statistic:

$$
F_{0}=\frac{(\boldsymbol{L} \mathbf{b}-\mathbf{c})^{\prime}\left[\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime}\right]^{-1}(\boldsymbol{L} \mathbf{b}-\mathbf{c})}{q S_{E}^{2}}
$$

then compute the F_{0} statistic by hand. Verify your results by comparing them to the output from a computer regression analysis.

