An application of result 2, part iv

We will use our result $E\left(\mathbf{y}^{\prime} \mathbf{A y}\right)=\operatorname{trace}(\mathbf{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$ to derive the expected value of the residual sum of squares for a least-squares regression model. For the model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$, with $E(\varepsilon)=0, V(\varepsilon)=\sigma_{\varepsilon}^{2} \mathbf{I}_{n}$, and $\operatorname{rank}(\mathbf{X})=k+1$, we have

$$
\begin{aligned}
E(R S S) & =E\left[(\mathbf{y}-\widehat{\mathbf{y}})^{\prime}(\mathbf{y}-\widehat{\mathbf{y}})\right] \\
& =E\left[(\mathbf{y}-\mathbf{X} \mathbf{b})^{\prime}(\mathbf{y}-\mathbf{X} \mathbf{b})\right] \\
& =E\left[\left(\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}\right)^{\prime}\left(\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}\right)\right] \\
& =E\left[\left(\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{y}\right)^{\prime}\right]\left[\left(\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{y}\right)\right] \\
& =E\left[\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right) \mathbf{y}\right] \\
& =E\left[\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right) \mathbf{y}\right] \\
& =E\left[\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right) \mathbf{y}\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E(R S S) & =E\left[\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right) \mathbf{y}\right] \\
& =\operatorname{trace}\left(\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right) \mathbf{I}_{n} \sigma_{\varepsilon}^{2}\right)+(E(\mathbf{y}))^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)(E(\mathbf{y})) \\
& =\sigma_{\varepsilon}^{2} \operatorname{trace}\left(\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)\right)+(\mathbf{X} \boldsymbol{\beta})^{\prime}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)(\mathbf{X} \boldsymbol{\beta}) \\
& =\sigma_{\varepsilon}^{2}\left[\operatorname{trace}\left(\mathbf{I}_{n}\right)-\operatorname{trace}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)\right]+\left(\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\right)\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)(\mathbf{X} \boldsymbol{\beta}) \\
& =\sigma_{\varepsilon}^{2}\left[n-\operatorname{trace}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)\right]+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
& =\sigma_{\varepsilon}^{2}\left[n-\operatorname{trace}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)\right] \\
& =\sigma_{\varepsilon}^{2}\left[n-\operatorname{trace}\left(\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\right)\right] \\
& =\sigma_{\varepsilon}^{2}\left[n-\operatorname{trace}\left(\mathbf{I}_{k+1}\right)\right] \\
& =\sigma_{\varepsilon}^{2}[n-(k+1)] \\
& =\sigma_{\varepsilon}^{2}[n-k-1]
\end{aligned}
$$

A matrix \mathbf{A} is called idempotent if $\mathbf{A}^{2}=\mathbf{A} \mathbf{A}=\mathbf{A}$. We saw in the first part of the derivation above that the matrix $\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right)$ is idempotent. We will see more idempotent matrices in Chapters 9 and 10 of the text, and we will see that they play a key role in the method of least-squares. In Chapter 10 we will give a geometric explanation of the role of idempotent matrices.

